Journal of Mathematics and Applications

JMA No 45, pp 181-190 (2022)

On the Analytic α -Lipschitz Vector-Valued Operators

Abbasali Shokri

ABSTRACT: Let (X, d) be a non-empty compact metric space in \mathbb{C} , $(B, \| . \|)$ be a commutative unital Banach algebra over the scalar field $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$ and $\alpha \in \mathbb{R}$ with $0 < \alpha \leq 1$. In this work, first we define the analytic α -Lipschitz B-valued operators on X and denote the Banach algebra of all these operators by $Lip^{\alpha}_{A}(X, B)$. When $B = \mathbb{F}$, we write $Lip^{\alpha}_{A}(X)$ instead of $Lip^{\alpha}_{A}(X, B)$. Then we study some interesting results about $Lip^{\alpha}_{A}(X, B)$, including the relationship between $Lip^{\alpha}_{A}(X, B)$ with $Lip^{\alpha}_{A}(X)$ and B, and also characterize the characters on $Lip^{\alpha}_{A}(X, B)$.

AMS Subject Classification: 46B28, 46E15, 46E40.

Keywords and Phrases: Analytic operator; Banach algebra; Vector-valued operator; Lipschitz operator.

1. Introduction

Throughout this paper, let (X, d) be a compact metric space in \mathbb{C} , $(B, \| . \|)$ be a commutative unital Banach algebra over the scalar field $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$ with unit \mathbf{e} , C(X, B) be the set of all *B*-valued continuous operators on X, and also $\alpha \in \mathbb{R}$ with $0 < \alpha \leq 1$.

The *dual space* of *B* is the vector space B^* whose elements are the continuous linear functionals on *B*. The set of all multiplicative functionals on *B* is called *spectrum* of *B*; we denote it by $\sigma(B)$. Suppose that throughout this article, $\Lambda \in \sigma(B)$ is arbitrary and fixed. Since $\sigma(B)$ is a subset of the closed unit ball of B^* , $\| \Lambda \|$ is bounded, where

 $\| \Lambda \| = \sup \{ |\Lambda x| : x \in B, \| x \| \le 1 \}.$

When $B = \mathbb{F}$, take Λ as the identity function $\Lambda x = x$.

COPYRIGHT © by Publishing House of Rzeszów University of Technology P.O. Box 85, 35-959 Rzeszów, Poland Consider the set Y as follows

$$Y := \{ (x,y) \ : \ x,y \in X \ , \ x \neq y \}.$$

For an operator $f: X \to B$ and any $(x, y) \in Y$ define

$$L_f^{\alpha}(x,y) := \frac{\left| \left(\Lambda of \right)(x) - \left(\Lambda of \right)(y) \right|}{d^{\alpha}(x,y)}$$

where $d^{\alpha}(x,y) = (d(x,y))^{\alpha}$ and $0 < \alpha \leq 1$. Now define

$$p_{\alpha}(f) := \sup_{x \neq y} L_f^{\alpha}(x, y) , \ 0 < \alpha \le 1,$$

which is called the *Lipschitz constant* of f. Also for $0 < \alpha \leq 1$ define

$$Lip^{\alpha}(X,B) := \{ f \in C(X,B) : p_{\alpha}(f) < +\infty \},\$$

and for $0 < \alpha < 1$ define

$$lip^{\alpha}(X,B) := \{ f \in Lip_{\alpha}(X,B) : \lim_{d(x,y) \to 0} L_{f}^{\alpha}(x,y) = 0 \}.$$

The elements of $Lip^{\alpha}(X, B)$ and $lip^{\alpha}(X, B)$ are called *big* and *little* α -Lipschitz *B*-valued operators, respectively.

Now, for each $\lambda \in \mathbb{F}$, $x \in X$ and $f, g \in C(X, B)$ define

$$(f+g)(x) := f(x) + g(x) , \ (\lambda f)(x) := \lambda f(x) ,$$

and the uniform norm $\parallel . \parallel_{\infty}$ on C(X,B) by

$$\parallel f \parallel_{\infty} := \sup_{x \in X} \parallel f(x) \parallel \quad ; \quad f \in C(X, B).$$

Also for any $f \in Lip^{\alpha}(X, B)$ define

$$\parallel f \parallel_{\alpha} := p_{\alpha}(f) + \parallel f \parallel_{\infty}.$$

It is easy to see that $(C(X, B), \| \cdot \|_{\infty})$ becomes a Banach algebra over \mathbb{F} .

Cao, Zhang and Xu in [6] proved that $(Lip^{\alpha}(X, B), \| \cdot \|_{\alpha})$ is a Banach space over \mathbb{F} and $(lip^{\alpha}(X, B), \| \cdot \|_{\alpha})$ is a closed linear subspace of $(Lip^{\alpha}(X, B), \| \cdot \|_{\alpha})$ when B is a Banach space. We also studied some of the properties of these algebras in [14-17] when B is a commutative unital Banach algebra.

Note that for $\alpha = 1$ and $B = \mathbb{F}$, the space $Lip^1(X, \mathbb{F})$ consisting of all Lipschitz functions from X into $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$ has a series of interesting and important properties, which has been studied by many mathematicians, including the first of them Sherbert [13]. In [7, 18] some properties of Lipschitz scalar-valued functions are mentioned.

Let D be an open subset of X. An operator f of D into B is said to be *analytic* on D if, for every continuous linear functional $\phi \in B^*$, the scalar-valued function ϕof

is analytic on D in the usual sense. Note that we do not require D to be connected. For a full discussion of analytic complex-valued and vector-valued functions, see [2, 7]. The algebra of all continuous B-valued operators on X whose analytic in interior X is denoted by A(X, B). We write A(X) instead of $A(X, \mathbb{F})$ ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}). Some of the properties of these algebras have been studied by certain mathematicians, see [1, 3-5, 8-11].

Finally, in this article, we introduce the analytic α -Lipschitz *B*-valued operator algebras $Lip^{\alpha}_{A}(X, B)$ and we characterize their characters, also we study the relationship between of $Lip^{\alpha}_{A}(X, B)$ and *B*. We prove the main results of the article in several theorems.

2. Lip-analytic Operators

In this section, we introduce the analytic α -Lipschitz vector-valued operator algebras $Lip^{\alpha}_{A}(X, B)$, and we study some of their properties.

We write C(X) and $Lip^{\alpha}(X)$ instead of $C(X, \mathbb{F})$ and $Lip^{\alpha}(X, \mathbb{F})$ respectively. By the Stone-Weierstrass theorem, we have

Theorem 2.1. [7]. A(X) is uniformly dense in C(X).

It is obvious that A(X, B) is a subalgebra of C(X, B). We have

Theorem 2.2. A(X, B) is uniformly dense in C(X, B).

Proof. Let $\epsilon > 0$ and $f \in C(X, B)$ be arbitrary. We show that there exists $g \in A(X, B)$ such that $|| f - g ||_{\infty} < \epsilon$. Since $f \in C(X, B)$, $\Lambda of \in C(X)$. Then by Theorem 2.1, there is $h \in A(X)$ such that $|| \Lambda of - h ||_{\infty} < \epsilon$. So

$$\sup_{x \in X} \left| (\Lambda of)(x) - h(x) \right| < \epsilon.$$

Since $\Lambda(\mathbf{e}) = 1$, $h(x) = \Lambda(h(x)\mathbf{e})$ for all $x \in X$. Then

$$\sup_{x \in X} \left| \Lambda(f(x)) - \Lambda(h(x)\mathbf{e}) \right| < \epsilon.$$

Hence

$$\sup_{x \in X} \left| \Lambda \big((f - h.\mathbf{e})(x) \big) \right| < \epsilon.$$

Since $\Lambda \in \sigma(B)$ is arbitrary, $\sup_{x \in X} \| (f - h.\mathbf{e})(x) \| < \epsilon$. Thus $\| f - h.\mathbf{e} \|_{\infty} < \epsilon$. Now, take $g := h.\mathbf{e}$. Since $h \in A(X)$ and $\mathbf{e} \in B$, $g \in A(X, B)$. Therefore we conclude that $\| f - g \| < \epsilon$ where $g \in A(X, B)$. \Box

We have the similar Theorem 2.1 for the algebra of Lipschitz scalar-valued functions:

Theorem 2.3. [18]. $Lip^{\alpha}(X)$ is uniformly dense in C(X).

Theorem 2.4. $Lip^{\alpha}(X, B)$ is uniformly dense in C(X, B).

Proof. Let $\epsilon > 0$ and $f \in C(X, B)$ be arbitrary. We show that there exists $h \in Lip^{\alpha}(X, B)$ such that $|| h - f ||_{\infty} < \epsilon$. Since $f \in C(X, B)$, $\Lambda of \in C(X)$. So by Theorem 2.3, there exists $g \in Lip^{\alpha}(X)$ such that $|| g - \Lambda of ||_{\infty} < \epsilon$. Define

$$\eta: \mathbb{C} \to B$$
$$\eta(\lambda) := \lambda \mathbf{e}.$$

Since g is continuous, $\eta o g$ is continuous. Also

$$p_{\alpha}(\eta og) = \sup_{x \neq y} L^{\alpha}_{\eta og}(x, y)$$

$$= \sup_{x \neq y} \frac{\| (\eta og)(x) - (\eta og)(y) \|}{d^{\alpha}(x, y)}$$

$$= \sup_{x \neq y} \frac{\| g(x)\mathbf{e} - g(y)\mathbf{e} \|}{d^{\alpha}(x, y)} \quad (\| \mathbf{e} \| = 1)$$

$$\leq p_{\alpha}(g) < \infty.$$

So $\eta og \in Lip^{\alpha}(X, B)$. Set $h := \eta og$. Now we show that $|| h - f ||_{\infty} < \epsilon$. Since $\Lambda(\mathbf{e}) = 1$, for all $x \in X$ we have

$$\begin{aligned} \left| \Lambda \big(g(x) \mathbf{e} - f(x) \big) \right| &= \left| g(x) - (\Lambda o f)(x) \right| \\ &\leq \| g - \Lambda o f \|_{\infty} \\ &< \epsilon. \end{aligned}$$

This implies that

$$\left|\Lambda \left(\eta og - f\right)(x)\right| < \epsilon \ , \ x \in X.$$

Since $\Lambda \in \sigma(B)$ is arbitrary, $\| (\eta og - f)(x) \| < \epsilon$ for all $x \in X$. Consequently, $\| \eta og - f \|_{\infty} < \epsilon$ or $\| h - f \|_{\infty} < \epsilon$. This completes the proof. \Box

Corollary 2.5. By using Theorems 2.2 and 2.4, each element of A(X,B) can be approximated by elements of $Lip^{\alpha}(X,B)$ with sup-norm. Also each element of $Lip^{\alpha}(X,B)$ can be approximated by elements of A(X,B) with sup-norm.

Definition 2.6. Let D be an open subset of X. An operator f of D into B is said to be Lip-analytic on D if $f \in Lip^{\alpha}(X, B) \cap A(X, B)$.

The algebra of all Lip-analytic *B*-valued operators on *X* whose analytic in interior *X* is denoted by $Lip^{\alpha}_{A}(X, B)$. When $B = \mathbb{F}$, we write $Lip^{\alpha}_{A}(X)$ instead of $Lip^{\alpha}_{A}(X, B)$.

By Theorems 2.2 and 2.4, we can prove that:

Theorem 2.7. $Lip^{\alpha}_{A}(X, B)$ is uniformly dense in C(X, B).

On the Analytic α -Lipschitz Vector-Valued Operators

<

Let E_1 and E_2 be linear spaces. From [12], a *tensor product* of E_1 and E_2 is a pair (T, τ) , where T is a linear space and $\tau : E_1 \times E_2 \to T$ is a bilinear map with the following (universal) property: For each linear space F and for each bilinear map $V: E_1 \times E_2 \to F$, there is a unique linear map $U: T \to F$ such that $V = Uo\tau$. We shall also use the standard notation for tensor products, we write $E_1 \otimes E_2$ for T and $x_1 \otimes x_2 = \tau(x_1, x_2)$ for $x_1 \in E_1$ and $x_2 \in E_2$. If $Z \in E_1 \otimes E_2$, then there is $m \in \mathbb{N}$, and for each j = 1, 2 there are $x_j^{(1)}, \dots, x_j^{(m)} \in E_j$ such that $Z = \sum_{k=1}^m x_1^{(k)} \otimes x_2^{(k)}$. Let E_1 and E_2 be Banach spaces with dual spaces E_1^* and E_2^* . Then we define

for $Z \in E_1 \otimes E_2$

$$||Z||_{\epsilon} = \sup \Big\{ |\langle Z, \phi_1 \otimes \phi_2 \rangle| : \phi_j \in N_1[0, E_j^*], j = 1, 2 \Big\},$$

where

$$Z = \sum_{k=1}^{m} x_1^{(k)} \otimes x_2^{(k)} \; ; \; \left(m \in \mathbb{N}, \; x_j^{(k)} \in E_j, \; j = 1, 2, \; 1 \le k \le m \right),$$

and

$$Z, \phi_1 \otimes \phi_2 \rangle = \langle \sum_{k=1}^m x_1^{(k)} \otimes x_2^{(k)}, \phi_1 \otimes \phi_2 \rangle$$
$$= (\phi_1 \otimes \phi_2) \Big(\sum_{k=1}^m x_1^{(k)} \otimes x_2^{(k)} \Big)$$
$$= \sum_{k=1}^m (\phi_1 \otimes \phi_2) \big(x_1^{(k)} \otimes x_2^{(k)} \big)$$
$$= \sum_{k=1}^m \phi_1 \big(x_1^{(k)} \big) \phi_2 \big(x_2^{(k)} \big),$$

and $N_1[0, E_j^*]$ is closed ball in E_j^* with radius 1 centered at 0. We call $\| \cdot \|_{\epsilon}$ the injective norm on $E_1 \otimes E_2$.

Let $(E_1, \| \cdot \|_1)$ and $(E_2, \| \cdot \|_2)$ be Banach spaces. Then their injective tensor product $E_1 \otimes E_2$ is the completion of $E_1 \otimes E_2$ with respect to $\| \cdot \|_{\epsilon}$. For every $Z \in E_1 \check{\otimes} E_2$, we have

$$\| Z \|_{\epsilon} = \sup \left\{ \| (id \otimes \phi)(Z) \|_1 : \phi \in N_1[0, E_2^*] \right\},\$$

where

$$(id \otimes \phi)(a \otimes b) = a\phi(b) ; (a \in E_1, b \in E_2).$$

Definition 2.8. Let E_1 and E_2 be Banach spaces. A norm $\| \cdot \|$ on $E_1 \otimes E_2$ is called a cross norm if

$$||x_1 \otimes x_2|| = ||x_1|| ||x_2|| \quad (x_1 \in E_1, x_2 \in E_2).$$

Proposition 2.9. [12]. Let E_1 and E_2 be Banach spaces. Then $\| \cdot \|_{\epsilon}$ is a cross norm on $E_1 \otimes E_2$.

3. The Main Results

In this section, we present the main results of the article.

Theorem 3.1. $Lip^{\alpha}_{A}(X, B)$ is isometrically isomorphic to $Lip^{\alpha}_{A}(X) \check{\otimes} B$.

Proof. It is straightforward to prove that the mapping

$$Lip^{\alpha}_{A}(X) \times B \to Lip^{\alpha}_{A}(X,B), \quad (f,b) \longmapsto fb$$
 (3.1)

is bilinear. So from the defining property of the algebraic tensor product $Lip_A^{\alpha}(X) \otimes B$, it follows that (1) extends to a linear map

$$\begin{split} S: Lip^{\alpha}_{A}(X)\otimes B &\longrightarrow Lip^{\alpha}_{A}(X,B)\\ S(f\otimes b) := fb \ , \end{split}$$

where

$$(fb)(x) := f(x)b ; (x \in X).$$

Then

$$\| S(f \otimes b) \|_{\alpha} = \| fb \|_{\alpha} = \| fb \|_{\infty} + p_{\alpha}(fb) \\ = \| f \|_{\infty} \| b \| + p_{\alpha}(f) \| b \| \\ = (\| f \|_{\infty} + p_{\alpha}(f)) \| b \| \\ = \| f \|_{\alpha} \| b \| \\ = \| f \otimes b \|_{\epsilon} .$$

Therefore S is an isometry and thus injective with closed range. It remains to be shows that it has dense range as well.

Let $f \in Lip_A^{\alpha}(X, B)$ and $\epsilon > 0$. Being the continuous image of a compact space, $K := f(X) \subset B$ is compact. We may thus find $b_1, ..., b_n \in B$ such that $K \subset \bigcup_{i=1}^n N(b_i, \epsilon)$, where $N(b_i, \epsilon)$ is a neighborhood with radius ϵ centered at b_i . Let $U_j := f^{-1}(N(b_j, \epsilon))$ for j = 1, ..., n. Choose $f_1, ..., f_n \in Lip_A^{\alpha}(X, B)$ such that $supp(f_j) \subset U_j$ for j = 1, ..., n, and $\Lambda o(\sum_{i=1}^n f_i) = 1$. Then for every $x \in X$ we have

$$\| \left(f - \sum_{i=1}^{n} S(\Lambda of_{i} \otimes b_{i}) \right)(x) \| = \| \left(f - \sum_{i=1}^{n} (\Lambda of_{i})b_{i} \right)(x) \| \\ = \| f(x) - \sum_{i=1}^{n} (\Lambda of_{i})(x)b_{i} \| \\ = \| f(x) \left(\Lambda o(\sum_{i=1}^{n} f_{i}) \right)(x) - \sum_{i=1}^{n} (\Lambda of_{i})(x)b_{i} \| \\ = \| f(x) \sum_{i=1}^{n} (\Lambda of_{i})(x) - \sum_{i=1}^{n} (\Lambda of_{i})(x)b_{i} \| \\$$

On the Analytic α -Lipschitz Vector-Valued Operators

$$= \|\sum_{i=1}^{n} (\Lambda of_i)(x) (f(x) - b_i) \|$$

$$\leq \sum_{i=1}^{n} |(\Lambda of_i)(x)| \| f(x) - b_i \|.$$

It easy to see that the right hand side of the above relation is less than ϵ . So we conclude that $\overline{R_S} = Lip_A^{\alpha}(X, B)$. This completes the proof. \Box

With an argument similar to the proof of Theorem 3.1, we can prove that:

Theorem 3.2. A(X,B) is isometrically isomorphic to $A(X) \check{\otimes} B$.

Define the canonical embedding

$$j: Lip^{\alpha}_{A}(X) \to Lip^{\alpha}_{A}(X, B)$$

 $j(h) := h \otimes \mathbf{e} ,$

such that

$$(h \otimes \mathbf{e})(x) := h(x)\mathbf{e} \; ; \; x \in X.$$

By Theorem 3.1, the map j is well defined. Let χ be a arbitrary and fixed character on $Lip_A^{\alpha}(X, B)$. Then there is $z \in X$ such that χoj is the evaluation at z, indeed $\chi oj = \delta_z$ where $\delta_z(f) = f(z)$.

Define $\varphi(\omega) := \omega - z$, $(\omega \in X)$. It is clear that $\varphi \in A(X)$, and we have

$$p_{\alpha}(\varphi) = \sup_{x \neq y} \frac{|\varphi(x) - \varphi(y)|}{|x - y|^{\alpha}} = \sup_{x \neq y} \frac{|(x - z) - (y - z)|}{|x - y|^{\alpha}}$$
$$= \sup_{x \neq y} |x - y|^{1 - \alpha} < \infty.$$

So $\varphi \in Lip^{\alpha}(X)$, and consequently $\varphi \in Lip^{\alpha}_{A}(X)$.

Now consider

$$I := \{ f \in Lip_A^{\alpha}(X, B) : f(z) = 0 \}.$$

It is obvious that I is nonempty and an ideal in $Lip^{\alpha}_{A}(X,B)$.

Theorem 3.3. I is contained in the kernel of χ .

Proof. Let $f \in I$ be arbitrary. Then $f \in A(X, B)$. So f has a Taylor series expansion $f(\omega) = \sum_{n=1}^{\infty} \frac{f^{(n)}(z)}{n!} (\omega - z)^n$ around z. Define

$$g(\omega) := \begin{cases} \frac{f(\omega)}{\omega - z} ; & \omega \neq z , \\ f'(z) ; & \omega = z. \end{cases}$$

It is clear that Λog is analytic in the interior of X, so $g \in A(X, B)$. For $\omega = z$, it is obvious that $g \in Lip_A^{\alpha}(X, B)$, and for $\omega \neq z$ we have

$$f(\omega) = (\omega - z)g(\omega) = \varphi(\omega)g(\omega).$$

It can be easily proved that $g \in Lip^{\alpha}_{A}(X, B)$. Then for every $\omega \in X$ with $\omega \neq z$, we have

$$\begin{aligned} f(\omega) &= \varphi(\omega)g(\omega) = \varphi(\omega)\mathbf{e}g(\omega) \\ &= (\varphi \otimes \mathbf{e})(\omega)g(\omega) = \left((\varphi \otimes \mathbf{e})g\right)(\omega) \\ &= (j(\varphi)g)(\omega). \end{aligned}$$

So $f = j(\varphi)g$. Therefore

$$\begin{split} \chi(f) &= \chi \big(j(\varphi)g \big) = \chi \big(j(\varphi) \big) \chi(g) \\ &= \big(\chi o j \big) (\varphi) \chi(g) = \delta_z(\varphi) \chi(g) \\ &= \varphi(z) \chi(g) = 0 \times \chi(g) = 0. \end{split}$$

So $f \in ker\chi$, and that means $I \subset ker\chi$. This completes the proof. \Box

Theorem 3.4. Every character χ on $Lip^{\alpha}_{A}(X, B)$ is of form $\chi = \psi o \delta_{z}$ for some character ψ on B and some $z \in X$, where $\delta_{z}(f) = f(z)$.

Proof. Let χ be an arbitrary character on $Lip_A^{\alpha}(X, B)$. Then there is $z \in X$ such that χoj is the evaluation at z, indeed $\chi oj = \delta_z$ where $\delta_z(f) = f(z)$. Define

$$I := \{ f \in Lip_A^{\alpha}(X, B) : f(z) = 0 \}.$$

By Theorem 3.3, I is contained in the kernel of χ . It is clear that $ker\delta_z = I$. Therefore $ker\delta_z \subset ker\chi$. We obtain the desired factorization $\chi = \psi o\delta_z$ for some character ψ on B. \Box

References

- O. Blasco, G. Stylogiannis, Lipschitz-type conditions on homogeneous Banach spaces of analytic functions, J. Math. Anal. Appl. 445 (2017) 612–630.
- [2] F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, 1973.
- [3] B. Bouya, Closed ideals in analytic weighted Lipschitz algebras, Advances in Mathematics 219 (2008) 1446–1468.
- [4] B. Bouya, M. Zarrabi, On closed ideals in the big Lipschits algebras of analytic functions, Bull. Sci. Math. 137 (2013) 575–583.
- [5] C. Boyd, R. Ryan, N. Snigireva, Radius of analyticity of analytic functions on Banach spaces, J. Math. Anal. Appl. 463 (1) (2018) 40–49.

On the Analytic α -Lipschitz Vector-Valued Operators

- [6] H.X. Cao, J.H. Zhang, Z.B. Xu, Characterizations and extensions of Lipschitz-α operators, Acta Mathematica Sinica, English series 22 (3) (2006) 671–678.
- [7] H.G. Dales, Banach Algebras and Automatic Continuty, Clarendon press, Oxford, 2000.
- [8] J. Dziok, A unified class of analytic functions with fixed argument of coefficients, Acta Mathematica Scientia 31 (4) (2011) 1357–1366.
- C. Flavia, T. Maria. Operator norms and essential norms of weighted composition operators between Banach spaces of analytic functions, J. Math. Anal. Appl. 434 (2016) 93–124.
- [10] Y. Fuxiang, K. Ker-I, On parallel complexity of analytic functions, Theoretical Computer Science 489-490 (2013) 48–57.
- [11] M. Mastylo, P. Mleczko, Composition operators on Banach spaces of analytic functions, Anal. Acad. Scientiarum Fennicæ 44 (2019) 601–613.
- [12] V. Runde, Lectures on Amenability, Springer, 2002.
- [13] D.R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964) 240–272.
- [14] A.A. Shokri, A. Ebadian, A.R. Medghalchi. Amenability and weak aminability of Lipschitz operator algebras, Acta Universitatis Apulensis 18 (2009) 87–96.
- [15] A. Shokri, Second dual space of little α- Lipschitz vector-valued operator algebras, Sahand Commun. Math. Anal. (SCMA) 8 (1) (2017) 33–41.
- [16] A.A. Shokri, A. Shokri, Homomorphisms of certain α-Lipschitz operator Algebras, Acta Universitatis Apulensis 27 (2011) 9–13.
- [17] A.A. Shokri, A. Shokri, Maximal ideal space of certain α-Lipschitz operator algebras, J. Math. and Appl. (JMA) 35 (2012) 141–147.
- [18] N. Weaver, *Lipschitz Algebras*, World scientific publishing Co., Inc., River Edge, NJ, 1999.

DOI: 10.7862/rf.2022.8

Abbasali Shokri email: Ab.Shokri@iau.ac.ir, shokrimath@yahoo.com ORCID: 0000-0002-1759-1439 Department of Mathematics, Ahar Branch, Islamic Azad University,

 $A.\ Shokri$

Ahar, IRAN

Received 16.09.2021

Accepted 20.10.2022