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1. Introduction

Recently, more and more attention has been given to the subject of fractional differen-
tial and integral equations due to their importance in applications in various branches
of applied science and engineering; see, for example, [18, 26, 27, 31, 33, 34, 35]. For
basic facts in the fractional calculus, we refer to the books [20, 28, 30, 45]. Almeida
[8] introduced a new and general fractional derivative called the ψ–Caputo fractional
derivative and extended the work of several researchers [19, 20, 25]. Additional de-
tails and properties of this fractional derivative can be found in [8, 9, 10, 11, 12].
Other important qualitative properties such as existence, uniqueness, and stability
of solutions of various fractional differential problems can be found in the papers
[4, 5, 6, 7, 21, 39, 40, 41]; see also [1, 2, 3, 45, 46].
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The monotone iterative technique combined with the method of upper and lower
solutions has been used by several authors to gain the existence and uniqueness of
extremal solutions to nonlinear fractional differential equations (see, for instance,
[13, 14, 15, 16, 22, 23, 24, 36, 37, 38, 42, 43, 44]).

Motivated by the above results, our goal is to extend the results in the recent
paper by Derbazi et al. [15] by considering a more general system with the ψ–Caputo
derivative. In [15], the authors considered the initial value problem{

cDα;ψ
a+ x(t) = f(t, x(t)), t ∈ J := [a, b],

x(a) = a∗,
(1)

where cDα;ψ
a+ is the ψ-Caputo fractional derivative of order α ∈ (0, 1], f ∈ C(J×R), and

a∗ ∈ R. They were interested in the existence and uniqueness of extremal solutions
to (1).

To the best of our knowledge, there are no known results on the existence of ex-
tremal solutions to systems of initial value problems for nonlinear fractional differen-
tial equations containing ψ–Caputo derivatives via the monotone iterative technique.
As a result, we aim to fill this gap in the literature and contribute to enriching this
area of research.

Here, we examine the existence of extremal solutions to the nonlinear coupled
system {

cDα;ψ
a+ x(t) = f1(t, x(t), y(t)), x(a) = xa,

cDα;ψ
a+ y(t) = f2(t, y(t), x(t)), y(a) = ya,

t ∈ J := [a, b], (2)

where cDα;ψ
a+ is the ψ-Caputo fractional derivative of order α ∈ (0, 1], f1, f2 ∈ C(J×

R2,R), and xa, ya ∈ R with xa ≤ ya.
The structure of this paper is as follows. In Section 2, we introduce definitions

and preliminary results that will be needed to prove our main results. In Section
3, we apply the monotone iterative procedure and the method of upper and lower
solutions to prove the existence of extremal solutions to the problem (2). In Section
4, we present two examples to illustrate the applicability of our results.

2. Preliminaries

In this section, we introduce some notations and definitions from the fractional cal-
culus and present preliminary results needed in our proofs.

Let J = [a, b], 0 < a < b < ∞, be a finite interval and ψ : [a, b] → R be an
increasing function with ψ′(t) 6= 0 for all t ∈ [a, b].

We begin by defining ψ-Riemann-Liouville fractional integrals and derivatives. In
what follows, Γ(·) is the (Euler’s) Gamma function given by

Γ(α) =

∫ +∞

0

tα−1e−tdt, α > 0,

and [ · ] will denote the greatest integer function.
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Definition 2.1. [8, 20] For α > 0, the left-sided ψ–Riemann-Liouville fractional
integral of order α of an integrable function x : J −→ R with respect to the increasing
differentiable function ψ : J −→ R with ψ′(t) 6= 0 for all t ∈ J is defined as

Iα;ψ
a+ x(t) =

1

Γ(α)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1x(s)ds.

Definition 2.2. [8] Let n ∈ N and let ψ, x ∈ Cn(J,R) be two functions such that ψ is
increasing with ψ′(t) 6= 0 for all t ∈ J. The left-sided ψ–Riemann–Liouville fractional
derivative of a function x of order α is defined by

Dα;ψ
a+ x(t) =

(
1

ψ′(t)

d

dt

)n
In−α;ψ
a+ x(t)

=
1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−α−1x(s)ds,

where n = [α] + 1.

Definition 2.3. [8] Let n ∈ N and let ψ, x ∈ Cn(J,R) be two functions such that ψ
is increasing and ψ′(t) 6= 0 for all t ∈ J. The left-sided ψ-Caputo fractional derivative
of x of order α is defined by

cDα;ψ
a+ x(t) = In−α;ψ

a+

(
1

ψ′(t)

d

dt

)n
x(t),

where n = [α] + 1 for α /∈ N, n = α for α ∈ N.

To simplify notation, we will use the abbreviated symbol

x
[n]
ψ (t) =

(
1

ψ′(t)

d

dt

)n
x(t).

From the above definition, it is clear that

cDα;ψ
a+ x(t) =


∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−α−1

Γ(n− α)
x

[n]
ψ (s)ds, if α /∈ N,

x
[n]
ψ (t), if α ∈ N.

(3)

Lemma 2.1. [10, 20] Let α, β > 0 and u ∈ C(J,R). Then for each t ∈ J, we have:

(1) Iα;ψ
a+ Iβ;ψ

a+ u(t) = Iα+β;ψ
a+ u(t),

(2) cDα;ψ
a+ Iα;ψ

a+ x(t) = x(t),

(3) Iα;ψ
a+ (ψ(t)− ψ(a))β−1 = Γ(β)

Γ(β+α) (ψ(t)− ψ(a))β+α−1,

(4) cDα;ψ
a+ (ψ(t)− ψ(a))β−1 = Γ(β)

Γ(β−α) (ψ(t)− ψ(a))β−α−1,
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(5) cDα;ψ
a+ (ψ(t)− ψ(a))k = 0, for all k ∈ {0, . . . , n− 1}, n ∈ N.

Next, we recall the composition rules for fractional ψ-integrals and ψ-derivatives.

Lemma 2.2. [10] Let α > 0. If x ∈ Cn(J,R) and n− 1 < α < n, then

Iα;ψ
a+

cDα;ψ
a+ x(t) = x(t)−

n−1∑
k=0

x
[k]
ψ (a)

k!
[ψ(t)− ψ(a)]

k

for all t ∈ J.

Definition 2.4 ([17]). The Mittag–Leffler functions of one and two parameters are
defined respectively as

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
, z ∈ R and α > 0,

and

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α, β > 0 and z ∈ R. (4)

It is clear that E1,1(z) = E1(z) = ez.

3. Main Results

In this section, we present the existence of extremal solutions to the system (2). The
arguments are based on the monotone iterative technique combined with the method
of upper and lower solutions. We begin by defining what we mean by a solution to
(2).

Definition 3.1. By a solution of problem (2) we mean a pair of functions (x, y) ∈
C(J,R)× C(J,R) that satisfies the system{

cDα;ψ
a+ x(t) = f1(t, x(t), y(t)),

cDα;ψ
a+ y(t) = f2(t, y(t), x(t)),

on J with the initial conditions {
x(a) = xa,

y(a) = ya.

To prove the existence of solutions to the problem (2), we need the following
lemma.
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Lemma 3.1. [15] Let α ∈ (0, 1] be fixed, λ ∈ R, and h ∈ C(J,R). Then, the linear
problem {

cDα;ψ
a+ x(t) + λx(t) = h(t), t ∈ J := [a, b],

x(a) = xa,
(5)

has a unique solution given by

x(t) = xaEα,1
(
−λ(ψ(t)− ψ(a))α

)
(6)

+

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1Eα,α
(
−λ(ψ(t)− ψ(s))α

)
h(s)ds, (7)

where Eα,β(·) is the two-parametric Mittag–Leffer function defined in (4).

Remark 3.1. Note that if λ = 0 in Lemma 3.1, we do not need the Mittag–Leffler
function to compute the solution of the linear problem, and in fact, the unique explicit
solution of (5) is given by

x(t) = xa + Iα;ψ
a+ h(t).

As a consequence of Lemma 3.1, we have the following result that will be useful
in proving our main theorem.

Lemma 3.2. Let α ∈ (0, 1] be fixed, λ, µ ∈ R, and h, g ∈ C(J,R). Then the
associated linear initial value problem{

cDα;ψ
a+ x(t) + λx(t) + µy(t) = h(t), x(a) = xa,

cDα;ψ
a+ y(t) + λy(t) + µx(t) = g(t), y(a) = ya,

t ∈ J := [a, b], (8)

has a unique solution in C(J,R)× C(J,R).

Proof. Let

x(t) =
u(t) + v(t)

2
and y(t) =

u(t)− v(t)

2
.

Using (8), we have{
cDα;ψ

a+ u(t) + (λ+ µ)u(t) = (h+ g)(t), t ∈ J := [a, b],

u(a) = ua = xa + ya,
(9)

and {
cDα;ψ

a+ v(t) + (λ− µ)v(t) = (h− g)(t), t ∈ J := [a, b],

v(a) = va = xa − ya.
(10)

By Lemma 3.1, we know that (9) and (10) have a unique solution u ∈ C(J,R) and
v ∈ C(J,R), respectively, that can be expressed as

u(t) = uaEα
(
−(λ+ µ)(ψ(t)− ψ(a))α

)
+

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1Eα,α
(
−(λ+ µ)(ψ(t)− ψ(s))α

)
(h+ g)(s)ds,

v(t) = vaEα
(
−(λ− µ)(ψ(t)− ψ(a))α

)
+

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1Eα,α
(
−(λ− µ)(ψ(t)− ψ(s))α

)
(h− g)(s)ds.
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Consequently, the linear system (8) has a unique solution (x, y).

Next we present two important comparison results that will play important roles
in the proof of our main result.

First, we state the following lemma that was proven in [15, Lemma 5].

Lemma 3.3 (Comparison result). Let α ∈ (0, 1] be fixed and τ ∈ R. If θ ∈ C(J,R)
satisfies {

cDα;ψ
a+ θ(t) ≥ −τθ(t), t ∈ [a, b],

θ(a) ≥ 0,
(11)

then θ(t) ≥ 0 for all t ∈ J.

Based on the above lemma, we develop a new inequality involving the ψ–Caputo
fractional derivative.

Lemma 3.4 (Comparison result). Let α ∈ (0, 1] be fixed and λ, µ ∈ R with µ ≥ 0. If
ρ, ν ∈ C(J,R) satisfy{

cDα;ψ
a+ ρ(t) ≥ −λρ(t) + µν(t), ρ(a) ≥ 0,

cDα;ψ
a+ ν(t) ≥ −λν(t) + µρ(t), ν(a) ≥ 0,

t ∈ J := [a, b], (12)

then ρ(t) ≥ 0, ν(t) ≥ 0 for all t ∈ J.

Proof. Let θ(t) = ρ(t) + ν(t) for t ∈ J. Then from (12),{
cDα;ψ

a+ θ(t) ≥ −(λ− µ)θ(t),

θ(a) ≥ 0.
t ∈ J := [a, b],

From Lemma 3.3, we obtain θ(t) ≥ 0, t ∈ J, which implies that

ρ(t) + ν(t) ≥ 0 for t ∈ J. (13)

Next, we will show that ρ(t) ≥ 0 and ν(t) ≥ 0 for all t ∈ J. In fact, from (12) and
(13), we have{

cDα;ψ
a+ ρ(t) + (λ+ µ)ρ(t) ≥ 0, ρ(a) ≥ 0,

cDα;ψ
a+ ν(t) + (λ+ µ)ν(t) ≥ 0, ν(a) ≥ 0.

t ∈ J := [a, b], (14)

It follows from inequalities (14) and Lemma 3.3 that

ρ(t) ≥ 0 and ν(t) ≥ 0, t ∈ J.



Coupled System of Nonlinear Fractional Differential Equations 25

Lemma 3.5. Assume that {zn(t)} be a family of continuous functions on J satisfying{
cDα;ψ

a+ zn(t) = f(t, zn(t)),

zn(a) = za,
t ∈ J := [a, b], (15)

for n > 0 and where |f(t, zn(t))| ≤ M (M independent of n) for t ∈ J. Then, the
family {zn(t)} is equicontinuous on J.

Proof. According to Remark 3.1, the integral representation of (15) is given by

zn(t) = za +

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)
f(s, zn(s))ds. (16)

For any t1, t2 ∈ J with a < t1 < t2 < b, from (16) we have

|zn(t2)− zn(t1)| ≤
∫ t1

a

ψ′(s)
[
(ψ(t1)− ψ(s))α−1 − (ψ(t2)− ψ(s))α−1

]
Γ (α)

|f(s, xn(s)|ds

+

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))α−1

Γ (α)
|f(s, xn(s))|ds

≤ M

Γ(α+ 1)
[(ψ(t1)− ψ(a))α + 2(ψ(t2)− ψ(t1))α − (ψ(t2)− ψ(a))α]

≤ 2M

Γ(α+ 1)
(ψ(t2)− ψ(t1))α.

As t2 → t1, the right-hand side of the above inequality tends to zero independently
of {zn}. Hence, the family {zn(t)} is equicontinuous on J.

Now, we are ready to establish our main theorem.

Theorem 3.1. Let the functions f1, f2 ∈ C(J×R×R,R). In addition, assume that:

(H1) There exist x0, y0 ∈ C(J,R) with x0(t) ≤ y0(t) for t ∈ J such that{
cDα;ψ

a+ x0(t) ≤ f1(t, x0(t), y0(t)),

x0(a) ≤ xa,
t ∈ J := [a, b] (17){

cDα;ψ
a+ y0(t) ≥ f2(t, y0(t), x0(t)),

y0(a) ≥ ya
t ∈ J := [a, b]. (18)

(H2) There exist constants λ, µ ∈ R with µ ≥ 0 such that

f1(t, x, y)− f1(t, x̃, ỹ) ≥ −λ(x− x̃)− µ(y − ỹ),

f2(t, y, x)− f2(t, ỹ, x̃) ≤ −λ(y − ỹ)− µ(x− x̃),

where x0 ≤ x̃ ≤ x ≤ y0, x0 ≤ y ≤ ỹ ≤ y0, and

f2(t, y, x)− f1(t, x, y) ≥ −λ(y − x)− µ(x− y),

for x0 ≤ x ≤ y ≤ y0.
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Then the system (2) has an extremal solution (x∗, y∗) ∈ [x0, y0]× [x0, y0]. Moreover,
there exist monotone iterative sequences {xn}n∈N and {yn}n∈N ⊂ [x0, y0] that converge
uniformly to x∗ and y∗ respectively, where {xn}n∈N and {yn}n∈N are defined by

xn+1(t) =
un+1(t) + vn+1(t)

2
, yn+1(t) =

un+1(t)− vn+1(t)

2
, (19)

with

un+1(t) = (xa + ya)Eα
(
−(λ+ µ)(ψ(t)− ψ(a))α

)
+

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1Eα,α
(
−(λ+ µ)(ψ(t)− ψ(s))α

)
×
(
f1(s, xn(s), yn) + f2(s, yn(s), xn) + (λ+ µ)(xn(s) + yn(s))

)
ds,

vn+1(t) = (xa − ya)Eα
(
−(λ− µ)(ψ(t)− ψ(a))α

)
+

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1Eα,α
(
−(λ− µ)(ψ(t)− ψ(s))α

)
×
(
f1(s, xn(s), yn)− f2(s, yn(s), xn) + (λ− µ)(xn(s)− yn(s))

)
ds,

and

x0(t) ≤ x1(t) ≤ · · · ≤ xn(t) ≤ · · · ≤ yn(t) ≤ · · · ≤ y1(t) ≤ y0(t), t ∈ J. (20)

Proof. For any x0(t), y0(t) ∈ C(J,R), we consider the linear system
cDα;ψ

a+ xn+1(t) = f1(t, xn(t), yn(t))− λ
(
xn+1(t)− xn(t)

)
− µ

(
yn+1(t)− yn(t)

)
, t ∈ J,

xn+1(a) = xa,
cDα;ψ

a+ yn+1(t) = f2(t, yn(t), xn(t))− λ
(
yn+1(t)− yn(t)

)
− µ

(
xn+1(t)− xn(t)

)
, t ∈ J,

yn+1(a) = ya.

(21)
By Lemma 3.1, we know that (21) has a unique solution in C(J,R)×C(J,R) that are
defined by (19). We complete the proof of the theorem through the following three
steps.

Step 1: The sequences {xn(t)} and {yn(t)} satisfy the relation

xn(t) ≤ xn+1(t) ≤ yn+1(t) ≤ yn(t), n = 0, 1, 2, · · · , t ∈ J. (22)

First, we prove that

x0(t) ≤ x1(t) ≤ y1(t) ≤ y0(t), t ∈ J. (23)

Set ρ(t) = x1(t)− x0(t) and ν(t) = y0(t)− y1(t). From (21) and (H1), we see that{
cDα;ψ

a+ ρ(t) ≥ −λρ(t) + µν(t), ρ(a) ≥ 0,
cDα;ψ

a+ ν(t) ≥ −λν(t) + µρ(t), ν(a) ≥ 0.
t ∈ J := [a, b],
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By Lemma 3.4, ρ(t) ≥ 0 and ν(t) ≥ 0, for all t ∈ J. That is, x0(t) ≤ x1(t). y1(t) ≤
y0(t), t ∈ J.

Now, let θ(t) = y1(t)− x1(t). By (21) and (H2), we have

cDα;ψ
a+ θ(t) = cDα;ψ

a+ y1(t)− cDα;ψ
a+ x1(t)

= f2(t, y0(t), x0(t))− f1(t, x0(t), y0(t)) + λ
(
y0(t)− x0(t)

)
+ µ

(
x0(t)− y0(t)

)
− (λ− µ)

(
y1(t)− x1(t)

)
≥ −λ(y0(t)− x0(t))− µ(x0(t)− y0(t)) + λ

(
y0(t)− x0(t)

)
+ µ

(
x0(t)− y0(t)

)
− (λ− µ)θ(t)

= −(λ− µ)θ(t).

Since, θ(a) = y1(a)−x1(a) = ya−xa ≥ 0. By Lemma 3.3, we obtain x1(t) ≤ y1(t), t ∈
J.

Next, we show that x1(t) and y1(t) satisfy inequalities (17) and (18), respectively.
Since x0 and y0 are respective solutions of (17) and (18), it follows that

cDα;ψ
a+ x1(t) = f1(t, x0(t), y0(t))− λ

(
x1(t)− x0(t)

)
− µ

(
y1(t)− y0(t)

)
≤ f1(t, x1(t), y1(t))

x1(a) ≤ xa

and 
cDα;ψ

a+ y1(t) = f2(t, y0(t), x0(t))− λ
(
y1(t)− y0(t)

)
− µ

(
x1(t)− x0(t)

)
≥ f2(t, y1(t), x1(t))

y1(a) ≥ ya.

Therefore, x1(t) and y1(t) satisfy the inequalities (17) and (18), respectively.

By the above arguments and mathematical induction, the relation (22) holds.

Step 2: The sequences {xn} and {yn} converge uniformly to their limit functions
x∗ and y∗, respectively. By (20), the sequences {xn} and {yn} are uniformly bounded
on J. From Lemma 3.5, the sequences {xn} and {yn} are equicontinuous on J. Hence
by the Ascoli-Arzelà Theorem, there exist subsequences {xnk

} and {ynk
} that con-

verge uniformly to x∗ and y∗, respectively, on J. This, together with the monotonicity
of the sequences {xn} and {yn}, implies

lim
n→∞

xn(t) = x∗(t) and lim
n→∞

yn(t) = y∗(t),

uniformly on t ∈ J, and the limit functions x∗, y∗ satisfy the problem (2).

Step 3: System (2) has an extremal solution. Assume that (x(t), y(t)) ∈
[x0(t), y0(t)]× [x0(t), y0(t)] be any solutions of system (2). That is,{

cDα;ψ
a+ x(t) = f1(t, x(t), y(t)), x(a) = xa,

cDα;ψ
a+ y(t) = f2(t, y(t), x(t)), y(a) = ya.

t ∈ J := [a, b],
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We need to prove that x∗ ≤ x and y ≤ y∗; we do so by using induction. Clearly,
x0(t) ≤ x(t) and y(t) ≤ y0(t). Assume that for some n ∈ N,

xn(t) ≤ x(t) and y(t) ≤ yn(t), t ∈ J. (24)

Let ρ(t) = x(t)− xn+1(t) and ν(t) = yn+1(t)− y(t). From (21) and (H2), we obtain

cDα;ψ
a+ ρ(t) = cDα;ψ

a+ x(t)− cDα;ψ
a+ xn+1(t)

= f1

(
t, x(t), y(t)

)
− f1

(
t, xn(t), yn

)
+ λ
(
xn+1(t)− xn(t)

)
+ µ

(
yn+1(t)− yn(t)

)
≥ −λ(x(t)− xn(t))− µ(y(t)− yn(t))

+ λ
(
xn+1(t)− xn(t)

)
+ µ

(
yn+1(t)− yn(t)

)
= −λ

(
x(t)− xn+1(t)

)
− µ

(
y(t)− yn+1(t)

)
= −λρ(t) + µν(t)

and

ρ(a) = x(a)− xn+1(a) = xa − xa = 0.

Furthermore,

cDα;ψ
a+ ν(t) = cDα;ψ

a+ yn+1(t)− cDα;ψ
a+ y(t)

= f2

(
t, yn(t), xn(t)

)
− f2

(
t, y(t), x(t)

)
− λ
(
yn+1(t)− yn(t)

)
− µ

(
xn+1(t)− xn(t)

)
≥ λ

(
y(t)− yn(t)

)
+ µ

(
x(t)− xn(t)

)
− λ
(
yn+1(t)− yn(t)

)
− µ

(
xn+1(t)− xn(t)

)
= −λ

(
yn+1(t)− y(t)

)
+ µ

(
x(t)− xn+1(t)

)
= −λν(t) + µρ(t)

and

ν(a) = yn+1(a)− y(a) = ya − ya = 0.

Hence, the above argument yields{
cDα;ψ

a+ ρ(t) ≥ −λρ(t) + µν(t), ρ(a) ≥ 0,
cDα;ψ

a+ ν(t) ≥ −λν(t) + µρ(t), ν(a) ≥ 0.
t ∈ J := [a, b],

By Lemma 3.4, it follows that

xn+1(t) ≤ x(t) and y(t) ≤ yn+1(t), t ∈ J.

Therefore, (24) holds on J for all n ∈ N. Taking the limit as n→∞ on both sides of
(24), we get

x∗ ≤ x, y ≤ y∗.

Therefore (x∗, y∗) is an extremal solution of system (2) in [x0, y0] × [x0, y0]. This
completes the proof of the theorem
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4. Examples

In this section, we provide two examples to demonstrate the applicability of our
results.

Example 4.1. Consider the fractional differential system{
cD0.5;ψ

0+ x(t) = (t− x(t))2 − 0.5ty(t), x(0) = 0,
cD0.5;ψ

0+ y(t) = (t− y(t))2 − 0.5tx(t), y(0) = 0,
t ∈ [0, 1], (25)

where
α = 0.5, a = 0, b = 1, ψ(t) = t, xa = ya = 0,

and {
f1(t, x, y) = (t− x)2 − 0.5ty,

f2(t, y, x) = (t− y)2 − 0.5tx.
t ∈ [0, 1],

Taking x0(t) = 0 and y0(t) = t, we obtain{
cD0.5;ψ

0+ x0(t) = 0 ≤ 0.5t2 = f1(t, x0(t), y0(t)), x0(0) = 0,

cD0.5;ψ
0+ y0(t) = 2

√
t
π ≥ 0 = f2(t, y0(t), x0(t)), y0(0) = 0.

t ∈ [0, 1],

On the other hand, it is easily to verify that condition (H2) holds for λ = 2 and
µ = 0. It follows from Theorem 3.1 that the nonlinear fractional differential system
(25) has an extremal solution (x∗, y∗) ∈ [0, t] × [0, t]. Furthermore, we have the
iterative sequences

xn+1(t) =

∫ t

0

(t− s)−0.5E0.5,0.5

(
−2
√
t− s

)(
(s− xn(s))2 − syn(s) + 2xn(s)

)
ds, n ≥ 0,

yn+1(t) =

∫ t

0

(t− s)−0.5E0.5,0.5

(
−2
√
t− s

)(
(s− yn(s))2 − sxn(s) + 2yn(s)

)
ds, n ≥ 0.

Example 4.2. Consider the coupled system{
CHD0.5;ψ

1+ x(t) = 2
(
ln2(t)− x2(t)

)
− ln(t)y(t), x(1) = 0,

CHD0.5;ψ
1+ y(t) = 2

(
ln2(t)− y2(t)

)
− ln(t)x(t), y(1) = 0,

t ∈ [1, e], (26)

where
α = 0.5, a = 1, b = e, ψ(t) = ln(t), xa = ya = 0,

and {
f1(t, x, y) = 2(ln2(t)− x2)− ln(t)y,

f2(t, y, x) = 2(ln2(t)− y2)− ln(t)x.
t ∈ [1, e],

Taking x0(t) = 0 and y0(t) = ln(t), it is not difficult to show that (H1) holds. Also,
it can easily be verified that condition (H2) holds with λ = 4 and µ = 0. Hence, the
hypothesis of Theorem 3.1 are satisfied, and so the nonlinear fractional differential
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system (26) has an extremal solution (x∗, y∗) ∈ [0, ln(t)] × [0, ln(t)]. Moreover, the
monotone iterative sequences {xn}n∈N, {yn}n∈N can be obtained by

xn+1(t) =

∫ t

1

(
ln
t

s

)−0.5

E0.5,0.5

(
−4

√
ln
t

s

)(
2(ln2(s)− x2

n(s))

− ln(s)yn(s) + 4xn(s)
)ds

s
, n ≥ 0,

yn+1(t) =

∫ t

1

(
ln
t

s

)−0.5

E0.5,0.5

(
−4

√
ln
t

s

)(
2(ln2(s)− y2

n(s))

− ln(s)xn(s) + 4yn(s)
)ds

s
, n ≥ 0.
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