
J o u r n a l of
Mathematics
and Applications

JMA No 44, pp 57-70 (2021)

COPYRIGHT© by Publishing House of Rzeszów University of Technology
P.O. Box 85, 35-959 Rzeszów, Poland

Measures of Growth and Approximation of

Entire Harmonic Functions in

n-Dimensional Space in Some Banach

Spaces

Devendra Kumar

Abstract: The relationship between the classical order and type of
an entire harmonic function in space Rn, n ≥ 3, and the rate of its best
harmonic polynomial approximation for some Banach spaces of functions
harmonic in the ball of radius R has been studied.

AMS Subject Classification: 30E10, 41A15.
Keywords and Phrases: Entire harmonic function; Approximation errors; Banach
spaces; order and type; Gegenbauer polynomials and spherical harmonics.

1. Introduction

Several authors like Vakarchuk [24], Vakarchuk and Zhir [25,26], Srivastava and
Kumar [20], Harfaoui [7] and others have studied the growth parameters of an entire
function in terms of coefficients occurring in its Taylor series expansion and polynomial
approximation errors in some Banach spaces. Since entire harmonic functions play
an important role in physics and mechanics to describe different stationary processes
and in mathematical research, it is significant to study the growth characteristics
order and type of entire harmonic functions in terms of coefficients occurring in its
Fourier-Laplace series [23] and harmonic polynomial approximation errors in space
Rn, n ≥ 3 in some Banach spaces. To the best of our knowledge this study has not
been done so far. In this paper our aim is to bridge this gap.
A number of papers [3,4,10-17,19,21] were devoted to establishing a relation between
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the growth of entire harmonic functions in Rn, n ≥ 3 and the behavior of expansion
coefficients, spherical harmonics and harmonic polynomial approximation errors. In
particular, when we discuss time dependent problems in R3 it leads to study the har-
monic functions in R4. Therefore, to study the entire harmonic functions in Rn, n ≥ 3
is reasonable.

Let x ∈ Rn(n ≥ 3) be an arbitrary point where x = (x1, x2, . . . , xn) and put

|x| = (x2
1 + x2

2 + · · ·+ x2
n)

1
2 . The set of all non-constant entire harmonic functions on

Rn is denoted by H. For each u ∈ H, r > 0, the Fourier-Laplace series expansion of
u be given as [23]

u(rx) =

∞∑
k=0

Y (k)(x;u)rk,

where x ∈ Sn = {x ∈ Rn : |x| = 1} a unit sphere in Rn centered at the origin and

Y (k)(x;u) =a
(k)
1 Y

(k)
1 (x) + a

(k)
2 Y

(k)
2 (x) + · · ·+ a(k)

γk
Y (k)
γk

(x),

a
(k)
j = (u, Y

(k)
j ) =

Γ(n/2)

2(π)
n
2

∫
Sn
u(x)Y

(k)
j (x)dS, j = 1, γk,

γk =
(2k + n− 2)(k + n− 3)!

k!(n− 2)!
.

Here dS is the element of the surface area on the sphere Sn, (u, Y
(k)
j ) is the scalor prod-

uct in L2(Sn) and Y (k) is a spherical harmonic of degree k, k ∈ Z+ = {0, 1, 2, . . . , }
on the unit sphere Sn(n ≥ 2) [22].

Let BnR = {y ∈ Rn : |y| ≤ R} be the ball of radius R in space Rn, n ≥ 3 centered
at the origin, and BnR be the closure of BnR. We denote HR, the class of harmonic
functions in BnR and continuous on BnR, 0 < R <∞.
We now consider some of the Banach spaces.

1. The space B of functions harmonic in the ball BnR and continuous on BnR i.e.,
u ∈ HR with norm ‖u‖ = maxy∈BnR

|u(y)| <∞.

2. The Hardy spaces Hp, p ≥ 1, of functions harmonic in the ball BnR with norm

‖u‖Hp = sup
0<r<R

Mp(r;u),Mp(r;u) = (
1

(2π)n

∫
Tn
|u(reitx)|pdt)

1
p , p ∈ [1,∞),

where Tn = {x ∈ Rn : 0 ≤ xj ≤ 2π, j = 1, n},
‖u‖ = supy∈BnR |u(y)|, p =∞.

3. The Bergman spaces H ′p of functions harmonic in the ball BnR for p ∈ [1,∞)
with the norm

‖u‖H′p = (
1

(π)n

∫
Sn
|u(rx)|pdx)

1
p .
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4. The spaces Ap, p ∈ (0, 1) of functions harmonic in the ball BnR with norm

‖u‖Ap =

∫
Sn

(
R− r
R

)
1
p−2M1(r;u)dr.

5. The spaces Bp,q,λ, 0 < p < q ≤ ∞, λ > 0, of functions harmonic in the ball BnR
with the norm

‖u‖p,q,λ = {
∫
Sn

(
R− r
R

)λ( 1
p−

1
q )−1Mλ

q (r;u)dr} 1
λ , λ <∞,

and

‖u‖p,q,∞ = sup
0<r<R

{(R− r
R

)( 1
p−

1
q )Mq(r;u)}, λ =∞,

for min(q, λ) ≥ 1, Bp,q,λ are Banach spaces.

We denote a Banach space X formed by the functions harmonic in BnR with finite
norm ‖.‖ given by (1-5).
An approximation error of function u ∈ HR by harmonic polynomials P ∈ Πk is
defined as

EkR(u) = inf{‖u(y)− P (y)‖, y ∈ BnR,

where Πk be a set of harmonic polynomials of degree not exceeding k.
The relationship between the order and type of an entire function f in terms of the
sequence EkR(f) in the space H ′2 were obtained in [19] and for the spaces H ′p, p ≥ 1
were studied by Ibragimov and Shikhaliev [8,9]. The spaces Ap, p ∈ (0, 1) of functions
analytic in the unit disk were first studied by Hardy and Littlewood [6] and later
by Romberg, Duren and Shields [2]. The spaces Bp,q,λ, 0 < p < q ≤ ∞, λ > 0 were
considered in [5,6]. The order and type of entire functions in terms of approximation
errors EkR(f) in the spaces Bp,q,λ were obtained by Vakarchuk [24].

2. Auxiliary Results

Lemma 2.1. Let u ∈ X and u(τx) =
∑∞
k=0 Y

k(x;u)τk, 0 < τ < R, be an entire
harmonic function in Rn. Then

lim
k→∞

{‖τ
k‖X
Rk

} 1
k = 1. (2.1)

Proof. For an entire harmonic function u in the space B and Hp, 0 < p ≤ ∞,
respectively, the quantity ‖τk‖X , k ∈ Z+ is

‖τk‖X = Rk



60 D. Kumar

it gives (2.1).
In the space X = H ′p, p ≥ 1, we have

‖τk‖H′p
Rk

= (kp+ 2)
1
p2 ≤ {kp(1 +

2

kp
)}

1
p2 , k ≥ 0 (2.2)

or
‖τk‖H′p
Rk

≤ χH′pk
1
p2 (2.3)

where χH′p = p
1
p2 (1 + 1

p )
1
p2 .

From (2.3) we obtain the following upper bound

lim
k→∞

{
‖τk‖H′p
Rk

} 1
k ≤ 1. (2.4)

For lower bound using (2.2) and we get

‖τk‖H′p
Rk

≥ p
1
p2 k

1
p2 ≥ (pk)

1
p2

or

lim
k→∞

{
‖τk‖H′p
Rk

} 1
k ≥ 1. (2.5)

Combining (2.4) and (2.5) we get the required result.
In the space X = Ap, 0 < p < 1, we have

‖τk‖Ap
Rk

= (2π)−
1
p (B(kp+ 1;

1

p
− 1))

− 1
p2 . (2.6)

The right hand side of (2.6) can be estimated by using the relation between the Euler
integral of the first kind B(a, b) and Γ function for a, b > 0,

B(a, b) =
ΓaΓb

Γ(a+ b)

and the asymptotic relation

Γ(ξ + s1)

Γ(ξ + s2)
= ξs1−s2(1 +

(s1 − s2)(s1 + s2 − 1)

2x
+ o(|ξ−2|)

where |ξ| ≥ 1, ξ ∈ R and s1 and s2 are arbitrary fixed real numbers.
Set ξ = kp, s1 = 1

p and s2 = 1, for sufficiently large k, for k ≥ 1 in above relations,
we get

‖τk‖Ap
Rk

= [
(2π)−pΓ(kp+ 1

p )

Γ
1
p2 ( 1

p − 1)(kp+ 1)
]

1
p2

=
(2π)−pp

1

p2( 1
p
−1)

( 1
p − 1)

(k(1 +
( 1
p − 1) 1

p

2kp
+O(k−2p2)))

1
p2

≤ χApk
1
p2 ,
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where

χAp =
(2π)−pp

1

p2( 1
p
−1)

( 1
p − 1)

(1 + (
1

p
− 1)

1

p
+A)

1
p2

here A is an absolute constant independent of k.

lim
k→∞

{
‖τk‖Ap
Rk

} 1
k ≤ 1. (2.7)

For lower bound we have

‖τk‖Ap
Rk

≥ (2π)−pp
1

p2( 1
p
−1)

( 1
p − 1)

k
1
p2 ≥ { k

Γ( 1
p − 1)

}
1
p2

or

lim
k→∞

{
‖τk‖Ap
Rk

} 1
k ≥ 1. (2.8)

Using (2.7) and (2.8) we get the required result.
Following on the lines of [26] for single complex variable we obtain for the space
X = Bp,q,λ, 0 < p < q ≤ ∞, 0 < λ ≤ ∞ that

lim
k→∞

{
‖τk‖Bp,q,λ

Rk
} 1
k = 1.

Lemma 2.2. Let u ∈ X and let

u(τx) =

∞∑
k=0

Y (k)(x;u)τk in space Rn, n ≥ 3, 0 < τ < R.

Then

|Y (k)(x;u)|‖τk‖X ≤
2
√

2(k + 2ν)

C
√

(2ν)!(2ν + 1)(k − 1 + 2ν)2ν
(
r

R
)k−1Ek−1

R (u) ≤ ‖u(τx)‖X ,

where C is a constant independent of u and τx.

Proof. Using the addition theorem [1] for the Gegenbauer polynomials Cνk of degree
k and order ν, we have ∫

Sn
Cνk [(x, ζ)]P (τζ)dS(ζ) = 0

where P ∈ Πk−1, 0 < τ < R, x ∈ Sn, ζ ∈ Sn, and

Y (k)(x;u)rk =
2(k + ν)

dnwn

∫
Sn
Cνk [(x, y)]u(ry)dS(y), (2.9)
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where k ∈ Z, d2 = 1, dn = n− 2 at n > 2, ν = n−2
2 , wn = 2(π)

n
2

Γ(n2 ) .

Rewrite (2.9) as

Y (k)(x;u)τk =
(k + ν)

νwn

∫
Sn
Cνk [(x, ζ)][u(τζ)− P (τζ)]dS(ζ). (2.10)

Since max−1≤t≤1 |Cνk (t)| = Cνk (1), from [1] we have Cνk (1) = (k+2ν−1)!
(dn−1)!k! and from (2.10)

we obtain

|Y (k)(x;u)|‖τk‖X ≤
(k + ν)

νwn
‖u(τζ)− P (τζ)‖XCνk (1)wn

≤ 2(k + 2ν)2ν

(2ν)!
‖u(τζ)− P (τζ)‖X

there exists a polynomial P ∗ ∈ Πk−1 for which

‖u(τζ)− P (τζ)‖X ≤ C max |u(τζ)− P ∗(τζ)| ≤ 2Ek−1
R (u).

So we have

|Y (k)(x;u)|‖τk‖X ≤
4C(k + 2ν)2ν

(2ν)!
Ek−1
R (u). (2.11)

Now consider Q(τζ) =
∑k
j=0 Y

(j)(ζ;u)τ j , since Q ∈ Πk, we have

EkR(u) ≤ ‖u(τζ)−Q(τζ)‖X ≤ C max
τζ∈BnR

|u(τζ)−Q(τζ)|,

Using a result of [27] we have

EkR(u) ≤
∞∑

j=k+1

C max
ζ∈Sn

|Y (j)(ζ, u)|Rj

≤ C

√
2

(2ν)!
‖u(τζ)‖X

∞∑
j=k+1

(j + 2ν)ν(
R

r
)j

=C

√
2

(2ν)!
‖u(τζ)‖X(

R

r
)k

∞∑
j=k+1

(j + 2ν)ν(
R

r
)j−k.

(2.12)

For r > eR, the maximum value of last sum can be estimate as

∞∑
j=k+1

(j + 2ν)ν(
R

r
)j−k ≤ ek

∞∑
j=k+1

(j + 2ν)νe−j ≤ ek
∫ ∞
k

(t+ 2ν)2νe−tdt.
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Set η = 2ν, θη(t) = (t+ η)η and integrating (η + 1) times by parts, we get∫ ∞
k

θη(t)e−tdt =[−e−t(θη(t) + θ′η(t) + · · ·+ θ(n)
η (t))]|∞k

= e−k
η∑
i=0

η!(k + η)η−i

(η − i)!
, since θ(i)

η =
η!

(η − i)
(t+ η)η−i, i = 1, η,

=e−k
2ν∑
i=0

(2ν)!(k + 2ν)2ν−1

(2ν − i)!
.

The maximum value of above term is (2ν + 1)!(k+ 2ν)2ν . Hence from (2.12) we have

EkR(u) ≤ C

√
2

(2ν)!
‖u(τζ)‖X(

R

r
)k(2ν + 1)(k + 2ν)2ν . (2.13)

Combining (2.11) with (2.13) we get

|Y (k)(x;u)|‖τk‖X ≤
4(k + 2ν)2ν

(2ν)!
Ek−1
R (u) ≤ C

√
2

(2ν)!
‖u(τζ)‖X(

R

r
)k(2ν+1)(k+2ν)2ν ,

(2.14)
above inequality (2.14) gives the required result.

Lemma 2.3. Let

α1 = lim inf
k→∞

(‖τk‖) 1
k and α2 = lim sup

k→∞
(‖τk‖) 1

k .

Then α1 ≥ R and α2 <∞.

Proof. Suppose βk = (‖τk‖) 1
k . First we prove that α2 < ∞. On the contrary we

assume that there exists a subsequence βkm such that limm→∞ βkm =∞. Consider a
function u0 such that

u0(τx) =

∞∑
m=0

(βkm)−
km
2 τkm .

The function u0(τx) is entire and therefore belong to X. However, in this case using
Lemma 2.2, for any m ∈ N, we get

(βkm)−
km
2 ‖τkm‖ ≤ ‖u0(τx)‖ <∞,

which is impossible. Hence α2 < ∞. Now in order to prove α1 ≥ R we assume that
α1 < R. Set δ ∈ (α1;R) and consider a function

u0(τx) =

∞∑
m=0

δ−kmτkm (2.15)
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where km is a sequence such that lim infk→∞ βk = limm→∞ βkm = α1. The function
u0(τx) is harmonic in the ball Bnδ (u0), δ < R but not harmonic in ball BnR. It is
clear that a sequence of partial sums Sk,u0

(τx) of series (2.15) is fundamental in the
Banach space X and, therefore, convergence in it to a function u1(τx) ∈ X. We now
prove that the Fourier-Laplace coefficients of the functions u0(τx) and u1(τx) are
same. For fixed m ∈ N ∪ {0}, k > m, we have

Y (k)(x;u1) = Y (k)(x;Sk,u0
) + Y (k)(x;u1 − Sk,u0

) = Y (k)(x;u0) + Y (k)(u1 − Sk,u0
).

Proceeding to the limit as k → ∞ and using Lemma 2.2, it gives Y (k)(x;u1) =
Y (k)(x;u0). Hence the function u1(τx) ∈ X but not harmonic in BnR, which contra-
dicts the property of the space X. Hence α1 ≥ R.

Lemma 2.4. Let u ∈ X and let K be a compact subset of Rn, n ≥ 3,K ⊂ BnR. Then,
for τx ∈ K,

|u(τx)| ≤ C‖u(τx)‖.

Proof. Let γ = sup{|τx| : τx ∈ K}, γ < R. Now write the expansion of u in the
Fourier-Laplace series and estimates its modulus by using Lemma 2.2, we get

u(τx) =

∞∑
k=0

Y (k)(x;u)τk,

|u(τx)| ≤
∞∑
k=0

|Y (k)(x;u)||τk| ≤ ‖u(τx)‖
∞∑
k=0

γk

‖τk‖
≤ C‖u(τx)‖

as the series is convergent by Lemma 2.3.

3. Main Results

Theorem 3.1. Let u ∈ X. The condition

lim
k→∞

(EkR(u))
1
k = 0

is necessary and sufficient for the function u to be entire.

Proof. Let u(τx) =
∑∞
k=0 Y

(k)(x;u)τk in space Rn, n ≥ 3, 0 < τ < R. In view of
Lemma 2.2,

|Y (k)(x;u)|‖τk‖X ≤
2
√

2(k + 2ν)

C
√

(2ν)!(2ν + 1)(k − 1 + 2ν)2ν
(
r

R
)k−1Ek−1

R (u)

it gives

lim
k→∞

|Y (k)(x;u)| 1k ≤ lim
k→∞

(
2
√

2(k + 2ν)

C
√

(2ν)!(2ν + 1)(k − 1 + 2ν)2ν
(
r

R
)k−1E

k−1
R (u)

‖τk‖X
)

1
k = 0,
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therefore the function u is entire. Now for necessity, from Lemma 2.3, we have

Ek−1
R (u)Rk

‖τk‖X
≤

√
(2ν)!(2ν + 1)(k − 1 + 2ν)‖u(τx)‖XRkr

2
√

2(k + 2ν)‖τk‖Xrk
.

Since u is entire and u ∈ X for any r > 1, we have

0≤ lim
k→∞

(
Ek−1
R (u)Rk

‖τk‖X
)

1
k ≤ 1

r
lim sup
k→∞

(

√
(2ν)!(2ν + 1)(k − 1 + 2ν)‖u(τx)‖XRkr

2
√

2(k + 2ν)‖τk‖X
)

1
k ≤ 1

r
.

Now by arbitrariness of r > 1, we obtain

lim
k→∞

(EkR(u))
1
k = 0.

The proof of Theorem 3.1 is completed.

Theorem 3.2. For a function u ∈ X to be an entire harmonic function in space
Rn, n ≥ 3, of finite order 0 < ρ <∞, the necessary and sufficient condition is

lim sup
k→∞

k log k

log( ‖τ
k‖

EkR(u)
)

= ρ. (3.1)

Proof. To prove sufficiency part let (3.1) holds therefore the condition of Theorem
3.1 is satisfied and, hence, the function u is entire harmonic in space Rn, n ≥ 3 and
we denote its order by ρ1. Thus, on account of Lemma 2.2 we obtain

ρ1 = lim sup
k→∞

k log k

log |Y (k)(x;u)|
≤ lim sup

k→∞

k log k

log( ‖τ
k‖

EkR(u)
)

= ρ. (3.2)

According to the condition of theorem we have to show that ρ1 > 0. On the contrary,
we assume that

lim sup
k→∞

k log k

log |Y (k)(x;u)|
= 0.

Then for any ε, 0 < ε < R, there exists Kε such that, for k > Kε

k log k < −ε log |Y (k)(x;u)|

or

|Y (k)(x;u)| < k−
k
ε .

Now for sufficiently large Kε we have

‖τk‖X ≤ (µ2 + ε)k and ‖τk‖X ≥ (R− ε)k for k ≥ Kε.
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Then

EkR(u) ≤‖
∞∑

j=k+1

|Y (k)(x;u)|τk‖X ≤
∞∑

j=k+1

j−
j
ε (µ2 + ε)j

≤
∞∑

j=k+1

(k + 1)−
j
ε (µ2 + ε)j = (k + 1)−

(k+1)
ε (µ2 + ε)k+1(1− (µ2 + ε)

(k + 1)
1
ε

)−1.

(3.3)

We assume k + 1 ≥ (µ2 + ε)ε in (3.3), it gives

‖τk‖X
EkR(u)

≥ (
R− ε
µ2 + ε

)k+1(k + 1)
(k+1)
ε (1− µ2 + ε

(k + 1)
1
ε

),

or

log(
‖τk‖X
EkR(u)

)
1
k ≥ (

k + 1

k
) log(

R− ε
µ2 + ε

) +
k + 1

kε
log(k + 1) +

1

k
log(1− µ2 + ε

(k + 1)
1
ε

)

or

lim inf
k→∞

log(‖τ
k‖X

EkR(u)
)

1
k

log k
≥ 1

ε
,

or

ρ = lim sup
k→∞

k log k

log ‖τ
k‖X

EkR(u)

≤ ε,

which contradicts our assumption. Now we consider the case for ε ∈ (0, R2 ) ∩ (0, ρ1).
From the left hand side of (3.2) we conclude that there exists Kε ∈ N(ε) such that

|Y (k)(x;u)| < k
− k

(ρ1+ε)

for all k > Kε. Let Kε be sufficiently large such that ‖τk‖X ≤ (µ2 + ε) and ‖τk‖ ≥
(R− ε)k for k ≥ Kε. Then for k > Kε,

EkR(u) ≤‖
∞∑

j=k+1

Y (j)(x;u)τ j‖ ≤
∞∑

j=k+1

|Y (j)(x;u)|‖τk‖

≤
∞∑

j=k+1

(j)−
j

ρ1+ε ‖τ j‖ ≤
∞∑

j=k+1

(k + 1)−
j

ρ1+ε (µ2 + ε)j

=
(µ2 + ε)k+1

(k + 1)
(k+1)
(ρ1+ε)

(1− (µ2 + ε)

(k + 1)
1

ρ1+ε

)−1,

(3.4)

or

‖τk‖(k + 1)
1

ρ1+ε

EkR(u)
≥ ‖τk‖

(µ2 + ε)k+1
(1− (µ2 + ε)

(k + 1)
1

ρ1+ε

),
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or

ρ1 + ε ≥ (k + 1) log(k + 1)

log ‖τ
k‖X

EkR(u)

(1 +
(ρ1 + ε)

(k + 1) log(k + 1)
log(1− (µ2 + ε)

(k + 1)
1

ρ1+ε

)+

ρ1 + ε

(k + 1) log(k + 1)
log

‖τk‖
(µ2 + ε)(k+1)

).

(3.5)

Proceeding to limit as k → ∞, we get ρ1 + ε ≥ ρ. Since ε is arbitrary this implies
that ρ1 ≥ ρ. In view of (3.2), we get ρ1 = ρ, hence the sufficient part is completed.
In order to prove the necessary part we assume that u ∈ X be an entire harmonic
function of finite order ρ, i.e.,

lim sup
k→∞

k log k

− log |Y (k)(x;u)|
= ρ.

Set

ρ1 = lim sup
k→∞

k log k

log ‖τ
k‖X

EkR(u)

.

Here ρ1 and ρ are interchanged as compared with the proof of sufficiency part and
show that ρ1 = ρ. By analogy with (3.2), Lemma 2.2 gives ρ1 ≥ ρ. Following the
same fact as in the sufficiency part, we can say that, for any ε, 0 < ε < R there exists
Kε such that

|Y (k)(x;u)| < k−
k

(ρ+ε) and (R− ε)k ≤ ‖τk‖ ≤ (µ2 + ε)k

for k > Kε. Following (3.3) and (3.4) (with ρ1 and ρ interchanged), we get

ρ+ ε ≥ (k + 1) log(k + 1)

log ‖τ
k‖X

EkR(u)

(1 +
(ρ+ ε)

(k + 1) log(k + 1)
log(1− (µ2 + ε)

(k + 1)
1
ρ+ε

)+

ρ+ ε

(k + 1) log(k + 1)
log

‖τk‖
(µ2 + ε)(k+1)

).

Proceeding to limit as k →∞, it gives ρ ≥ ρ1. Hence the proof is completed.

Theorem 3.3. For a function u ∈ X to be an entire harmonic function of finite order
ρ ∈ (0,∞) and normal type σ ∈ (0,∞), the necessary and sufficient condition is that

lim sup
k→∞

k

eρ
(
EkR(u)

‖τk‖
)
ρ
k = σ. (3.6)

Proof. In order to prove sufficiency we assume that u ∈ X and satisfies the condition
of Theorem 3.3 with some positive ρ and σ. Then (3.1) follows from (3.6), therefore,
u is an entire harmonic function of order ρ. Assume that the type of u is T . We have
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to prove T = σ. Now using the classical coefficient formula for the type of an entire
harmonic function u ∈ X

T = lim sup
k→∞

k

eρ
|Y (k)(x;u)|

ρ
k (3.7)

with Lemma 2.3, we obtain T ≤ σ. To prove the reverse inequality we have from
(3.7) that for any ε > 0, there exists Kε ∈ N such that, for k > Kε,

|Y (k)(x;u)| < (
ρe(T + ε)

k
)
k
ρ . (3.8)

Following the same techniques as (3.4) and (3.5), we have from (3.8),

EkR(u) ≤
∞∑

j=k+1

(
ρe(T + ε)

j
)
j
ρ ‖τ j‖ ≤ (

ρe(T + ε)

k + 1
)
k+1
ρ (µ+ ε)(k+1)(1− C∗

(k + 1)
1
ρ

)−1

(3.9)

where C∗ = (µ+ ε)(ρe(T + ε))
1
ρ . Now in view of (3.9), we obtain

T + ε ≥ (k + 1)

eρ
(
EkR(u)

‖τk‖
)

ρ
(k+1)

‖τk‖
ρ

(k+1)

(µ+ ε)ρ
(1− C∗

(k + 1)
1
ρ

)
ρ

(k+1) .

Proceeding the limit sup as k →∞, we get

T + ε ≥ σ(
µ

µ+ ε
)ρ.

Since ε is arbitrary and approaches to zero, we get T ≥ σ. Hence the sufficiency part
is completed.
Now to prove necessity assume that u ∈ X is an entire harmonic function of finite or-
der and normal type. We denote its order and type as ρ and T respectively. Further,
we have to show that T = σ. By virtue of (3.7) and Lemma 2.3, we obtain T ≤ σ.
Finally, to prove σ ≤ T repeat the reasoning of sufficiency part. This completes the
proof of necessary part. Hence the proof of theorem is completed.
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