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Weakly Locally Uniformly Rotund Norm

which is not Locally Uniformly Rotund
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Abstract: The aim of this paper is to provide a proof of the fact
that a weakly locally uniformly rotund norm does not have to be locally
uniformly rotund. This result is well-known for experts in Geometry of
Banach Spaces. However, since the justification of this result is omitted in
the literature, we believe that the present note may be helpful for students
or novices in the theory.
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1. Introduction

The notion of locally uniformly rotund space was introduced by A. R. Lovaglia in
[3] and widely studied afterwards. In our considerations we will accept the following
definition of the concept of the (weak) local uniform rotundity (cf. [1]).

Definition 1.1. A normed space (X, ‖ · ‖) is locally uniformly rotund (weakly locally
uniformly rotund) if for x ∈ X, (xn) ⊂ X, such that ‖x‖ = 1, ‖xn‖ = 1 for n ∈ N and∥∥∥∥xn + x

2

∥∥∥∥→ 1,

we get that xn converges to x (xn converges weakly to x).
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Let us consider the space c0 of the sequences convergent to zero with the norm
given by the formula

|||x||| = ‖x‖∞ +

( ∞∑
k=1

2−k|xk|2
) 1

2

(1.1)

for x = (xk) ∈ c0.

In [4] authors used c0 with the norm (1.1) as an example of rotund norm, which is
not locally uniformly rotund. Later, S. Draga proved in [2] that the considered norm
is weakly locally uniformly rotund. It is worthwhile mentioning that there is no proof
of the fact observed in [4] and to our best knowledge there is no such proof in other
papers (a similar example in the space C[0, 1] together with a proof was established
in [3], pp. 229-230). In this paper we fill that gap. Namely, we will show now that
the norm (1.1) on the space c0 is not locally uniformly rotund.

2. The proof

Let x =
(
2−
√

2, 0, 0, ...
)
∈ c0 (|||x||| = 1). Consider (xn) ⊂ c0, where

xn =

(
αn, 0, 0, ... , 0,

1

2
, 0, 0, ...

)
and 1

2 lies on n + 1 coordinate, αn > 0. We want to choose αn such that |||xn||| = 1
for n ∈ N. We are going to explain how to fulfill this requirement. We have

1 = |||xn||| = αn +

√
1

2
α2
n +

(
1

2

)n+1

·
(

1

2

)2

,

1

2
α2
n − 2αn + 1−

(
1

2

)n+3

= 0.

Hence, we obtain

αn = 2−

√
2 +

(
1

2

)n+2

or αn = 2 +

√
2 +

(
1

2

)n+2

.

Since 1− αn ≥ 0, we conclude that

xn =

2−

√
2 +

(
1

2

)n+2

, 0, 0, ... , 0,
1

2
, 0, 0, ...

 .

Hence, we get

∣∣∣∣∣∣∣∣∣∣∣∣xn + x

2

∣∣∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2−

√
2 +

(
1
2

)n+2
+ 2−

√
2

2
, 0, 0, ... , 0,

1

4
, 0, 0, ...

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
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=
4−

√
2 +

(
1
2

)n+2 −
√

2

2
+

√√√√√1

2

4−
√

2 +
(
1
2

)n+2 −
√

2

2

2

+

(
1

2

)n+1(
1

4

)2

= 2−

√
2 +

√
2 +

(
1
2

)n+2

2
+

√√√√√1

2

2−

√
2 +

√
2 +

(
1
2

)n+2

2

2

+

(
1

2

)n+5

.

Passing with n to infinity, we obtain∣∣∣∣∣∣∣∣∣∣∣∣xn + x

2

∣∣∣∣∣∣∣∣∣∣∣∣ −−−−→n→∞
2−
√

2 +

√
1

2

(
2−
√

2
)

= 1.

On the other hand, we have

|||xn − x||| ≥ ‖xn − x‖∞ =

∥∥∥∥∥∥
√2−

√
2 +

(
1

2

)n+2

, 0, 0, ... , 0,
1

2
, 0, 0, ...

∥∥∥∥∥∥
∞

≥ 1

2
,

for all n ∈ N. This shows that the sequence xn does not converge to x in the norm |||·|||.
As a consequence, the norm ||| · ||| defined by (1.1) is not locally uniformly rotund.
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