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1. Introduction

Mathematical models are often used to describe how changes take place in a manpower
system, where individuals move through a network of states which may be defined
in terms of ranks or position. One of the widely used approaches to the modeling of
manpower systems is the Markov chain framework [1, 7, 9]. The basic Markov chain
model for a k−grade manpower system is expressed algebraically using the following
recursive relation

nj(t+ 1) =

k∑
i=1

ni(t)pij +R(t+ 1)rj , j = 1, 2, · · · , k, (1.1)
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where ni(t) is the expected number of individuals in state i at time t, pij is the internal
homogeneous transition probability from state i to state j, rj is the proportion of
recruits allocated to state j and R(t + 1) is the expected number of recruits to the
system at time t+1. The manpower accounts for the system are assumed to take place
at the end of the time period and recruitment is recorded as if it took place at the
beginning of the next time period [1]. The transition probabilities, pij ’s, are estimated
based on data from observable variables using the maximum likelihood method [14].
In many practical instances, the transition probability, pij , satisfies the conditions:∑k

j=1 pij ≤ 1, i ∈ S, pij ≥ 0, i, j ∈ S, where S = {1, 2, · · · , k} is the set of mutually
exclusive and collectively exhaustive states of the k−grade manpower system. The
shortfall in the sum

∑k
j=1 pij ≤ 1 is attributed to outgoing flows (wastage) from the

system. With wi as the wastage from the system,

k∑
j=1

pij + wi = 1, i ∈ S. (1.2)

The recursive relation in equation (1.1) can be rewritten in matrix notation as

n(t+ 1) = n(t)P +R(t+ 1)r, (1.3)

where n(t) = [n1(t), n2(2), · · · , nk(t)] is the structure of the system at any given
time t, P = (pij) is the homogeneous transition matrix and r = [r1, r2, · · · , rk] is the

recruitment vector with
∑k

j=1 ri = 1. Let w = [w1, w2, · · · , wk] denote the wastage
vector for the system. Since a fixed size manpower system is considered, where wastage
is replaced by new recruits, the expected number of recruits to the system at time
t+ 1 is

R(t+ 1) = n(t)w′. (1.4)

Thus, equation (1.3) can be expressed as

n(t+ 1) = n(t) (P + w′r) , (1.5)

where (P + w′r) is a stochastic matrix. Equation (1.5) is suitable to predict what
the manpower structure will become one-step ahead year after year. If the manpower
structure is to be maintained, then n(t+ 1) = n(t) = n in equation (1.5), cf. [13].

Suppose for motivational reasons, that the manpower structure is to be projected
for a semester beyond one-step (that is, one year and six months) or a quarter beyond
one-step (that is, one year and three months). Then representation becomes an issue

when we have the fractional indicial stochastic matrix, (P + w′r)
1+1/n

, for n = 2 or
4. This problem is an embeddability problem. Singer and Spilerman [11] considered
the embeddability problem by verifying whether an observed transition matrix could
have arisen from the evolution of a stationary continuous-time Markov process. The
approach does not give a unique solution. Osagiede and Ekhosuehi [10] solved the
embeddability problem for a manpower system with sparse stochastic matrices within
the context of determining the nearest Markov generator arising from the continuous-
time Markov chain to the higher order observable Markov chain. The resulting Markov
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chain was an approximation to the higher order observable Markov chain. In [6], the
problem was solved by finding the diagonalizable form of the observable Markov chain.

This study considers a three-grade manpower system, that is, k = 3. Markovian
manpower systems with three grades arise in many practical situations [1, 3, 4, 7, 8,
13]. Following [12], the study assumes a fixed size manpower system that operates
a policy that allows wastage to be replaced by new recruits. In this case, the con-
sequential outflow from state i which goes back to state j as recruitment would be
wirj , i, j ∈ S. The study is aimed at finding the fractional indicial stochastic ma-

trix, (P + w′r)
1+1/n

, arising from a hierarchical manpower system with three grades
using the generating function technique (the so called z-transform). This approach
that is based on z-transform has been used to model population dynamics within the
Leslie matrices framework [2]. The study develops an additive representation for the
stochastic matrix describing the evolution of the personnel structure of a Markov man-
power system with fixed total size. The assumption of a fixed total size for manpower
system is appropriate in practice when an organization is faced with limited personnel
availability on the external labour market, facility and budget restrictions [8]. The
usefulness of the additive representation is justified when there is a lack of observa-
tions regarding the time unit of the Markov chain (that was earlier estimated using
historical data in discrete time) owing to a policy change in the short-term on the
effective date of promotion. For instance, extending the effective date of promotion
from October 1 of the current year to January 1 of the following year for budgetary
reasons. This kind of policy change is dealt with in the additive representation.

2. The generating function standpoint

In this section, we prove the following using the z-transform: If Q = (P + w′r) ∈ R3×3

is a stochastic matrix that satisfies the axioms that: (i) Q is irreducible, (ii) the
determinant of Q is non-singular, and (iii) the characteristic polynomial arising from
the determinant det(I−Qz) has linear factors, then the fractional indicial stochastic

matrix, Γ = Q1+1/n, n > 0, can be expressed in the form

Γ =

{
X = (xij) ∈ R3×3 | X = Am + Tm(1 + 1/n),

3∑
j=1

xij = 1, xij ≥ 0,∀i, j ∈ S,m = 1, 2

}
, (2.1)

where Am is the 3× 3 matrix of limiting-state probabilities for case m and

Tm(1+1/n)=

 α
−(2+1/n)
1 B1 + α

−(2+1/n)
2 C, m = 1 if (tr(Q)−1)2>4 det(Q)

(2+1/n)α−(3+1/n)B2+α−(2+1/n)D, m = 2 if (tr(Q)−1)2 =4 det(Q)

provided that α, α1, α2 ∈ Ψ = {v |v > 1, v ∈ R} with α, α1, α2 being the zeros of the

characteristic function det(I − Qz) = 1 − tr(Q)z +
(∑3

i=1Qii

)
z2 − det(Q)z3 with
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Qii being the cofactor of the diagonal entries in Q, and Bm, C, D are matrices of
constant values for each respective case m.

Consider the recurrence relation in equation (1.5): Using the z-transform, the
generation function vector g(z) that is associated with the manpower structure n(t)
is defined by

g(z) =

∞∑
t=0

n(t)zt. (2.2)

Thus,

g(z)Q =

∞∑
t=0

n(t)Qzt =

∞∑
t=0

n(t+ 1)zt =
1

z

∞∑
t=0

n(t+ 1)zt+1 =
1

z
(g(z)− n(0)),

where n(0) is the initial manpower structure. Further simplifications lead to

g(z) = n(0) [I−Qz]
−1
.

Let

G(z) = [I−Qz]
−1

=

∞∑
t=0

Qtzt, Q0 = I, (2.3)

where G(z) is the 3 × 3 Green function matrix and I is the 3 × 3 identity matrix.
Since

Q =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

+

 w1

w2

w3

 [ r1 r2 r3
]

= (qij) ,

where qij = pij + wirj , i, j ∈ S, then

I−Qz =

 1− q11z −q12z −q13z
−q21z 1− q22z −q23z
−q31z −q32z 1− q33z

 .
The inverse of I−Qz is defined as

[I−Qz]
−1

=
adj (I−Qz)

det (I−Qz)
. (2.4)

The determinant, det (I−Qz), is obtained as follows: Factorizing (1 − q11z), q12z,
q13z from column 1, 2, 3 respectively of det (I−Qz) yields

det (I−Qz) = (1− q11z)q12q13z2

∣∣∣∣∣∣∣
1 −1 −1

− q21z
(1−q11z)

1−q22z
q12z

− q23
q13

− q31z
(1−q11z) − q32

q12

1−q33z
q13z

∣∣∣∣∣∣∣ .
Subtracting column 2 from column 3, we have

det (I−Qz) = (1− q11z)q12q13z2

∣∣∣∣∣∣∣
1 −1 0

− q21z
(1−q11z)

1−q22z
q12z

− q23
q13
− 1−q22z

q12z

− q31z
(1−q11z) − q32

q12

1−q33z
q13z

+ q32
q12

∣∣∣∣∣∣∣ .
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Adding column 1 to column 2,

det (I−Qz) = (1− q11z)q12q13z2

∣∣∣∣∣∣∣
1 0 0

− q21z
(1−q11z)

1−q22z
q12z

− q21z
(1−q11z) − q23

q13
− 1−q22z

q12z

− q31z
(1−q11z) − q32

q12
− q31z

(1−q11z)
1−q33z
q13z

+ q32
q12

∣∣∣∣∣∣∣ .
Taking the determinant

det (I−Qz) = (1− q11z)q12q13z2
((

1− q22z
q12z

− q21z

(1− q11z)

)(
1− q33z
q13z

+
q32
q12

)
−

(
q23
q13
− 1− q22z

q12z

)(
q32
q12
− q31z

(1− q11z)

))
.

This simplifies to

det (I−Qz) = 1−(q11+q22+q33)z+(q11q22+q11q33+q22q33−q21q12−q23q32−q31q13)z2

−(q11q22q33 − q21q12q33 + q21q32q13 − q23q11q32 + q23q12q31 − q13q22q31)z3.

Thus

det(I−Qz) = 1− tr(Q)z +

(
3∑

i=1

Qii

)
z2 − det(Q)z3. (2.5)

Now (1− z) is a factor of the cubic characteristic function (2.5) since at z = 1,

1− tr(Q) +

(
3∑

i=1

Qii

)
− det(Q) =

∣∣∣∣∣∣
1− q11 −q12 −q13
−q21 1− q22 −q23
−q31 −q32 1− q33

∣∣∣∣∣∣ . (2.6)

Equation (2.6) simplifies to∣∣∣∣∣∣
q12 + q13 −q12 −q13
−q21 q21 + q23 −q23
−q31 −q32 q31 + q32

∣∣∣∣∣∣ =

∣∣∣∣∣∣
q13 −q12 −q13
q23 q21 + q23 −q23

−(q31 + q32) −q32 q31 + q32

∣∣∣∣∣∣ = 0,

as column 1 and column 3 are identical. It follows that

det(I−Qz) = (1− z)
(
1− (tr(Q)− 1)z + det(Q)z2

)
. (2.7)

Using the fundamental theorem of algebra, equation (2.7) is expressed as

det(I−Qz) = det(Q)(1− z)(α1 − z)(α2 − z), (2.8)

where

α1 =
tr(Q− 1)

2 det(Q)

(
1−

(
1− 4 det(Q)

(tr(Q)− 1)2

)1/2
)
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and

α2 =
tr(Q− 1)

2 det(Q)

(
1 +

(
1− 4 det(Q)

(tr(Q)− 1)2

)1/2
)
,

provided that det(Q) 6= 0. The roots α1 and α2 are real if (tr(Q) − 1)2 ≥ 4 det(Q).
If (tr(Q)− 1)2 < 4 det(Q), α1 and α2 would produce complex entries and these have
no meaning within the context of Markov chains. Thus, the case where the quadratic
form

(
1− (tr(Q)− 1)z + det(Q)z2

)
does not have linear factors is not considered.

Moreover, it is difficult to simplify the reciprocal of
(
1− (tr(Q)− 1)z + det(Q)z2

)
as

a series in the form
∑∞

r=0 θ
rzr, where θ is independent of z. More specifically,

1

(1− (tr(Q)− 1)z + det(Q)z2)
=
∞∑
r=0

 r∑
s=0

(−1)s

r
s

(det(Q))
s

(tr(Q)−1)r−szs

zr.
However, the reciprocal of each of the factors in equation (2.8) when α1 and α2 are
real can be expressed in the following series

1

1− z
=

∞∑
t=0

zt. (2.9)

1

α− z
=

∞∑
t=0

α−(1+t)zt. (2.10)

1

(α− z)2
=

∞∑
t=0

(1 + t)α−(2+t)zt. (2.11)

To obtain the adj (I−Qz), we first find the cofactors of each entry in (I−Qz).
The cofactor of 1− q11z is Λ11(z) = 1− (q22 + q33)z+ (q22q33− q23q32)z2, the cofactor
of −q12z is Λ12(z) = q21z − (q21q33 − q23q31)z2 and so on. Proceeding in this way,
the entries in the adj (I−Qz) are found to be a polynomial in z of degree two. More
precisely,

adj (I−Qz) =

 Λ11(z) Λ21(z) Λ31(z)
Λ12(z) Λ22(z) Λ32(z)
Λ13(z) Λ23(z) Λ33(z)

 ,
where Λ13(z) = q31z+(q21q32−q22q31)z2, Λ21(z) = q12z+(q13q32−q12q33)z2, Λ22(z) =
1 − (q11 + q33)z + (q11q33 − q13q31)z2, Λ23(z) = q32z − (q11q32 − q12q31)z2, Λ31(z) =
q13z+ (q12q23− q13q22)z2, Λ32(z) = q23z− (q11q23− q13q21)z2 and Λ33(z) = 1− (q11 +
q22)z + (q11q22 − q12q21)z2.

Resolving the quotient (2.4) into the sum of partial fractions and using the ex-
pressions (2.9) to (2.11), we obtain the following results for each case m according to
whether (tr(Q)− 1)2 > 4 det(Q) or (tr(Q)− 1)2 = 4 det(Q).
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Case 1

If (tr(Q)− 1)2 > 4 det(Q), then

[I−Qz]
−1

=

∞∑
t=0

1

det(Q)

 1

(α1 − 1)(α2 − 1)

 a11 a12 a13
a21 a22 a23
a31 a32 a33

+
α
−(1+t)
1

(α1 − 1)(α1 − α2)
×

 b11 b12 b13
b21 b22 b23
b31 b32 b33

+
α
−(1+t)
2

(α2 − 1)(α2 − α1)

 c11 c12 c13
c21 c22 c23
c31 c32 c33

zt, (2.12)

where a11 = 1−(q22+q33)+(q22q33−q23q32), a12 = q12+(q13q32−q12q33), a13 = q13+
(q12q23−q13q22), a21 = q21− (q21q33−q23q31), a22 = 1− (q11 +q33)+(q11q33−q13q31),
a23 = q23−(q11q23−q13q21), a31 = q31+(q21q32−q22q31), a32 = q32−(q11q32−q12q31),
a33 = 1− (q11 + q22) + (q11q22− q12q21), b11 = 1− (q22 + q33)α1 + (q22q33− q23q32)α2

1,
b21 = q12α1 + (q13q32 − q12q33)α2

1, b31 = q13α1 + (q12q23 − q13q22)α2
1, b12 = q21α1 −

(q21q33 − q23q31)α2
1, b22 = 1 − (q11 + q33)α1 + (q11q33 − q13q31)α2

1, b32 = q23α1 −
(q11q23−q13q21)α2

1, b13 = q31α1+(q21q32−q22q31)α2
1, b23 = q32α1−(q11q32−q12q31)α2

1,
b33 = 1−(q11+q22)α1+(q11q22−q12q21)α2

1, c11 = 1−(q22+q33)α2+(q22q33−q23q32)α2
2,

c21 = q12α2 + (q13q32 − q12q33)α2
2, c31 = q13α2 + (q12q23 − q13q22)α2

2, c12 = q21α2 −
(q21q33 − q23q31)α2

2, c22 = 1 − (q11 + q33)α2 + (q11q33 − q13q31)α2
2, c32 = q23α2 −

(q11q23−q13q21)α2
2, c13 = q31α2+(q21q32−q22q31)α2

2, c23 = q32α2−(q11q32−q12q31)α2
2,

c33 = 1− (q11 + q22)α2 + (q11q22 − q12q21)α2
2.

Case 2

If (tr(Q)− 1)2 = 4 det(Q), then α1 = α2 = α and

[I−Qz]
−1

=

∞∑
t=0

 1

(α− 1)2 det(Q)

 a11 a12 a13
a21 a22 a23
a31 a32 a33

+
(1 + t)α−(2+t)

(α− 1) det(Q)
×

 b11 b12 b13
b21 b22 b23
b31 b32 b33

+
α−(1+t)

α

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 zt, (2.13)

where d11 =
(
1/det(Q)− α2a11 − b11

)
, d12 = −

(
α2a12 + b12

)
, d13 = −

(
α2a13 + b13

)
,

d21 = −
(
α2a21 + b21

)
, d22 =

(
1/ det(Q)− α2a22 − b22

)
, d23 = −

(
α2a23 + b23

)
,

d31 = −
(
α2a31 + b31

)
, d32 = −

(
α2a32 + b32

)
, d33 =

(
1/ det(Q)− α2a33 − b33

)
.

In the expression for Case 1, let

A1 =
1

(α1 − 1)(α2 − 1) det(Q)

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,
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B1 =
1

(α1 − 1)(α1 − α2) det(Q)

 b11 b12 b13
b21 b22 b23
b31 b32 b33


and

C =
1

(α2 − 1)(α2 − α1) det(Q)

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 ,
and for Case 2, let

A2 =
1

(α− 1)2 det(Q)

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

B2 =
1

(α− 1) det(Q)

 b11 b12 b13
b21 b22 b23
b31 b32 b33


and

D =
1

α

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 .
Making the appropriate substitution for [I−Qz]

−1
, it follows from equation (2.1) for

any given t = 1 + 1/n, n > 0, that

Q(1+1/n) = Am + Tm(1 + 1/n), m = 1, 2,

where

Tm(1+1/n)=

 α
−(2+1/n)
1 B1 + α

−(2+1/n)
2 C, m = 1 if (tr(Q)−1)2>4 det(Q)

(2 + 1/n)α−(3+1/n)B2+α−(2+1/n)D, m = 2 if (tr(Q)−1)2 =4 det(Q).

As Q is irreducible, it follows for large t that

lim
t→∞

Qt = Am + lim
t→∞

Tm(t)

exists. This would hold only if α1, α2 > 1. With α1, α2 > 1, limt→∞Tm(t) = 0. In
either case m, Am is a matrix of limiting-state probabilities.

To show that the matrix Qt is meaningful for any given t = 1 + 1/n, n > 0, if
α1, α2 > 1, consider the doubly stochastic matrix in [5]:

P + w′r =

 0.5 0.5 0
0.5 0.25 0.25
0 0.25 0.75

 ,
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which has the real roots α1 = 1.4641 and α2 = −5.4641. The additive representation
is

Q1+1/n =

 0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333

+(1.4641)−(2+1/n)

 0.4880 0.1786 −0.6667
0.1786 0.0654 −0.2440
−0.6667 −0.2440 0.9107



+(−5.4641)−(2+1/n)

−1.8214 2.4880 −0.6667
2.4880 −3.3987 0.9107
−0.6667 0.9107 −0.2440

.
For any n > 0, the third term is a matrix of complex entries because the nth root,
(−5.4641)1/n, arising from the scalar (−5.4641)−(2+1/n), does not exist. Thus the
fractional indicial matrix (P+w′r)(1+1/n) cannot be represented as a sum of constant
matrices that is meaningful within the Markov chain framework.

3. Illustration

The applicability of the new representation for the irreducible stochastic matrix Q is
demonstrated in this section. We consider two test problems. The first problem is
contained in [11] and the second one is in [12].

Example 1. Singer and Spilerman [11] expressed the following transition matrix

P̃ =

 0.16 0.53 0.31
0.0525 0.49 0.4575
0.11 0.14 0.75

 ,
in terms of the intensity matrix as

P̂ = exp

 −2.046 1.993 0.053
0.024 −0.818 0.794
0.315 0.043 −0.358

 ,

where P̂ is an embeddable matrix of P̃. Clearly, P̂ is an approximation of P̃ as

P̂ = exp

 −2.046 1.993 0.053
0.024 −0.818 0.794
0.315 0.043 −0.358

 =

 0.1601 0.5296 0.3103
0.0525 0.4894 0.4581
0.1105 0.1405 0.7489

 .
The additive representation is possible as det(P̃) = 0.0399 is non-singular, the differ-
ence (tr(P̃) − 1)2 − 4 det(P̃) = 0.16 − 0.1597 > 0, and the roots of the determinant
det(I− P̃z) are real and greater than one, viz.

α1 =
0.4

2(0.0399)

(
1−

(
1− 4(0.0399)

(0.4)2

)1/2
)

= 4.7925
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and

α2 =
0.4

2(0.0399)

(
1 +

(
1− 4(0.0399)

(0.4)2

)1/2
)

= 5.2263.

Using the additive representation, the (1+1/n)−step transition matrix, Q(1+1/n), for
n > 0, is represented as:

Q1+1/n =

 0.0992 0.2749 0.6260
0.0992 0.2749 0.6260
0.0992 0.2749 0.6260


+ (4.7925)−(2+1/n)

 −30.8570 85.1439 −54.2869
−7.6590 21.1336 −13.4746
8.2509 −22.7667 14.5158


+ (5.2263)−(2+1/n)

 38.3583 −94.2879 55.9296
7.8341 −19.2569 11.4228
−9.5160 23.3910 −13.8751

 .
This representation does not require any form of perturbation as Q is equal to P̃.

Example 2. Tsaklidis [12] considered a continuous time homogeneous Markov system
with fixed size, where the matrix of the transition intensities of the memberships is
given as

Φ =

 −1/2 0 1/2
1/8 −1/2 3/8
0 1/2 −1/2


In this example, the determinant det(I − z exp(Φ)) has equal roots, that is, α1 =
α2 = 2.1170. We obtain a meaningful (1 + 1/n)−step transition matrix for any given
n > 0, using the additive representation as:

Q1+1/n =

 0.1111 0.4444 0.4444
0.1111 0.4444 0.4444
0.1111 0.4444 0.4444


+ (2 + 1/n) (2.117)−(3+1/n)

 0.7469 −1.4939 0.7469
0.1867 −0.3735 0.1867
−0.3735 0.7469 −0.3735


+ (2.117)−(2+1/n)

 1.5289 −0.2352 −1.2937
−0.3234 1.3525 −1.0291
−0.0588 −1.2937 1.3525

 .
The matrix Q1+1/n is a stochastic matrix and is compatible with the continuous-time
representation, exp ((1 + 1/n)Φ), for any given n > 0.

Suppose that there exist an initial structure n(0) = [55, 40, 5]. Then the results of
using the additive representation for a shift in the unit interval of the Markov chain by
3 months, 6 months and 9 months are n(1+1/4) = [33, 33, 34], n(1+1/2) = [30, 33, 37]
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and n(1 + 3/4) = [28, 33, 39], respectively1. These results are consistent with the
continuous time process for t = 5/4, 3/2, 7/4.

4. Conclusion

This paper has provided the additive representation of stochastic matrices as a means
for obtaining fractional indicial matrices for the manpower system where the personnel
structure is to be projected for a few months beyond one year (for instance, one
year and six months, one year and three months, etc.). As an alternative to the
assertion that supports the continuous-time formulation in place of the discrete-time
Markov framework [11], this study gives instances where certain discrete-time Markov
framework for forecasting manpower structure could have a meaningful fractional
indicial stochastic matrix without recourse to the continuous-time representation via
the transition intensities. The approach in this paper circumvents the problem of non-
uniqueness that exists in the earlier formulations [6, 11]. Even so three conditions
should be satisfied: (i) the transition matrix Q is irreducible, (ii) the determinant of
Q is non-singular, and (iii) the characteristic polynomial arising from the determinant
det(I−Qz) has linear factors with real roots, which exceeds one. For instances where
these conditions are violated, no substantive meaning can be attached in the additive
context. In that case, the appropriate mathematical structure is a continuous-time
formulation.
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