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1. Introduction

Fractional calculus is strong tool of mathematical analysis that studies derivatives and
integrals of fractional order. Fractional differential equations (FDE’s, for short) are
used in many fields of engineering and sciences such as dynamical of biological systems
[12], economy [33], theory of control [7], automatic systems [36], signal processing [11],
hydro-mechanics and non-linear elasticity [14, 32].

Various real life problems can be modeled as differential equation. The study of
existence of solution of these differential equation is interest object of mathematical
analysis. The fixed point theorems are powerful technique to obtain the existence of
solution of these problem. There are many of fixed point theorems can be applied
to obtain the solution of mathematical models [24, 25]. Krasnoselskii’s and Banach
fixed point theorems play an important role to obtain the existence of solution of a
lot of mathematical problems [35].



100 T. Nabil

In 1940, Ulam purposed new role of the stability analysis of the solutions for
functional equations [34]. In the next year, Hyer [15] considered another type of
stability in the Banach space which was more generalized than the kind of Ulam
stability and applied this stability approach to obtain the stability certain conditions
of some functional equations. After that, Rassias [27] considered another approach
of stability, this approach is more improved than Hyers stabitity. Rassias used this
approach to study stability of FDE’s [16, 28].

Recently, many research articles study the Ulam stabilities, see [21, 20, 13, 10, 8,
2, 22, 3, 19, 17, 18, 30]. In 2011, Ardjouni and Djoudi [6] studied the stability for
neutral ordinary differential equations via fixed points. In 2019, Akbulut and Tunc
[1], established the stability of solutions of neutral ordinary differential equations
with multiple time delay. In the same year, Niazi [26], discussed Ulam stabilities for
nonlinear fractional neutral differential equations in Caputo sense via Picard operator.

There are many definitions are used to define the fractional derivative such
as Riemann-Liouville, Caputo, Erdélyi-Kober and Hadamard [23]. More recently,
Almeida [4] considers new investigation of the fractional operator and called it
ψ−Caputo derivative. This new approach is more generalized than Riemann-
Liouville, Caputo, Erdélyi-Kober and Hadamard derivative operator approaches. Af-
ter one year, Almeida et al.[5] investigated the uniqueness of solution of initial value
problem (I.V.P, for short) of FDE in ψ−Caputo sense.

In this paper, we discuss the existence and uniqueness of the following FDE with
delay 

∗Dα,ψ
0+ [x(t)−H(t, x(t− ϑ(t)))] = F (x(t), x(t− ϑ(t)));

α ∈ (0, 1], t ∈ I = [0, 1];
subject to I.V.
x(t) = σ(t), t ∈ [ρ, 0];

(1)

where ∗Dα,ψ is ψ−Caputo derivative operator , the delay ρ = inf{t − ϑ(t) : t ∈
[0, 1]} ≤ 0, ϑ : R+ → R+ and σ : [ρ, 0]→ R.

2. Preliminaries

In this section, we consider some facts and basic results. We recall the following
definition [3].

Definition 2.1. Let C([ρ, 1],R) be the vectorial space of all continuous functions
u : [ρ, 1] → R. Clearly, C([ρ, 1],R) is a complete normed space with the norm,
‖u‖ = max

t∈[ρ,1]
|u(t)|. Therefore, Cn([ρ, 1],R), n ∈ N, be the vectorial space of all

n−times continuous and differentiable functions from [ρ, 1] to R.

Next, we recall the definitions of ψ−fractional integral and derivative operators
[4, 5].

Definition 2.2. Let I = [0, 1] and ψ ∈ Cn(I,R), be an increasing functions such
that ψ′(t) 6= 0 for all t ∈ I. Consider an integrable function u : I → R. The
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ψ−Riemann-Liouville fractional integral of order α > 0, α ∈ R of the function u is
defined as

Jα,ψ0+ u(t) =
1

Γ(α)

∫ t

0

ψ′(ζ)(ψ(t)− ψ(ζ))α−1 u(ζ) dζ ,

and the ψ−Riemann-Liouville fractional derivative of order α > 0, α ∈ R of the
function u is defined as

Dα,ψ
0+ u(t) =

1

Γ(n− α)
(

1

ψ′(t)

d

dt
)n

∫ t

0

ψ′(ζ)(ψ(t)− ψ(ζ))n−α−1 u(ζ) dζ ,

where n = [α] + 1 and [α] denotes the integral part of α.

Definition 2.3. Let ψ ∈ Cn(I,R), be an increasing function such that ψ′(t) 6= 0
for all t ∈ I. Consider an integrable function u : I → R. The ψ−Caputo fractional
derivative of order α > 0, α ∈ R of the function u is defined as

∗Dα,ψ
0+ u(t) = Dα,ψ

0+ [u(t)−
n−1∑
k=0

u
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k],

where n = [α] + 1, [α] denotes the integral part of α and u
[k]
ψ (t) = ( 1

ψ′(t)
d
dt )

k u(t).

We recall the following Lemma which was given in [5].

Lemma 2.4. Suppose that u : I → R, then
(1) If u ∈ C(I,R), then ∗Dα,ψ

0+ Jα,ψ0+ u(t) = u(t).
(2) If u ∈ Cn(I,R), then

Jα,ψ0+
∗Dα,ψ

0+ u(t) = u(t)−
n−1∑
k=0

u
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k.

Now we recall Krasnoselskii’s fixed point theorem which was given in [31].

Theorem 2.5. (Krasnoselskii’s fixed point theorem) Let Υ be a Banach space.
Suppose that Ω (Ω 6= ∅) be a convex, bounded and closed subset of Υ. Consider
T1 : Υ→ Υ and T2 : Ω→ Υ are such that

(1) T1 be a contraction.
(2) T2 is completely continuous.
(3) x = T1x+ T2y ⇒ x ∈ Ω for all y ∈ Ω.
Then, there exists x∗ ∈ Ω such that x∗ = T1x

∗ + T2x
∗ .

Now, we recall the definitions of these types of Ulam stability. For more details,
see [29].

Definition 2.6. The Eq.(1) is said to be Ulam-Hyers stable (UHS for short) if, there
exists λ ∈ R+ such that for every ε > 0 and each u ∈ C([ρ, 1],R) solution of the
inequality

|∗Dα,ψ
0+ [u(t)−H(t, u(t− ϑ(t)))]− F (u(t), u(t− ϑ(t)))| ≤ ε , t ∈ I,
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there exists a unique solution x ∈ C([ρ, 1],R) of Eq.(1) such that

|u(t)− x(t)| ≤ λ ε , ∀ t ∈ [ρ, 1].

Definition 2.7. The Eq.(1) is said to be generalized Ulam-Hyers stable (GUHS for
short) if, there exists ϕ ∈ C([ρ, 1],R), ϕ(0) = 0, such that for every ε > 0 and each
u ∈ C([ρ, 1],R) solution of the inequality

|∗Dα,ψ
0+ [u(t)−H(t, u(t− ϑ(t)))]− F (u(t), u(t− ϑ(t)))| ≤ ε , t ∈ I,

there exists a unique solution x ∈ C([ρ, 1],R) of Eq.(1) such that

|u(t)− x(t)| ≤ ϕ(ε) ,∀ t ∈ [ρ, 1].

Definition 2.8. The Eq.(1) is called Ulam-Hyers-Rassias stable (UHRS for short)
w.r.t ϕ ∈ C([ρ, 1],R), if there exists κϕ ∈ R+ such that for every ε > 0 and each
u ∈ C([ρ, 1],R) solution of the inequality

|∗Dα,ψ
0+ [u(t)−H(t, u(t− ϑ(t)))]− F (u(t), u(t− ϑ(t)))| ≤ ε ϕ(t) , t ∈ I , (2)

there exists a unique solution x ∈ C([ρ, 1],R) of Eq.(1) such that

|u(t)− x(t)| ≤ κϕ ε ϕ(t) ,∀ t ∈ [ρ, 1].

Definition 2.9. The Eq.(1) is said to be generalized Ulam-Hyers-Rassias stable
(GUHRS for short) w.r.t ϕ ∈ C([ρ, 1],R), if there exists κϕ ∈ R+ such that for
each u ∈ C([ρ, 1],R) solution of the inequalities

|∗Dα,ψ
0+ [u(t)−H(t, u(t− ϑ(t)))]− F (u(t), u(t− ϑ(t)))| ≤ ϕ(t) , t ∈ I ,

there exists a unique solution u ∈ C([ρ, 1],R) of the Eq.(1) such that

|u(t)− x(t)| ≤ κϕ ϕ(t) ,∀ t ∈ [ρ, t].

Let H : I × R → R and F : R × R → R. Then we study the Ulam stabilities of
the following proposed problem

∗Dα,ψ
0+ [x(t)−H(t, x(t− ϑ(t)))] = F (x(t), x(t− ϑ(t)));

α ∈ (0, 1], t ∈ I = [0, 1];
subject to initial value
x(t) = σ(t), t ∈ [ρ, 0];

where ∗Dα,ψ is ψ−Caputo derivative operator, ρ = inf{t − ϑ(t) : t ∈ [0, 1]} ≤ 0,
ϑ : R+ → R+ , σ : [ρ, 0] → R are continues and ψ ∈ C1(I,R) be an increasing
function such that ψ′(t) 6= 0 for all t ∈ I. Then, we have the following lemma [9].

Lemma 2.10. The solution of Eq.(1) is equivalent to the following nonlinear integral
equation

x(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, x(t− ϑ(t)))

+
1

Γ(α)

∫ t

0

ψ
′
(s)(ψ(t)− ψ(s))α−1 F (x(s), x(s− ϑ(s))) ds .
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3. Existence and Uniqueness

In this section we will obtain the existence of solution and uniqueness of the proposed
neutral FDE (1). suppose that r0 ∈ R+ and Ω = {x ∈ C([ρ, 1],R) : ‖x‖ ≤ r0}. The
Eq.(1) can be written as

(T x)(t) = (T1x)(t) + (T2x)(t),

where
T1 : Ω→ (CB([ρ, 1],R) , T2 : Ω→ (CB([ρ, 1],R),

such that

(T1x)(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, x(t− ϑ(t))) ,

(T2x)(t) = 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (x(s), x(s− ϑ(s))) ds,

where t ∈ [ρ, 1] and x ∈ C([ρ, 1],R) .
We will study Eq.(1) under the following conditions:
(C1) the functions H : I × R → R and F : R × R → R are continuous and there

exist p ∈ (0, 1), q ∈ R+ such that

|H(t, x1)−H(t, x2)| < L|x1 − x2|,

|F (x1, x1)− F (y1, y2)| < K

2∑
i=1

|xi − yi|,

for all x1, x2, y1, y2 ∈ R, and t ∈ [0, 1];
(C2) let A∗ =| F (0, 0) | and B∗ = max

t∈I
| H(t, 0) | then

|σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ +
K r0 +A∗

Γ(α+ 1)
(ψ(1)− ψ(0))α ≤ r0.

Theorem 3.1. Let the conditions (C1) and (C2) hold. Then Eq.(1) has at leat one
solution in Ω.

Proof. The proof is done in the following 3 steps.
Step 1. T1 is contraction.

Let x, y ∈ C([ρ, 1],R) are arbitrary and t ∈ I

|(T1x)(t)− (T1y)(t)| ≤ L|x(t)− y(t)|,

which implies that
‖T1x− T1y‖ ≤ L‖x− y‖,

Thus, T1 is a contraction.
Step 2. T2 is completely continuous.

First, we will prove that T2 is continuous. Let {xn} be a sequence in C([ρ, 1],R) such
that xn → x ∈ C([ρ, 1],R). Then, we get
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|(T2xn)(t)− (T2x)(t)| ≤ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1|F (xn(s), xn(s− ϑ(s)))

−F (x(s), x(s− ϑ(s)))| ds
≤ K

Γ(α+1) (ψ(t)− ψ(0))α‖xn − x‖
≤ K

Γ(α+1) (ψ(1)− ψ(0))α‖xn − x‖.

So, we have that

‖T2xn − T2x‖ ≤ K
Γ(α+1) (ψ(1)− ψ(0))α‖xn − x‖.

Thus, ‖T2xn − T2x‖ → 0 as n→∞. Hence T2 is continuous operator. Therefore,
for each x, y ∈ C([ρ, 1],R) and t ∈ I, we have

|F (x(t), y(t))| ≤ |F (x, y)− F (0, 0)|+ |F (0, 0)|
≤ K(‖x‖+ ‖y‖) +A∗.

Therefore,

| (T2x)(t) |≤ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1|F (x(s), x(s, s− ϑ(s)))|ds

≤ 2K+A∗

Γ(α+1) (ψ(t)− ψ(0))α,

for all t ∈ I. Hence we have

‖ T2x ‖≤ 2K+A∗

Γ(α+1) (ψ(1)− ψ(0))α.

Thus T2 is bounded. Furthermore, if we choose t1, t2 ∈ I such that t1 < t2, then we
get

|(T2x)(t2)− (T2x)(t1)|
= | 1

Γ(α)

∫ t2
0
ψ
′
(s)(ψ(t2)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds

− 1
Γ(α)

∫ t1
0
ψ
′
(s)(ψ(t1)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds|

≤ | 1
Γ(α)

∫ t2
0
ψ
′
(s)(ψ(t2)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds

− 1
Γ(α)

∫ t2
0
ψ
′
(s)(ψ(t1)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds|

+| 1
Γ(α)

∫ t2
0
ψ
′
(s)(ψ(t1)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds

− 1
Γ(α)

∫ t1
0
ψ
′
(s)(ψ(t1)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds|

≤ 1
Γ(α)

∫ t2
0
ψ
′
(s)[(ψ(t2)− ψ(s))α−1 − (ψ(t1)− ψ(s))α−1] | F (x(s), x(s− ϑ(s))) | ds

+ 1
Γ(α)

∫ t2
t1
ψ
′
(s)(ψ(t1)− ψ(s))α−1 | F (x(s), x(s− ϑ(s))) | ds

≤ 2K r0+A∗

Γ(α+1) [(ψ(t2)− ψ(0))α − (ψ(t1)− ψ(0))α].

Since ψ is continuous, then we have that |(T2x)(t2)− (T2x)(t1)| → 0 as t1 → t2. Thus
T2(Ω) is relatively compact. From Arzela-Ascoli-theorem, we obtain T2 is compact.
Hence T2 is completely continuous.
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Step 3. Finding the fixed poind of T .
Let x, y ∈ Ω. We get

|(T1x)(t) + (T2y)(t)|
= |σ(0)−H(0, σ(−ϑ(0))) +H(t, x(t− ϑ(t)))

+ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (x(s), x(s− ϑ(s))) ds|

≤ |σ(0)−H(0, σ(−ϑ(0)))|+ |H(t, x(t− ϑ(t)))|+
+| 1

Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (x(s), x(s− ϑ(s))) ds|

≤ |σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ + K r0+A∗

Γ(α+1) (ψ(t)− ψ(0))α

≤ |σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ + K r0+A∗

Γ(α+1) (ψ(1)− ψ(0))α

≤ r0

Thus, the operators T1 and T2 satisfy all conditions of Theorem 2.5. Hence there
exists x∗ ∈ Ω such that x∗ is solution of Eq.(1).

Theorem 3.2. Suppose that the conditions (C1) and (C2) hold. Let,

(C3) L+ 2K
Γ(α+1) (ψ(1)− ψ(0))α < 1.

Then the Eq.(1) has unique solution.

Proof. We apply Banach contraction theorem to prove T has a unique fixed point.
Let x, y ∈ C([ρ, 1],R). Then, we have

|(T x)(t)− (T y)(t)| ≤ L|x(t)− y(t)|+ 2K‖x−y‖
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 ds

≤ L+ 2K
Γ(α+1) (ψ(t)− ψ(0))α

≤ L+ 2K
Γ(α+1) (ψ(1)− ψ(0))α

≤ 1.

Thus Eq.(1) has unique solution.

4. Ulam Stabilities

In this part, various Ulam stability types will be considered.

Lemma 4.1. Let α ∈ (0, 1), if z ∈ C([ρ, 1],R) is the solution of the inequality of
definition 2.6, then z is the solution of the following inequality

|z(t)−N(t)| ≤ ( (ψ(1)−ψ(0))α

Γ(α+1) )ε,

where

N(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, z(t− ϑ(t)))

+
1

Γ(α)

∫ t

0

ψ
′
(s)(ψ(t)− ψ(s))α−1 F (z(s), z(s− ϑ(s))) ds.



106 T. Nabil

Proof. Let z ∈ C([ρ, 1],R) be any solution of the inequality of definition 2.6, then
there exists Θ ∈ C([ρ, 1],R) dependent on z such that

∗Dα,ψ
0+ [z(t)−H(t, z(t− ϑ(t)))] = F (z(t), z(t− ϑ(t))) + Θ(t) ;

α ∈ (0, 1], t ∈ I = [0, 1] ;
subject to initial value
z(t) = σ(t), t ∈ [ρ, 0] ;

(3)

and
|Θ(t)| ≤ ε , ∀t ∈ I.

Thus, Eq.(3) is equivalent to the following equation

z(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, z(t− ϑ(t)))

+ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (z(s), z(s− ϑ(s))) ds

+ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))(α−1) Θ(s) ds.

Let

N(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, z(t− ϑ(t)))

+ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (z(s), z(s− ϑ(s))) ds.

Thus, we have

|z(t)−N(t)| ≤ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 |Θ(s)| ds ≤ 1

Γ(α+1) (ψ(1)− ψ(0))α ε.

Theorem 4.2. Suppose that (C1)-(C3) hold. Then the Eq.(1) is UHS and conse-
quently GUHS.

Proof. Let z ∈ C([ρ, 1],R) be a solution of the inequality of definition 2.6 and x be
the unique solution of Eq.(1), then we get |N(t)| ≤ ε for all t ∈ I and

|z(t)− x(t)| ≤ |z(t)−N(t)|+ |N(t)− x(t)|.

From Lemma 4.1, we get

|z(t)− x(t)| ≤ ( (ψ(1)−ψ(0))α

Γ(α+1) )ε1 + L|z(t)− x(t)|
+ 1

Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))(α−1) 2K |z(s)− x(s)| ds

≤ ( (ψ(1)−ψ(0))α

Γ(α+1) )ε1 + L|z(t)− x(t)|+ 2K
Γ(α+1) (ψ(1)− ψ(0))α |z(t)− x(t)| ,

therefore, we get

‖z − x‖ ≤ ( (ψ(1)−ψ(0))α

Γ(α+1) )ε1 + L‖z − x‖,

where
L = 1− [L+ 2K

Γ(α+1) (ψ(1)− ψ(0))α].
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Then , we get

‖z − x‖ ≤ λ ε,

where

λ =
( (ψ(1)−ψ(0))α

Γ(α+1) )

1− L
.

Thus the Eq.(1) is UHS. Therefore, if we put ϕ(ε) = λ ε, then we get that ϕ(0) = 0
and

‖z − x‖ ≤ ϕ(ε).

Then, the Eq.(1) is GUHS.

Lemma 4.3. Suppose that the following condition holds:
(C4) If φ ∈ C([ρ, 1],R) is increasing, then there exists µφ ∈ R+ such that for every

t ∈ I, the following inequality hold

∗Jα,ψ0+ φ(t) ≤ µφ φ(t) .

If z ∈ C([ρ, 1],R) is the solution of the inequality (2), then z is the solution of the
following inequality

|z(t)−N(t)| ≤ µφ( (ψ(1)−ψ(0))α

Γ(α+1) )φ(t) ε.

Proof. From Lemma 4.1, we get

|z(t)−N(t)| ≤ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 |Θ(s)| ds.

From (C4), we have that

|z(t)−N(t)| ≤ µφ( (ψ(T )−ψ(0))α

Γ(α+1) )φ(t) ε.

Theorem 4.4. Consider the Conditions (C1)-(C4) hold. Then the Eq.(1) is UHRS
and GUHRS .

Proof. Let z ∈ C([ρ, 1],R) be solution of the inequality (2) and x be the unique
solution of Eq.(1). From Lemma 4.3, we get

‖z − x‖ ≤ µφ( (ψ(1)−ψ(0))α

Γ(α+1) )φ1(t) ε+ L ‖z − x‖.

So, we have that

‖z − x‖ ≤ µφ λ φ(t)ε.

Thus the Eq.(1) is UHRS. Therefore, if we put ε = 1, then the Eq.(1) is GUHRS.
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5. Applications

The following examples are applications to the previous theoretical results.

Example 5.1. Consider the following ψ−Caputo FDE
∗D

1
3 ,ψ

0+ [x(t)− te−t

10 x(t− 0.1)] = 1
10 tan−1(x(t)) + |x(t−0.1)|

14+|x(t−0.1)| ;

t ∈ I = [0, 1],
subject to the nonlocal conditions
x(t) = 0.2 , t ∈ [−0.1, 0]

(4)

where ψ(t) =
√

1 + t , for all t ∈ [0, 1]. Clearly, ψ is increasing on [0, 1] and ψ ∈
C1([0, 1],R). Therefore,

H(t, x) =
te−t

10
x,

also

F (t, x, y) =
1

10
tan−1(x) +

|y|
14 + |y|

.

It is clear that, H,F are continuous. Since,

|H(t, x1)−H(t, x2)| ≤ 1

10
|x1 − x2|,

|F (t, x1, y1)− F (t, x2, y2)| ≤ 1

10
(|x1 − x2|+ |y1 − y2|),

for all x, y, x1, y1, x2, y2 ∈ R and t ∈ [0, 1]. Thus, the condition (C1) holds with

L = K =
1

10
,

therefore

A∗ = 0 , B∗ = 0 , σ(0) = 0.2.

The inequality of (C2)

|σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ +
K r0 +A∗

Γ(α+ 1)
(ψ(1)− ψ(0))α ≤ r0,

has the following form

0.2 +
r0

10
+
r0(
√

2− 1)
1
3

10Γ( 4
3 )

≤ r0.

Hence (C2) is hold and r0 ≥ 0.2447531. Similarly, we get: L+ 2K
Γ(α+1) (ψ(1)−ψ(0))α =

0.11657002573 < 1. Hence the condition (C3) holds. So, it is implies that, the Eq.(4)
has a unique solution. Hence, the Eq.(4) is UHS, GUHS, UHRS and GUHRS.



On Fractional Differential Equation with the ψ−Caputo Fractional Derivative 109

Example 5.2. Consider the following ψ−Caputo FDE
∗D

1
2 ,ψ

0+ [x(t)− t
9 sin(x(t− 0.1))] = 1

12x(t) + 1
10x(t− 0.1)

t ∈ I = [0, 1],
subject to the nonlocal conditions
x(t) = 0.2 , t ∈ [−0.1, 0]

(5)

where ψ(t) = t2+t
2 , for all t ∈ [0, 1]. Clearly, ψ is increasing on [0, 1] and ψ ∈

C1([0, 1],R). Therefore,

H(t, x) =
t

9
sin(x),

also

F (t, x, y) =
1

12
x+

1

10
y.

It is clear that, H,F are continuous. Since,

|H(t, x1)−H(t, x2)| ≤ 1

9
|x1 − x2|,

|F (t, x1, y1)− F (t, x2, y2)| ≤ 1

10
(|x1 − x2|+ |y1 − y2|),

for all x, y, x1, y1, x2, y2 ∈ R and t ∈ [0, 1]. Thus, the conditions (C1) holds with

L =
1

9
,K =

1

10

therefore
A∗ = 0 , B∗ = 0 , σ(0) = 0.2.

The inequality of (C2)

|σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ +
K r0 +A∗

Γ(α+ 1)
(ψ(1)− ψ(0))α ≤ r0,

has the following form

0.2 +
r0

10
+

r0

10Γ( 3
2 )
≤ r0.

Hence (C2) is hold and r0 ≥ 0.25390377047. Similarly, we get: L + 2K
Γ(α+1) (ψ(1) −

ψ(0))α = 0.32471910112 < 1. Hence the condition (C3) holds . So, it is implies
that, the Eq.(5) has a unique solution. Hence, the Eq.(5) is UHS, GUHS, UHRS and
GUHRS.
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[1] I. Akbulut, C. Tunç, On the stability of solutions of neutral differential equations
of first order, Interational J. of Mathematics and Computer Science 14 (2019)
849–866.



110 T. Nabil

[2] A. Ali, B. Samet, K. Shah, R. Khan, Existence and stability of solution of a
toppled systems of differential equations non- integer order, Bound. Value Probl.
2017 (16) (2017) 1–13.

[3] Z. Ali, A. Zada, K. Shah, Ulam stability results for the solutions of nonlinear
implicit fractional order differential equations, Hacet. J. Math. Stat. 48 (4) (2019)
1092–1109.

[4] R. Almeida, A Caputo fractional derivative of a function with respect to another
function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017) 460–481.

[5] R. Almeida, A.B. Malinowska, M.T. Monterio, Fractional differential equations
with a Caputo derivative with respect to a kernel functions and their applications,
Math. Method. Appl. Sci. 41 (2018) 336–352.

[6] A. Ardjouni, A. Djoudi, Stability in nonlinear neutral differential equations with
variable delays using fixed point theory, Electron. J. Qual. Theory Differ. Equ.
43 (2011), 11 pp.

[7] G.M. Bahaa, Optimal control problem for variable-order fractional differential
systems with time delay involving Atangana-Baleanu derivatives, Chaos, Solitons
and Fractals 122 (2019) 129–142.
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