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1. Introduction and Preliminaries

This article is devoted to the study of the Laguerre transforms and its basic oper-
ational properties. The joint Laplace-Laguerre transform can be used effectively to
solve the heat conduction problem in a semi-infinite medium with variable thermal
conductivity. Another application of the Laguerre transform is to solve the problem
of oscillations of a very heavy chain with variable tension. Apart from the ordinary or
partial derivatives which occur in elementary calculus various other types of deriva-
tives are known in the fractional calculus literature. Examples of this type are, the
Caputo fractional derivative, the Riemann-Liouville fractional derivative. In the last
three decades, considerable progress has been made in the area of fractional deriva-
tives and, in general, in the area of fractional calculus. Partial fractional differential
equations play an important role in science, engineering and social sciences. Nowadays
it is impossible to describe a viscoelastic process without using a fractional deriva-
tive. Many phenomena in fluid mechanics, physics, biology, engineering and other
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areas of the sciences can be successfully modeled by the use of fractional derivatives.
At this point, it should be emphasized that several definitions have been proposed
the fractional derivatives, among those the Caputo and Riemann-Liouville is the most
popular. Among scientists and engineers the Caputo fractional derivatives are more
popular. Fractional differential equations arise in the unification of wave and diffusion
phenomenon. The time fractional heat conduction equation, which is a mathematical
model of a wide range of important physical phenomena, is obtained from the classical
heat equation by replacing the first time derivative by a fractional derivative of order
0 < α < 1.

1.1. Definitions and Notations

Definition 1.1. Fourier transform of the function ψ(x) is defined as follows

F{ψ(x)} =
1√
2π

∫ ∞
−∞

eiwxψ(x)dx := Ψ(w). (1.1)

If F{ψ(x)} = Ψ(w), then F−1{Ψ(w)} is given by

ψ(x) =
1√
2π

∫ +∞

−∞
e−ixwΨ(w)dw, (1.2)

where ψ(x), Ψ(w) are elements of the S(R), space of rapidly decreasing functions or
Schwartz class[13].
Note. The vector space S(R) of the rapidly decreasing functions is closed under
linear combinations and differentiation. Any function belongs to S(R) is integrable.
A typical function in this space is exp(−|x|2).

Lemma 1.1. (Convolution Theorem for the Fourier transform)
Let us assume that F [φ(x)] = Φ(w) and F [ψ(x)] = Ψ(w), then the convolution of two
functions φ(x) and ψ(x) is defined by the expression

φ(x) ∗ ψ(x) =
1√
2π

∫ +∞

−∞
φ(ξ)ψ(x− ξ)dξ,

and the Fourier transform of the convolution is as follows

F [φ(x) ∗ ψ(x);x→ w] = Φ(w)Ψ(w).

Lemma 1.2. We have the following identities for the Fourier transform

1. F [e−a
2x2

;x→ w] =
1

a
√

2
e−

w2

4a2 .

2. F [|x|−α;x→ w] =

√
2

π

Γ(1− α)

|w|1−α
sin(

πα

2
).
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3. F [sgn(x);x→ w] =

√
2

π

i

w
.

4. F [xsgn(x);x→ w] = −
√

2

π

1

w2
.

5. F [e−a|x|;x→ w] =

√
2

π

a

w2 + a2
.

Proof. See [4, 9, 13].

Lemma 1.3. Let us assume that F [φ(x)] = Φ(w) then we have the following Fourier
transform identities

1. F [φ(x− β);x→ w] = eiβwΦ(w).

2. F [

∫ x

a

φ(ξ)dξ;x→ w] =
1

iw
Φ(w).

Proof. See [4, 9].

Lemma 1.4. Let us show that

F−1[

∫ +∞

−∞
Jν(aξ)

e−|x|
√
w2+λ2

2
√
ξ2 + λ2

ξν+1dξ] =

√
2

π
(
√
x2 + λ2)νK ν

2
(a
√
x2 + λ2).

Note. In the above relation Jν(.) and Kν(.) are the Bessel function of the first kind
of order ν and the modified Bessel function of the second kind of order ν respectively.
Proof. By definition of the inverse Fourier transform, the left hand side of the above
relation can be rewritten as follows

L.H.S =
1√
2π

∫ +∞

−∞
e−ixw[

∫ +∞

−∞
Jν(aξ)

e−|w|
√
w2+λ2

2
√
ξ2 + λ2

ξν+1dξ]dw.

At this point, changing the order of integration yields

L.H.S =

∫ +∞

−∞

Jν(aξ)

2
√
ξ2 + λ2

[
1√
2π

∫ +∞

−∞
e−ixwe−|w|

√
w2+λ2

dw]ξν+1dξ,

in view of Lemma 1.2. the value of the inner integral is
√

2
π

√
ξ2+λ2

x2+(
√
ξ2+λ2)2

. After

substitution and simplifying we arrive at

L.H.S =
1√
2π

∫ +∞

−∞

ξν+1Jν(aξ)

ξ2 + (
√
x2 + λ2)2

dξ =

√
2

π

∫ +∞

0

ξν+1Jν(aξ)

ξ2 + (
√
x2 + λ2)2

dξ
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=

√
2

π
(
√
x2 + λ2)νK ν

2
(2
√
x2 + λ2).

The Fourier transform provides a useful technique for the solution of certain sin-
gular integral equations. Let us state and prove the following lemma.

Lemma 1.5. Let us consider the following singular integral equation

|x+ λ|−α =
1√
2π

∫ +∞

−∞

φ(ξ)

|ξ − x|β
dξ, 0 < α < β < 1, λ > 0.

Then the above singular integral equation has the formal solution as follows

φ(x) =

√
π

2

cos(πβ2 )Γ(β)

cos(πα2 )(β − α)Γ(α)

|x+ λ|α−β−1

Γ(β − α)
.

Proof. By applying the Fourier transform to each term in the integral equation and
using the convolution Theorem and Lemma 1.2. the singular integral equation is
converted into the following equation√

2

π

Γ(1− α)

|w|1−α
e−iλw sin(

πα

2
) = Φ(w)

√
2

π

Γ(1− β)

|w|1−β
sin(

πβ

2
),

the above equation has the following solution

Φ(w) =
Γ(1− α)

Γ(1− β)|w|β−α
e−iλw

sin(πα2 )

sin(πβ2 )
.

At this point by applying the inverse Fourier transform, we obtain the formal solution
as below

φ(x) =
Γ(1− α)

Γ(1− β)

sin(πα2 )

sin(πβ2 )

1√
2π

∫ +∞

−∞
e−ixw|w|α−βe−iλwdw,

from which we deduce that

φ(x) =

√
π

2

Γ(β)

Γ(β − α)Γ(α)

cos(πβ2 )

(β − α) cos(πα2 )
|x+ λ|α−β−1.

Let us consider the special case α = 1
3 , β = 1

2 , λ = 1 we are led to the singular
integral equation

|x+ 1|− 1
3 =

1√
2π

∫ +∞

−∞

φ(ξ)

|ξ − x| 12
dξ,

the solution of which is given by

φ(x) =
π
√

6

Γ( 1
6 )
|x+ 1|− 7

6 .
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Lemma 1.6. Let us consider the following integral equation with retarded argument

φ(x− β) = f(x) + λ

∫ x

a

φ(ξ)dξ, λ > 0.

Then the above integral equation has the formal solution as follows

φ(x) =

+∞∑
k=0

(−1)k+1f (k)(x− kβ)

λk+1
.

Proof. Taking the Fourier transform of the above integral equation term-wise and in
view of Lemma1.3. We get

eiβwΦ(w) = F (w) +
λ

iw
Φ(w),

from which we deduce that

Φ(w) =
F (w)

eiβw − λ
iw

= − 1

λ

+∞∑
k=0

(
iweiwβ

λ
)kF (w) = −

+∞∑
k=0

(−1)k

λk+1
(−iw)keikβwF (w).

By taking the inverse Fourier transform we obtain

φ(x) = −
+∞∑
k=0

(−1)k

λk+1
[

1√
2π

∫ +∞

−∞
e−i(x−kβ)w(−iw)kF (w)dw.]

At this point using the fact that f (k)(η) = 1√
2π

∫ +∞
−∞ (−iw)ke−iηwF (w)dw, we have

φ(x) =

+∞∑
k=0

(−1)k+1

λk+1
f (k)(x− kβ)

Definition 1.2. The left Caputo fractional derivative of order α (0 < α < 1) of φ(t)
is defined as follows [12]

Dc,α
a,t φ(t) = 1

Γ(1−α)

∫ t
a

1
(t−ξ)αφ

′(ξ)dξ. (1.3)

Definition 1.3. Laplace transform of the function φ(t) is defined as follows

L{φ(t)} =

∫ ∞
0

e−stφ(t)dt := Φ(s). (1.4)

The sufficient conditions for the existence of the Laplace transform are that the func-
tion φ(t) be of exponential order and be sectionally continous on every closed interval
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0 ≤ t ≤ λ for every positive λ. The inverse Laplace transform of Φ(s) may be ex-
pressed explicitly as a contour integral by considering s as a complex variable. If
L{φ(t)} = Φ(s), then L−1{Φ(s)} is given by

φ(t) =
1

2πi

∫ c+i∞

c−i∞
estΦ(s)ds, (1.5)

where Φ(s) is analytic in the region Re(s) > c.
Note. A theorem due to Lerch states that if two functions have the same Laplace
transform they defer by a null function N (t), which has the property that, for every
λ > 0, ∫ λ

0

N (t)dt = 0.

Definition 1.4. The Laplace transform of the Caputo fractional derivatives of order
non-integer α. The most important use of the Caputo fractional derivative is treated
in initial value problems where the initial conditions are expressed in terms of integer
order derivatives. In this respect, it is interesting to know the Laplace transform of
this kind of derivative.

L{Dc,α
0,t f(t)} = sF (s)− f(0+), 0 < α < 1. (1.6)

and generally [12]

L{Dc,α
0,t f(t)} = sα−1F (s)−

∑k=m−1−k
k=0 sα−1−kfk(0+),m− 1 < α < m. (1.7)

Example 1.1. Using convolution theorem for the Laplace transform to show that∫ t

0

Jν(αξ)Jλ(α(t− ξ))
ξ(t− ξ)

dξ = (
1

ν
+

1

λ
)
Jν+λ(αt)

t
, ν, λ > 0.

Where Jν(.) stands for the Bessel function of the first kind of order ν.
Solution. From table of the Laplace transforms it is well known that [7]

L[
Jν(at)

t
] =

(
√
s2 + a2 − s)ν

νaν
.

In view of the convolution Theorem for the Laplace transform we have the following

L[

∫ t

0

Jν(αξ)Jλ(α(t− ξ))
ξ(t− ξ)

dξ] = L[
Jν(at)

t
]L[

Jλ(at)

t
] =

(
√
s2 + a2 − s)ν

νaν
(
√
s2 + a2 − s)λ

λaλ
,

after simplifying we arrive at

L[

∫ t

0

Jν(αξ)Jλ(α(t− ξ))
ξ(t− ξ)

dξ] =
(
√
s2 + a2 − s)ν+λ

νλaν+λ
= (

1

ν
+

1

λ
)
(
√
s2 + a2 − s)ν+λ

(ν + λ)aν+λ
.

At this stage taking the inverse Laplace transform of the above relation, we obtain∫ t

0

Jν(αξ)Jλ(α(t− ξ))
ξ(t− ξ)

dξ = L−1[(
1

ν
+

1

λ
)
(
√
s2 + a2 − s)ν+λ

(ν + λ)aν+λ
] = (

1

ν
+

1

λ
)
Jν+λ(at)

t
.
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Example 1.2. Using Bromwich complex inversion formula and residue theorem to
show that

φ(t) = L−1[
smK1(α

√
s)√

s− λ
]

= 2λ2m+1K1(aλ)eλ
2t − 1

2

∫ +∞

0

(−r)me−tr λJ1(a
√
r) +

√
rY1(a

√
r)

λ2 + r
dr.

λ > 0, m = 0, 1, 2, 3, ...

Where Kν(.) stands for the modified Bessel function of the second kind of order ν or
Macdonald’s function [1].

Solution. The transform function Φ(s) = smK1(α
√
s)√

s−λ has a simple pole at s = λ2

and branch point at s = 0. Then the inverse Laplace transform is

φ(t) = lim
s→λ2

[(s− λ2)
smK1(α

√
s)est√

s− λ
]

+
1

π

∫ +∞

0

e−trIm[ lim
θ→−π

Φ(reiθ)]dr,

let us evaluate each term as follows

φ(t) = lim
s→λ2

(
√
s− λ)(

√
s+ λ).

smK1(a
√
s)est√

s− λ

+
1

π

∫ +∞

0

e−trIm[ lim
θ→−π

(reiθ)mK1(α
√
reiθ)√

reiθ − λ
]dr.

After evaluation of the limits and simplifying we get

φ(t) = 2λ2m+1K1(aλ)eλ
2t − 1

π

∫ +∞

0

e−tr=[
(−r)mK1(−ia

√
r)

λ+ i
√
r

]dr,

or

φ(t) = 2λ2m+1K1(aλ)eλ
2t − 1

π

∫ +∞

0

e−tr=[
(−r)m(λ− i

√
r)K1(−ia

√
r)

λ2 + r
]dr.

At this point let us recall the following well-known identity for the Bessel’s function

Kν(z) =
iπ

2
e

ıπν
2 [Jν(e

iπ
2 z) + iYν(e

iπ
2 z)].

Thus, we get

φ(t) = 2λ2m+1K1(aλ)eλ
2t− 1

2

∫ +∞

0

e−tr=[
(−r)m(iλ+

√
r)(J1(a

√
r) + iY1(a

√
r))

λ2 + r
]dr.

After simplification we obtain

φ(t) = 2λ2m+1K1(aλ)eλ
2t − 1

2

∫ +∞

0

(−r)me−tr λJ1(a
√
r) +

√
rY1(a

√
r)

λ2 + r
dr.
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Definition 1.5. The generalized Laguerre polynomials Lαn(x) satisfy the linear dif-
ferential equation with non-constant coefficients

xy′′ + (α+ 1− x)y + ny = 0.

The generating function is

(1− t)−(α+1) exp(− tx

1− t
) =

+∞∑
n=0

Lαn(x)tn, |t| < 1.

upon comparing coefficients of tn in the two series expasions of the generating function,
we obtain

Lαn(x) =

n∑
k=0

(1 + α)n(−x)k

k!(n− k)!(1 + α)k
.

In special case α = 0, we have

L0
n(x) = Ln(x) =

n∑
k=0

n!(−x)k

(k!)2(n− k)!
=

k=n∑
k=0

Cnk
(−x)k

k!
,

from which we deduce that

L[Ln(x);x→ s] =
1

s
(1− 1

s
)n.

Note. The most important application of the Laguerre polynomials is in the
quantum-mechanical analysis of the hydrogen atom.

Corollary 1.1. The following identities hold true

1. etJ0(2
√
tx) =

+∞∑
n=0

Ln(x)tn

n!
.

2. e−tI0(2
√
tx) =

+∞∑
n=0

(−1)nLn(x)tn

n!
.

Proof. Part(1). In view of the Lerch’s theorem, by taking the Laplace transform of
both sides with respect to x, x > 0 after some manipulations we get the same result.
Part(2). In part (1), let us change t to −t and using the fact that J0(it) = I0(t) we
get

e−tJ0(2
√
−tx) = e−tI0(2

√
tx) =

+∞∑
n=0

Ln(x)(−t)n

n!
=

+∞∑
n=0

(−1)n
Ln(x)tn

n!
.
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Definition 1.6. We define the associated Laguerre transform of the function φ(x) as
follows

Ln,α[φ(x)] = ΦL(n, α) =

∫ +∞

0

e−xxαLαn(x)φ(x)dx,

and the inverse transform

L−1
n,α[ΦL(n, α)] = φ(x) =

+∞∑
n=0

n!

Γ(n+ α+ 1)
Lαn(x)ΦL(n, α).

In special case α = 0, we define the Laguerre transform of the function φ(x) as follows

Ln[φ(x)] = ΦL(n) =

∫ +∞

0

e−xLn(x)φ(x)dx,

and the inverse transform

L−1
n [ΦL(n)] = φ(x) =

+∞∑
n=0

Ln(x)ΦL(n).

Remark 1.1. Let us consider the generalized Laguerre differential equation in self-
adjoint form,

[(xα+1e−x)y′]′ + nxαe−xy = 0,

we note that
Ln,α[xy′′ + (α+ 1− x)y′] = −nLn,αy.

Thus, the Laguerre transform is suited for application to partial differential equations
containing terms of the type

Mψ = x
∂2ψ

∂x2
+ (α+ 1− x)

∂ψ

∂x
.

In special case α = 0 we have

Mψ = x
∂2ψ

∂x2
+ (1− x)

∂ψ

∂x
.

Lemma 1.7. The following identities hold true

+∞∑
n=0

Ln(ξ)Ln(x)θn =
1

1− θ
e−

θ(x+ξ)
1−θ I0(

2
√
θxξ

1− θ
).

+∞∑
n=0

Ln(ξ)Ln(x) = eξδ(x− ξ).

Proof. See [6].

Corollary 1.2. In the first part of the above Lemma, if we set θ = e−t we get the
following result

+∞∑
n=0

Ln(ξ)Ln(x)e−nt =
1

1− e−t
e
− e

−t(x+ξ)

1−e−t I0(
2
√
e−txξ

1− e−t
).
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2. Main Result (Exact solution to non-homogenous
time fractional PDE via the Joint Laplace-Laguerre
transforms)

The fractional derivatives are powerful technique for solving differential equations
resulted from several physical modeling such as the fractional diffusion-wave equa-
tion, for more details see Mainardi [10, 11], Das [8]. However, some other researchers
worked on the existence and uniqueness of solutions to some differential equations
with fractional order (see Podlubny [12]).
In [2, 5] the author has used operational method to find analytical solutions of cer-
tain partial fractional differential equations. In this section, the author implemented
the joint Laplace-Laguerre transform to construct exact solution for a variant of
the time fractional heat conduction equation with non-constant coefficients and non-
homogeneous initial condition.

Problem 1. Let us consider the following time fractional PDE with non-constant
coefficints

DC,α
t u(x, t) = xuxx + (λ+ 1− x)ux, 0 < α < 1, x, t > 0.

u(x, 0) = g(x), |u(x, t)| < ekx, k > 1, x→ +∞.

Solution. Let us define the joint Laplace-Laguerre transforms of the function u(x, t)
as follows

L[Ln,λu(x, t);x→ n]; t→ s] = Un,λ(n, s) =

∫ +∞

0

e−st[

∫ +∞

0

xλe−xLλn(x)u(x, t)dx]dt.

Note. It is worth mentioning that the joint Laplace-Laguerre transforms is very
similar to the two dimensional Laplace transforms [6].
We find that the joint transforms applied to the problem leads to the transformed
equation as below

sαUL,λ(n, s)− sα−1GL,λ(n) = −nUL,λ(n, s),

where

UL,λ(n, 0) = GL,λ(n) =

∫ +∞

0

e−ξξλLλn(ξ)g(ξ)dξ.

From which we deduce that

UL,λ(n, s) =
sα−1GL,λ(n)

sα + n
.

At this stage, taking the inverse joint Laplace-Lageurre transforms we obtain

u(x, t) =

+∞∑
n=0

n!Lλn(x)GL,λ(n)

Γ(λ+ n+ 1)
[L−1(

sα−1

sα + n
)].
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Let us recall the Laplace transform of the pair of functions [12],∫ +∞

0

e−stEα(−ntα)dt =
sα−1

sα + n
, Eα(z) =

+∞∑
n=0

zn

Γ(αn+ 1)
.

Note. Eα(z) stands for the Mittag-Leffler function. The Mittag-Leffler function is
the basis function of the fractional calculus. Several modifications of the Mittag-
Leffler functions are introduced for study of the fractional calculus [12].
Thus, we have

u(x, t) =

+∞∑
n=0

n!Lλn(x)GL,λ(n)

Γ(λ+ n+ 1)
Eα(−ntα),

and so we finally deduce that

u(x, t) =

∫ +∞

0

e−ξξλg(ξ)[

+∞∑
n=0

n!Lλn(x)Lλn(ξ)

Γ(λ+ n+ 1)
Eα(−ntα)]dξ.

Let us study the following special cases
1. λ = 0, α = 1, g(x) = δ(x− β), we get

u(x, t) =

∫ +∞

0

e−ξg(ξ)[

+∞∑
n=0

Ln(x)Ln(ξ)e−nt]dξ = e−β [

+∞∑
n=0

Ln(x)Ln(β)e−nt].

After using the above Corollary 1.2. we get finally

u(x, t) =
e−β

1− e−t
e
− e

−t(x+β)

1−e−t I0(
2
√
e−txβ

1− e−t
).

Note. It is easy to verify that u(x, 0) = δ(x− β), in view of Lemma 1.5. we have

u(x, 0) =

∫ +∞

0

e−ξδ(ξ − β)[

+∞∑
n=0

Ln(x)Ln(β)]dξ = e−β [

+∞∑
n=0

Ln(x)Ln(ξ)]

= e−β [eβδ(x− β)] = δ(x− β).

2. For α = 0.5, λ = 0, we have

u(x, t) =

+∞∑
n=0

n!Ln(x)GL(n)

Γ(n+ 1)
[L−1(

1√
s(
√
s+ n)

)] =

+∞∑
n=0

Ln(x)GL(n)en
2tErfc(n

√
t),

or

u(x, t) =

+∞∑
n=0

Ln(x)GL(n)en
2tErfc(n

√
t)

=

+∞∑
n=0

Ln(x)en
2tErfc(n

√
t)[

∫ +∞

0

e−ξg(ξ)Ln(ξ)dξ].
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Interchanging the order of the summation and integration, we arrive at

u(x, t) =

∫ +∞

0

e−ξg(ξ)[

+∞∑
n=0

Ln(x)Ln(ξ)en
2tErfc(n

√
t)]dξ,

in view of Lemma 1.5. we have

u(x, 0) =

∫ +∞

0

e−ξg(ξ)[

+∞∑
n=0

Ln(x)Ln(ξ)Erfc(n
√

0)]dξ

=

∫ +∞

0

e−ξg(ξ)eξδ(ξ − x) = g(x).

3. Conclusion

The article is devoted to study and applications of the Fourier, Laplace and Laguerre
transforms for solving certain singular integral equation, integral equation with re-
tarded argument, and time fractional heat equation wth non-constant coefficients.
The properties included in this article indicate the take-off points for advanced and
modern developments in this field.

4. Acknowledgments

The author would like to express his sincere thanks to the editor/s and referee/s
for careful reading of the manuscript and helpful suggestions that leads to the vast
improvement of the paper.

References

[1] A. Aghili, Special functions, integral transforms with applications, Tbilisi Math-
ematical Journal 12 (1) (2019) 33–44.

[2] A. Aghili, Space-fractional transport equation, Konuralp Journal of Mathematics,
8 (2) (2020) 304–312.

[3] A. Aghili, Some identities for Mellin, Kontorvich-Lebedev transforms with appli-
cations, Tbilisi Mathematical Journal 14 (2) (2021).

[4] A. Aghili, H. Zeinali, Advances in Laplace type integral transforms with applica-
tions, Indian Journal of Science and Technology 7 (6) (2014) 877–890.

[5] A. Aghili. New results involving Airy polynomials, fractional calculus and solution
to generalized heat equation. New trends in mathematical sciences. Vol. 3, 2015.



Fourier, Laguerre, Laplace Transforms with Applications 17

[6] A. Aghili, B. Salkhordeh Mogaddam, Laplace transform pairs of N-dimensions
and second order linear partial differential equations with constant coefficients,
Annales Mathematicae et Informaticae 35 (2008) 3—10, http://www.ektf.hu/ami

[7] A. Apelblat, Laplace Transforms and Their Applications, Nova science publishers
Inc., New York, 2012.

[8] S. Das, A note on fractional diffusion equations, Chaos, Solitons and Fractals 42
(2009) 2074–2079.

[9] B. Davies, Integral Transforms and Their Applications, Springer, USA, 2001.

[10] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equa-
tion, Appl. Math. Lett. (1996) 9:23–8.

[11] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solutions the space-time
fractional diffusion-wave equation, Fract. Calculus Appl. Anal. 2001:4:153–92.

[12] I. Podlubny., Fractional Differential Equations, Academic Press, San Diego, CA,
1999.

[13] R.S. Strichartz, A Guide to Distribution Theory and Fourier Transforms, World
Scientific Publishing Co.Pte. Ltd., 2003.

DOI: 10.7862/rf.2021.1

Arman Aghili
email: arman.aghili@gmail.com , armanaghili@yahoo.com

ORCID: 0000-0002-3758-2599
Faculty of Mathematical Sciences
Department of Applied Mathematics
University of Guilan
Rasht, P.O.Box 1841
IRAN

Received 01.08.2021 Accepted 15.09.2021


