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1. Introduction

The paper is dedicated to present some basic facts concerning the so-called regula-
ted functions. The class of those functions is very important in the theory of functions
of a real variable and is especially exploited in the description and characterization of
a lot of classes of functions of generalized bounded variation (cf. [1]). If is worthwhile
mentioning that instead of the term “regulated function” we use also sometimes the
term “regular function” [1].

It seems that the concept of a regulated function was introduced by G. Aumann
in his monograph [2]. In that monograph we can find the proof of the fact that the
space of regulated functions forms a Banach space but the presented proof of this
fact seems to be complicated and a bit incomprehensible. The excellent proof of the
mentioned fact was given in the famous book of J. Dieudonné [3]. Our presentation
of the theory of regulated functions is closely patterned on the mentioned book.
Nevertheless, the proof given in [3] contains a few gaps and errors which will be
improved and completed in the present paper.

As we mentioned previously the concept of a regulated function is used in inve-
stigations concerning a few classes of functions of generalized bounded variation (cf.
[5, 8, 9], for example). A comprehensive presentation of several classes of functions
of generalized bounded variation and their connections with the class of regulated
functions was presented in the book [1].
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Let us also indicate that the class of regulated functions was also used in the
study of stochastic integral equations [6]. Some investigations of regulated functions
were also conducted in the paper [4] in connection with the description of classes
of functions which are relatively compact in the space of regulated functions. On the
other hand it seems that the results obtained in that paper are not entirely satisfactory
from the view point of possible applications.

The paper has a review character and it can be viewed as an introduction to further
study of some problems related to the theory of regulated functions. The details will
appear elsewhere.

2. Auxiliary facts

The basic tool used in the paper is the concept of a metric space. Thus, let us
denote by (X, d) a metric space. If Y is a nonempty subset of X then it can be
regarded as a metric subspace of the space X with the metric induced by d.
For further purposes we will denote by B(x, r) the open ball (in the metric space X)
with the center at x and with radius r, respectively.
Throughout the paper we will use the standard concepts and notation of the theory
of metric space (cf. [3, 10]). For example, if A is a subset of the metric space X then
we denote by A its closure. Obviously, if A = A then A is called a closed set. If Y is
a subspace of the metric space X and A is a subset of Y such that A = Y , then we
say that A is dense in Y . Moreover, in the standard way we define the concept of a
relatively compact and compact set in the metric space X [3, 10].

Now, we recall a few classical facts which will be used in our study [3].

Theorem 2.1. Let (X, d) be a complete metric space. Then any nonempty, closed
subset of the space X is a complete subspace of X.

Theorem 2.2. Let (X, d) be a metric space and let A be a nonempty subset of X
such that A forms a complete subspace of X. Then the set A is closed.

In what follows we will discuss the concept of an isolated point and an isolated set
[11]. Namely, if (X, d) is a metric space and A is a subset of X then a point x ∈ A is
called an isolated point of A if it is not an accumulation point of A i.e., there exists
r > 0 such that B(x, r) ∩A = {x}.

A subset A of the metric space X is said to be an isolated set if each point of A
is an isolated point of the set A.
We have the following theorem.

Theorem 2.3. The set of all isolated points of a set A is an isolated set.

Proof. The proof requires the standard reasoning. Namely, denote by isA the set of
all isolated points of the set A. Let y ∈ isA. Then there exists r > 0 such that
B(y, r)∩A = {y}. Hence we infer that the ball B(y, r) does not contain points of the
set isA, except the point y. Indeed, it is a simple consequence of the fact that each
point of the set isA belongs to the set A. On the other hand the ball B(y, r) contains
only one point of the set A, the point y. Thus y is an isolated point of the set isA.
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For our further purposes the next theorem will be essential.

Theorem 2.4. Let (X, d) be a separable metric space. Then every isolated subset A
of the space X is at most countable.

In order to make the paper self-contained we give the proof of this theorem (cf.
[11]).

Proof. Let W = {y1, y2, . . .} be an at most countable dense subset of X. For arbitrarily
fixed point x ∈ A denote by rx a positive number such that B(x, rx)∩A = {x}. Next,
for an arbitrary x ∈ A we will denote by n(x) the least natural number such that
yn(x) ∈ B(x, 1

2rx). In this way we define the function n : A→ N, where N denotes the
set of natural numbers.
We show that this function is an injection. To this end fix arbitrary x, x′ ∈ A and
assume that n(x) = n(x′). This means that yn(x) = yn(x′). Let us put

y = yn(x) = yn(x′).

Then we have that y = yn(x) ∈ B(x, 1
2rx) and, similarly y = yn(x′) ∈ B(x′, 1

2rx′).
Hence we obtain

d(x, y) <
1
2
rx, d(x′, y) <

1
2
rx′ .

Consequently, we get

d(x, x′) 6 d(x, y) + d(y, x′) <
1
2

(rx + rx′).

Suppose that rx 6 rx′ . Then the above inequality implies that d(x, x′) < rx′ . This
allows us to deduce that

x ∈ B(x′, rx′) ∩A = {x′},

which gives that x = x′.
In the case when rx′ 6 rx, the similar reasoning leads to the same conclusion. Finally,
we conclude that the function n = n(x) is an injective mapping. This means that
the set A has the same cardinality as a certain subset of the set N. The proof is
complete.

From the above theorem we obtain the following useful corollary.

Corollary 2.5. Let (X, d) be a metric space. If there exists an uncountable subset
A of X and a number ε > 0 such that for arbitrary x, y ∈ A, x 6= y, we have that
d(x, y) > ε, then the space X is not separable.

Proof. In view of the assumption we infer that the set A is isolated. Indeed, for an
arbitrary x ∈ A we have

B(x, ε) ∩A = {x}.
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If X would be separable then in view of Theorem 2.4 we have that A is at most
countable. The obtained contradiction completes the proof.

To illustrate the usefulness of Corollary 2.5 let us consider the following example.

Example 2.6. Consider the Banach sequence space l∞ consisting of all real bounded
sequences and normed with help of the supremum norm. Then the set A of all sequ-
ences with terms equal 0 or 1 is uncountable. Moreover, for x, y ∈ A, x 6= y, we have
d(x, y) = 1. Hence, in view of Corollary 2.5 we conclude that l∞ is not separable.

The next theorem will play a crucial role in our considerations.

Theorem 2.7. Let A,B be nonempty subsets of the metric space X such that A ⊂ B.
Assume that for an arbitrary x ∈ X the following condition is satisfied:

x ∈ B if and only if there exists a sequence (an) ⊂ A such that an → x. (D)

Then the set B is closed and A is dense in the set B.

Proof. Take b ∈ B. Then there exists a sequence (bn) ⊂ B such that bn → b.
Since b1 ∈ B, we can find a sequence (a1

n) ⊂ A such that a1
n → b1.

Further, since b2 ∈ B, we can find a sequence (a2
n) ⊂ A such that a2

n → b2.
Similarly, for an arbitrary natural number k, taking the term bk ∈ B, we can find a
sequence (akn) ⊂ A such that akn → bk as n→∞.

Now, fix arbitrarily ε > 0 and choose n1 ∈ N such that d(a1
n1 , b1) < ε

2 . Next, we
choose n2 ∈ N, n2 > n1, such that d(a2

n2 , b2) < ε
2 and so on.

Thus we can find a sequence (aknk) ⊂ A such that d(aknk , bk) < ε
2 for k = 1, 2, . . . .

Hence we got

d(aknk , b) 6 d(aknk , bk) + d(bk, b) < ε

for k big enough. This implies that aknk → b if k → ∞. Hence, in view of condition
(D) we obtain that b ∈ B. This means that the set B is closed. The conclusion that
A is dense in B is obvious.

In the sequel of the paper we will work in the function space B([a, b]) consisting
of all real functions defined and bounded on the interval [a, b]. Recall that B([a, b])
forms a Banach space under the supremum norm which will be denoted by ‖·‖∞ i.e.,
for f ∈ B([a, b]) we put

‖f‖∞= sup
{
|f(x)| : x ∈ [a, b]

}
.

The space B([a, b]) is not separable. This space is very convenient in numerous
investigations conducted in the theory of real functions and functional analysis. Let
us pay our attention to two important subspaces of the space B([a, b]).

Namely, consider the subset C([a, b]) of the space B([a, b]) which consists of all
functions continuous on the interval [a, b]. It is well-known that C([a, b]) forms a closed
subset of the space B([a, b]) under the supremum norm. Thus C([a, b]) is the Banach
space with the norm ‖·‖∞.
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Another important subspace of B([a, b]) is formed by the so-called step functions.
To describe that space we introduce first the definition of the concept of a step func-
tion.

Definition 2.8. A function f : [a, b] → R is called a step function if there exists a
finite sequence {x0, x1, . . . , xn} ⊂ [a, b] such that a = x0 < x1 < x2 < . . . < xn = b
and such that the function f is constant on every interval (xi−1, xi) (i = 1, 2, . . . , n).

The set of all step functions on the interval [a, b] will be denoted by S([a, b]).
Let us observe that S([a, b]) ⊂ B([a, b]). Moreover, the set S([a, b]) is a linear space
over the field of real numbers R with the usual operations of the addition of functions
and the multiplication of a function by a real scalar. To prove this statement let
us take arbitrary functions f, g ∈ S([a, b]). Then there exist two finite sets X =
{x0, x1, . . . , xn}, Y = {y0, y1, . . . , ym} with the property a = x0 < x1 < . . . < xn = b,
a = y0 < y1 < . . . < ym = b and such that the function f is constant on each interval
(xi−1, xi) for i = 1, 2, . . . , n and the function g is constant on each interval (yj−1, yj)
for j = 1, 2, . . . ,m. Take the union X ∪ Y and arrange the elements of this set into
an increasing sequence Z = {z0, z1, . . . , zk} in such a way that if some two elements
of the sets X and Y are the same, then we treat them as one point of the set Z. Thus

a = z0 < z1 < . . . < zk = b.

Notice that the functions f and g are constant on each interval (zi−1, zi) for i =
1, 2, . . . , k. This implies that f +g is also constant on each of the mentioned intervals.
Thus f + g ∈ S([a, b]).
Similarly (even in an easier manner) we show that αf ∈ S([a, b]) for any α ∈ R.
Finally we conclude that S([a, b]) is a linear subspace of the space B([a, b]). This
justifies our earlier assertion.

Now, we show that the space S([a, b]) is not complete under the norm induced
from the space B([a, b]) i.e., under the supremum norm ‖·‖∞.
To this end let us take into account the following example.

Example 2.9. Consider the function f ∈ B([0, 1]) defined in the following way

f(x) =


1

n+1 for x ∈
[

1
n+1 ,

1
n

)
, n = 1, 2, . . .

1 for x = 1
0 for x = 0.

Observe that f is not a step function since f is not constant on finite family of open
subintervals of the interval [0, 1]. Thus f /∈ S([a, b]).
Next, let us take the sequence (fn) of functions defined for each fixed natural number
n in the following way

fn(x) =


1
k+1 for x ∈

[
1
k+1 ,

1
k

)
, k = 1, 2, . . . , n

1 for x = 1

0 for x ∈
[
0, 1

n+1

)
.
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It is easily seen that fn ∈ S([0, 1]) for any n ∈ N. Moreover, for a fixed n we have

‖f − fn‖∞ =
1

n+ 2
.

Hence we deduce that the sequence (fn) converges to the function f in the topology
generated by the norm of the space B([0, 1]). Thus f is a cluster point of the set
S([0, 1]). Since f /∈ S([0, 1]), we infer that the set S([0, 1]) is not a closed set in the
space B([0, 1]). On the base of Theorem 2.2 this leads to the conclusion that the space
S([0, 1]) is not complete

(
under the supremum norm ‖ · ‖∞

)
.

3. Existence of finite limits of a function via the Cau-
chy condition

It is well-known [3, 7] that the Cauchy condition plays an essential role in mathe-
matical and functional analysis. Obviously, it is very useful in the elementary theory
of sequences in metric space, in the theory of series in Banach space and in the the-
ory of real functions [7]. The fundamental importance of the concept of the Cauchy
condition relies on the creating of the possibility of the defining of the completeness
of a metric space.

In this section we focus on the formulation of the Cauchy condition for real func-
tions, since this condition enables us to obtain handy tools in the theory of regulated
functions.
Thus, let us assume that D is a nonempty subset of the set of real numbers R and let
x0 (x0 ∈ R) be an accumulation point of the set D.
Moreover, let f : D → R be a given function.

Definition 3.1. We say that the function f satisfies at the point x0 the Cauchy
condition if

∀
ε>0

∃
δ>0

∀
t,s∈D
t6=x0
s 6=x0

[
|t− x0| < δ, |s− x0| < δ ⇒ |f(t)− f(s)| < ε

]
.

Similarly, let us assume now that x0 (x0 ∈ R) is a left hand point of accumulation
of the set D.

Definition 3.2. We say that the function f : D → R satisfies at the point x0 the left
hand Cauchy condition if

∀
ε>0

∃
δ>0

∀
t,s∈D
t<x0
s<x0

[
x0 − t < δ, x0 − s < δ ⇒ |f(t)− f(s)| < ε

]
.

In the same way we can formulate the definition of the concept of the right hand
Cauchy condition. Namely, assume that x0 (x0 ∈ R) is a right hand point of accumu-
lation of the set D.
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Definition 3.3. We say that the function f : D → R satisfies at the point x0 the
right hand Cauchy condition if

∀
ε>0

∃
δ>0

∀
t,s∈D
t>x0
s>x0

[
t− x0 < δ, s− x0 < δ ⇒ |f(t)− f(s)| < ε

]
.

It is well known [7, 11] that the existence of a finite limit of the function f : D → R
is equivalent to the Cauchy condition. We formulate this result in details.

Theorem 3.4. Assume that D is a nonempty subset of the set R and x0 (x0 ∈ R) is
an accumulation point of the set D (a left hand accumulation point of D; a right hand
accumulation point of D, respectively). Let f : D → R be a given function. Then:

(i) The finite limit lim
x→x0

f(x) does exist if and only if the function f satisfies the

Cauchy condition at the point x0.

(ii) The finite left hand limit lim
x→x−0

f(x) does exist if and only if the function f

satisfies the left hand Cauchy condition at the point x0.

(iii) The finite right hand limit lim
x→x+0

f(x) does exist if and only if the function f

satisfies the right hand Cauchy condition at the point x0.

Remark 3.5. Observe that the Cauchy condition for the function f : D → R can
be also formulated in the case when we assume that −∞ or +∞ is the accumulation
point of the set D. Then we can also formulate a suitable version on the existence of
finite limits of the function f at −∞ or at +∞, similarly as in the case of Theorem
3.4. We omit details.

4. Regulated functions and their properties

In this section we will discuss the concept of a regulated function. To make our
presentation more transparent we restrict ourselves to real functions i.e., to functions
with values in the set of real numbers R.
The possible generalization to the case of functions with values in an arbitrary Banach
space will be discussed in the next section.

Definition 4.1. A function f ∈ B([a, b]) is called a regulated function if it has one-
sided limits at every point x ∈ (a, b) and if it has the right hand limit at x = a and
the left hand limit at x = b.

Other words, f is regulated on the interval [a, b] if for each x ∈ (a, b) there exist
limits f(x−), f(x+) and there exist limits f(a+), f(b−).

The class of all regulated functions on the interval [a, b] will be denoted by R([a, b]).
Observe that the assumption requiring that f is a member of the space B([a, b])

implies that the limits indicated in Definition 4.1 are finite.
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Now, we show that the concept of a regulated function can be presented in other way
if we dispense with the assumption that f ∈ B([a, b]).
Indeed, we have the following theorem.

Theorem 4.2. Let f : [a, b] → R be a function with the property that for each
x0 ∈ [a, b] there exist finite one-sided limits f(x0−) and f(x0+) of the function f at
the point x0 (in the case x0 = a we assume that there exists the finite one-sided limit
f(a+) and similarly, there exists a finite one-sided limit f(b−) in the case x0 = b).
Then the function f is bounded on the interval [a, b].

Proof. Suppose contrary i.e., the function f is not bounded on the interval [a, b]. In
order to fix our attention let us assume that f is not bounded from above on [a, b].
Then there exists a sequence (xn) ⊂ [a, b] such that f(xn) > n for n = 1, 2, . . . . Since
the sequence (xn) is bounded, in view of Bolzano-Weierstrass theorem we infer that
there exists a subsequence (xkn) converging to some point x0 ∈ [a, b]. Then we have

f(xkn) > kn

for n = 1, 2, . . . . Observe that we can assume that we can select the subsequence
(xkn) in such a way that xkn 6= x0 for n = 1, 2, . . . . If this would be not possible then
xkn 6= x0 only for finite number of terms of the sequence (xkn) i.e., there would be
exist a subsequence (xpn) of the sequence (xkn) such that xpn = x0 for n = 1, 2, . . . .
Then

f(xpn) = f(x0) > pn

for n = 1, 2, . . . . Hence, taking into account that pn → ∞ for n → ∞, we infer that
f(x0) =∞.
The obtained contradiction shows that we can assume that xkn 6= x0 for n = 1, 2, . . ..

Next, let us notice that we can select a subsequence (xln) of the sequence (xkn)
such that xln < x0 for n = 1, 2, . . . or, we can select a subsequence (xqn) of (xkn)
such that xqn > x0 for n = 1, 2, . . . . Obviously, both sequences (xln) and (xqn)
are converging to x0. In order to fix our attention let us assume that there exists
a subsequence (xln) of the sequence (xkn) such that xln < x0 (n = 1, 2, . . .) and
xln → x0. Then we have

f(xln) > ln

for n = 1, 2, . . . . Hence we get that

lim
n→∞

f(xln) =∞.

But this contradicts to the assumption that there exists a finite left hand limit f(x0−).
Obviously in the case x0 = a or x0 = b the proof is similar.

The above theorem shows that in the definition of the regulated function f instead
of the assumption that f ∈ B([a, b]) we can equivalently assume that the function
f : [a, b]→ R has finite one-sided limits at every point of the interval [a, b].



On regulated functions 29

In what follows let us note that we have the inclusion R([a, b]) ⊂ B([a, b]) which
follows immediately from Definition 4.1. Further, observe that S([a, b]) ⊂ R([a, b])
which is a simple consequence of the definitions of a step function and a regulated
function. Obviously, the converse inclusion is not valid. Indeed, let us consider again
Example 2.9. Then we see that the function f considered in that example is regulated
but it is not a step function.

Now, we show that the set R([a, b]) forms a linear subspace of the space B([a, b]).
To prove this fact take arbitrary functions f, g ∈ R([a, b]) and fix a point x0 ∈
(a, b). Then there exist the limits f(x0−), f(x0+), g(x0−), g(x0+). By the standard
theorems of mathematical analysis we infer that

(f + g)(x0−) = lim
x→x0−

(
f(x) + g(x)

)
= lim
x→x0−

f(x) + lim
x→x0−

g(x) = f(x0−) + g(x0−).

Similarly we show that there exist (finite) limits (f + g)(x0+) and (f + g)(a+), (f +
g)(b−).
Thus f + g ∈ R([a, b]).
The proof showing that α · f ∈ R([a, b]) for α ∈ R is also standard.
Thus the set R([a, b]) of regulated functions on the interval [a, b] has the algebraic
structure of a linear space over the field R.

Moreover, the space R([a, b]), as a subspace of the Banach space B([a, b]), forms a
normed space with respect to the supremum norm ‖ · ‖∞. However, the proof of the
fact, that this norm is complete (i.e., that R([a, b]) is a Banach space under the norm
‖ · ‖∞), is not easy [3].
The key role in the announced proof is played by the following theorem.

Theorem 4.3. Let f ∈ B([a, b]). Then f ∈ R([a, b]) if and only if there exists a
sequence (fn) of step functions on the interval [a, b]

(
i.e., (fn) ⊂ S([a, b])

)
such that it

is uniformly convergent on the interval [a, b] to the function f
(
equivalently: lim

n→∞
‖fn−

f‖∞ = 0
)
.

Proof. At first, we prove the part ⇒.
Thus, take a function f ∈ R([a, b]). Fix arbitrarily a natural number n and x ∈ [a, b].
Assume first that x ∈ (a, b). Then, taking into account Theorem 3.4 we deduce that
there exists an interval

(
y(x), z(x)

)
⊂ [a, b] such that x ∈

(
y(x), z(x)

)
and for arbitrary

t, s ∈
(
y(x), x

)
we have that |f(t)− f(s)| 6 1

n and, for arbitrary t, s ∈
(
x, z(x)

)
we

have that |f(t)− f(s)| 6 1
n .

Similarly, taking x = a we can meet an interval
[
a, z(a)

)
⊂ [a, b] such that for t, s ∈(

a, z(a)
)

we have |f(t)−f(s)| 6 1
n . In the same way we find an interval

(
y(b), b

]
⊂ [a, b]

such that |f(t)− f(s)| 6 1
n for t, s ∈

(
y(b), b

)
.

Further, consider the following family of the intervals:{(
y(x), z(x)

)}
x∈(a,b)

∪
{[
a, z(a)

)
,
(
y(b), b

]}
.

This family forms an open covering of the interval [a, b] (in the topological space
formed by the interval [a, b] with the natural metric). Since the space [a, b] is compact
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we can select a finite family of intervals{(
y(xi), z(xi)

)}
16i6m

∪
{[
a, z(a)

)
,
(
y(b), b

]}
,

which is a subcovering of the interval [a, b].
Next, let (cj)06j6k be a strictly increasing finite sequence formed by the numbers

a, b, z(a), y(b), xi, y(xi), z(xi) (i = 1, 2, . . . ,m). Obviously c0 = a, ck = b.
Observe that each of the intervals (c0, c1), (c1, c2), . . . , (ck−1, ck) is located in a certain
of the selected intervals which form a finite covering of [a, b]. On the other hand
excluding the first and the last interval, any of such an interval is contained either
in an interval

(
y(xi), xi

)
or in an interval

(
xi, z(xi)

)
. Similar assertion holds for the

intervals [c0, c1), (ck−1, ck]. Thus, for arbitrary t, s ∈ (cj−1, cj) (j = 1, 2, . . . , k) we
have that |f(t)− f(s)| 6 1

n .
Now, for an arbitrarily fixed j ∈ {1, 2, . . . , k}, let us define a function fn to be

equal to the value of the function f at an arbitrary point in the interval (cj−1, cj).
Moreover, we put fn(cj) = f(cj) for j = 0, 1, . . . , k.
In this way we obtain a step function fn such that

‖fn − f‖∞ 6
1
n

for n = 1, 2, . . . . Hence we obtain that lim
n→∞

‖fn − f‖∞ = 0.

Now, we are going to prove the implication ⇐.
To this end assume that f ∈ B([a, b]) is a function being the limit of uniformly
convergent sequence (fn) of step functions on the interval [a, b]. Fix an arbitrary
number ε > 0. Then we can find a natural number n such that

‖fn − f‖∞ 6
ε

3
. (4.1)

Keeping in mind the fact that fn is a step function we deduce that for each x ∈ (a, b)
there exists an interval (c, d) containing x

(
and, for x = a, there exists an interval

(a, c), whereas for x = b there exists an interval (d, b)
)

such that

|fn(t)− fn(s)| 6 ε

3
, (4.2)

if t, s ∈ (c, x) or if t, s ∈ (x, d) (the situation is even simpler in the case of end
intervals).

Further, let us take an arbitrary number x ∈ [a, b] and next, let us choose an
interval (c, x) or (x, d) such that for t, s ∈ (c, x)

(
or for t, s ∈ (x, d)

)
the inequality

(4.2) is satisfied.
In order to fix our attention assume that (c, x) is the desired interval. Then, for
t, s ∈ (c, x), in view of (4.1) and (4.2) we get

|f(t)− f(s)| 6 |f(t)− fn(t)|+ |fn(t)− fn(s)|+ |fn(s)− f(s)| 6 ε

3
+
ε

3
+
ε

3
= ε.
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From the above inequality and Theorem 3.4 we conclude that there exists the left
hand limit of the function f at the point x.
In the similar way we show that there exists the right hand limit f(x+).
This means that f ∈ R([a, b]).

Finally, taking into account the above proved theorem and Theorem 2.7 we infer
that R([a, b]) is a closed subset of the space B([a, b]). Since the space B([a, b]) is
complete, on the base of Theorem 2.1 we deduce that the space of regulated functions
R([a, b]) is complete.
We formulate the above statement as the separated theorem.

Theorem 4.4. The space of regulated functions R([a, b]) with the supremum norm is
a Banach space.

Observe that the space R([a, b]) is not separable. Indeed, fix arbitrarily ε > 0. For
a fixed number y ∈ [a, b] define the function fy in the following way

fy(x) =

{
ε for x = y

0 for x ∈ [a, b], x 6= y.

Obviously fy ∈ R([a, b]). Further notice that for y1, y2 ∈ [a, b], y1 6= y2, we have
that ‖fy1 − fy2‖∞ = ε. Hence, by virtue of Corollary 2.5 we obtain our claim. In
what follows we pay our attention to points of discontinuity of regulated functions.
At the beginning we recall the classification of points of discontinuity accepted in
mathematical analysis [1, 7, 11].
Assume that f : [a, b]→ R is a given function.

Definition 4.5. Let x0 ∈ [a, b] be a point of discontinuity of the function f . We say
that x0 is a point of discontinuity of the first kind if there exist finite one-sided limits
f(x0−) = lim

x→x0−
f(x), f(x0+) = lim

x→x0+
f(x). In the case x0 = a or x0 = b we assume

the existence of finite limits f(a+), f(b−), but it has to be satisfied the condition
f(a+) 6= f(a), f(b−) 6= f(b), respectively.

Observe that if x0 is a point of discontinuity of the first kind then the following
situations may occur:

1◦ f(x0−) 6= f(x0+).
In this case the point of discontinuity of the function f is called a jump.

2◦ f(x0−) = f(x0+) 6= f(x0).
In such a case we will say that f has at the point x0 a removable discontinuity.

Definition 4.6. A point of discontinuity x0 is called a point of discontinuity of the
second kind if it is not a point of discontinuity of the first kind i.e., at least one of the
one-sided limits is unbounded or does not exist.

Now, let us observe that if f ∈ B([a, b]) then f may have points of discontinuity
of the first kind only. This implies that a regulated function on the interval [a, b] has
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only points of discontinuity of the first kind. Thus, assume that f ∈ R([a, b]). Let us
accept the following notation [1]:

D(f) =
{
x ∈ [a, b] : f is discontinuous at x

}
,

D0(f) =
{
x ∈ [a, b] : f has a removable discontinuity at x

}
,

D1(f) =
{
x ∈ [a, b] : f has a jump at x

}
.

Observe that if a ∈ D(f)
(
b ∈ D(f)

)
then a ∈ D0(f)

(
b ∈ D0(f)

)
.

It is worthwhile mentioning that if f is a monotone function on the interval [a, b]
then f has only points of discontinuity being jumps i.e., D(f) = D1(f). On the other
hand it is well known that the set of points of discontinuity of each function which is
monotone on the interval [a, b] is at most countable.
The similar result holds also for any function f ∈ R([a, b]). Indeed, we have the
following theorem [1].

Theorem 4.7. The set of all points of discontinuity of any regulated function on the
interval [a, b] is at most countable.

The proof of this result is given in [1] and we will not repeat it in this paper.
However, we provide the proof of an analogous result in the next section for regulated
functions on the interval [a, b] with values in an arbitrary separable Banach space.

At the end of this section we provide a few facts indicating some special classes of
regulated functions.
First of all let us pay our attention to the class of functions of bounded variation on
the interval [a, b] (cf. [1]). Let us denote this class by BV ([a, b]).
Notice that S([a, b]) ⊂ BV ([a, b]) ⊂ B([a, b]). Similarly as in the case of step functions
it is easily seen that BV ([a, b]) is a linear space over the field R (cf. [1]). Moreover,
the space BV ([a, b]) is not complete with respect to the supremum norm ‖ · ‖∞.

Further, let us pay attention to the fact that by the classical Jordan decomposition
theorem we have that BV ([a, b]) ⊂ R([a, b]).

The next important generalization of the space BV ([a, b]) is the class of functions
having the so-called bounded Wiener variation of order p (cf. [1]).
To define this class, fix a number p ∈ [1,∞). For a partition P = {x0, x1, . . . , xm} of
the interval [a, b], where a = x0 < x1 < . . . < xm = b, we define the Wiener variation
(of order p) of a function f ∈ B([a, b]) with respect to the partition P by putting

V arWp
(
f, P ; [a, b]

)
=

m∑
i=1

∣∣f(xi)− f(xi−1)
∣∣p.

The Wiener variation of order p of f is defined as

V arWp (f) = V arWp
(
f ; [a, b]

)
= sup

{
V arWp

(
f, P ; [a, b]

)
: P ∈ P([a, b])

}
,

where the symbol P([a, b]) stands for the set of all partitions of the interval [a, b].
A function f

(
f ∈ B([a, b])

)
is called of bounded p-th variation if V arWp (f) <∞.
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By the symbol WBVp([a, b]) we denote the class of all functions of bounded Wiener
p-th variation.

It can be shown [1] that WBVp([a, b]) is a linear space and BV ([a, b]) ⊂
WBVp([a, b]) ⊂ R([a, b]) for any p > 1, but there are regulated functions which
do not belong to the space WBVp([a, b]).

In order to introduce the next class of functions denote by φ the so-called Young
function i.e., φ : R+ → R+, φ(0) = 0, φ(t) > 0 for t > 0, φ is continuous and convex
on R+. Then, we can define the Wiener-Young variation of a function f ∈ B([a, b])
with respect to a partition P of the interval [a, b] by putting

V arWφ (f, P ) =
m∑
i=1

φ
(
|f(xi)− f(xi−1)|

)
.

The formula

V arWφ (f) = sup
{
V arWφ (f, P ) : P ∈ P([a, b])

}
defines the Wiener-Young variation of f on the interval [a, b].

If we denote by WBVφ([a, b]) the class of functions of bounded Wiener-Young
variation on [a, b] then it can be shown that WBVφ([a, b]) ⊂ R([a, b]) and⋃

φ∈Φ

WBVφ([a, b]) = R([a, b]),

where Φ denotes the class of all Young functions [8, 9].

5. Generalizations

This section is devoted to show that the concept of a regulated function can be
introduced in a more general setting.
Namely, let (E, ‖ · ‖) be a real Banach space. We will denote by B(x, r) the open
ball in E centered at x and with radius r. The symbol B([a, b], E) will denote the
class of all functions acting from [a, b] into E which are bounded on [a, b]. Obviously
B([a, b], E) forms a linear space and it can be equipped with the classical supremum
norm ‖ · ‖∞ defined for f ∈ B([a, b], E) in the following way

‖f‖∞ = sup
{
‖f(x)‖: x ∈ [a, b]

}
.

The space B([a, b], E) is a Banach space.
Similarly, we can define the Banach space C([a, b], E) consisting of all functions

defined and continuous on the interval [a, b] with values in E and with supremum
norm ‖ · ‖∞.
Finally, let us consider the set R([a, b], E) consisting of all regulated functions f :
[a, b] → E. In other words, f ∈ R([a, b], E) if f ∈ B([a, b], E) and the function f has
one-sided limits at every point x ∈ (a, b) and if it has the right hand limit f(a+) and
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the left hand limit f(b−).
In the same way as in Section 4 we can show that the set R([a, b], E) forms a linear
space with usual operations on functions. Moreover, if we introduce in R([a, b], E)
the supremum norm ‖ · ‖∞ then we can prove that R([a, b], E) is a Banach space.
The proof of this theorem can be conducted exactly in the same way as the proof of
Theorem 4.4 and, similarly as before, the space of step functions S([a, b], E) plays the
key role in argumentation of that proof. Therefore, we will not repeat details of the
proof.

In this section we restrict ourselves to prove an analogon of Theorem 4.7 in the
case of the space of regulated functions R([a, b], E). To adopt some reasonings utilized
in the proof of Theorem 4.7 given in [1], we will assume that the Banach space E
is separable. Nevertheless, we provide here the details of the complete proof of the
announced theorem to fill in some gaps occuring in the suitable proof given in [1].

Theorem 5.1. Let E be a separable Banach space. Then the set of all points of
discontinuity of an arbitrary regulated function f ∈ R([a, b], E) is at most countable.

Proof. Observe that we can restrict ourselves to the set of points of discontinuity
of f belonging to the interval (a, b), since the set of points of discontinuity of f on
the interval [a, b] can differ only of at most two points. Further, consider the average
function f of f defined in the following way

f(x) =

{
1
2

(
f(x−) + f(x+)

)
for x ∈ D1(f)

f(x) otherwise.

Obviously we have that D(f) = D(f), D0(f) = D0(f), D1(f) = D1(f), where the
sets D(f), D0(f) and D1(f) were defined earlier. Thus, it is sufficient to show that
the set D(f) is at most countable.

To this end assume first that x0 ∈ D0(f). Then f(x0−) = f(x0+) 6= f(x0). Take
the number

ε =
1
2

∥∥f(x0)− f(x0+)
∥∥.

Taking into account the definition of the one-sided limit of a function we can find a
number δ > 0 such that for x ∈ (x0 − δ, x0) we have

‖f(x)− f(x0−)‖ < ε (5.1)

and for x ∈ (x0, x0 + δ) we have

‖f(x)− f(x0+)‖ < ε. (5.2)

Now, let us observe that for x ∈ (x0 − δ, x0) ∪ (x0, x0 + δ) the following inequality
holds

‖f(x)− f(x0)‖ > ε. (5.3)
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To prove this inequality suppose contrary. Then, for some x ∈ (x0−δ, x0)∪(x0, x0 +δ)
we have

‖f(x)− f(x0)‖ 6 ε. (5.4)

Now, in view of (5.1), (5.2) and (5.4), we get

‖f(x0)− f(x0+)‖ 6 ‖f(x0)− f(x))‖+ ‖f(x)− f(x0+)‖ < 2ε,

which contradicts to the choice of the number ε.
This shows that in the ball B

(
(x0, f(x0)), r

)
in the Banach space [a, b]×E (with the

maximum norm, for example), where r = min{δ, ε}, there are no points of the graph
of the function f except the point (x0, f(x0)). Thus the point (x0, f(x0)) is an isolated
point of the graph of the function f (or f).

Now, assume that x0 ∈ D1(f). Then f(x0−) 6= f(x0+). Let us put ε = 1
4‖f(x0+)−

f(x0−)‖. Taking into account the definition of one-sided limits let us find the number
δ > 0 such that for x ∈ (x0 − δ, x0) the following inequality is satisfied

‖f(x)− f(x0−)‖ < ε, (5.5)

while for x ∈ (x0, x0 + δ) we have

‖f(x)− f(x0+)‖ < ε. (5.6)

Further, observe that for x ∈ (x0 − δ, x0) ∪ (x0, x0 + δ) the following inequality holds

‖f(x)− f(x0)‖ > ε. (5.7)

Indeed, suppose contrary. Then, for some x ∈ (x0 − δ, x0) ∪ (x0, x0 + δ) we have

‖f(x)− f(x0)‖ 6 ε. (5.8)

Then, linking inequalities (5.5), (5.6) and (5.8) we get

‖f(x0)− f(x0+)‖ 6 ‖f(x0)− f(x)‖+ ‖f(x)− f(x0+)‖ < ε+ ε = 2ε. (5.9)

On the other hand, we have∥∥f(x0)− f(x0+)
∥∥ =

∥∥∥∥1
2

(
f(x0−) + f(x0+)

)
− f(x0+)

∥∥∥∥ =
1
2

∥∥f(x0−)− f(x0+)
∥∥ = 2ε.

Thus we obtain the contradiction with inequality (5.9). This proves inequality (5.7).
Further, consider the ball B

(
(x0, f(x0)), r

)
in the space [a, b] × E (considered

earlier), where r = min{δ, ε}. Then from inequality (5.7) we conclude that this ball
contains no points of the graph of the function f except the point (x0, f(x0)). Hence
we deduce that (x0, f(x0)) is an isolated point of the function f .

Summing up, we proved that the set H of all points of the graph of the function
f , which are the centers of the described balls, consists of only isolated points. Thus,
according to the earlier given definition, the set H is an isolated set in the space
[a, b]×E with the maximum norm. Obviously the mentioned space is separable. Hence,
in view of Theorem 2.4 we infer that the set H is at most countable. This leads to
the final conclusion that the set D(f)

(
and the set D(f)

)
is at most countable.
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[4] D. Fraňková, Regulated functions, Math. Bohemica 116 (1991) 20–59.

[5] C. Goffman, G. Moran and D. Waterman, The structure of regulated functions,
Proc. Amer. Math. Soc. 57 (1976) 61–65.

[6] R. Łochowski, R. Ghomrasni, The play operator, the truncated variation and the
generalization of the Jordan decomposition, Math. Appl. Sci. 38 (2015) 403–419.

[7] S. Łojasiewicz, An Introduction to the Theory of Real Functions, J. Wiley and
Sons, Chichester 1988.

[8] F. Prus-Wiśniowski, Some remarks on functions of bounded ϕ-variation, Ann.
Soc. Math. Pol., Comment. Math. 30 (1990) 147–166.

[9] F. Prus-Wiśniowski, Continuous functions of bounded ϕ-variation, Ann. Soc.
Math. Pol., Comment. Math. 31 (1991) 127–146.

[10] W. Rudin, Principles of Mathematical Analysis, McGraw Hill, New York 1964.

[11] R. Sikorski, Funkcje Rzeczywiste, PWN, Warsaw 1958 (in Polish).

DOI: 10.7862/rf.2017.2

Józef Banaś
email: jbanas@prz.edu.pl

Department of Nonlinear Analysis
Rzeszów University of Technology
al. Powstańców Warszawy 8
35-959 Rzeszów
POLAND

Mariola Kot
email: m kot@prz.edu.pl

Department of Nonlinear Analysis
Rzeszów University of Technology
al. Powstańców Warszawy 8
35-959 Rzeszów
POLAND

Received 2.12.2016 Accepted 25.02.2017


