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Abstract: This work considers a population divided into two groups
according to the adoption of contraception. The campaign in favour of
contraception is modelled as a bounded optimal control problem within
the framework of the logistic and the Malthusian models of population
dynamics. The control is the fraction of non-adopters successfully ed-
ucated on contraception. The objective is to maximise the number of
non-adopters successfully educated on contraception over time. The op-
timisation problem is solved using the Pontryagin’s maximum principle
and the parameters of the model are estimated using the method of least
squares.
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1. Introduction

The subject of population expansion and control has received considerable attention
in the literature (for instance, [23, 36]). The need to control the rate of population
expansion has led to the introduction of several programmes on the use of contra-
ceptives in many developing countries [21]. For example, in Nigeria (with which the
authors are acquainted), the ’Get it together’ campaign has been introduced to sen-
sitise the masses on the use of contraceptives. The commonly used contraceptives
include condom, diaphragm, vaginal cream/foaming tablets, oral contraceptives or
pills, Intra-Uterine Device (IUD), implant and sterilization. These contraceptives are
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accepted globally for birth control [9, 21]. There is no need to stress the different
contraceptives and how it has been accepted worldwide as this can be found else-
where [9, 26, 35, 36]. The practice of birth control in Japan, Russia, Puerto Rico,
China, India and Cameroon has been reported in the literature [26]. The campaign
on birth control is usually inexpensive for the social crusaders1 (that is, the birth
control advocates). This is because fertility control are subsidized in both high- and
low-income countries [28]. On the whole condoms are distributed inexpensively and
IUD insertion costs little [8]. This ought to be enough motivation for many adults
to adopt the use of contraceptives. Regardless of the campaign to create awareness
on use of contraceptives some individuals still hold on to their belief and may get
involved in unprotected sex so much so that it may result to unplanned births, sex-
ually transmitted diseases and child abandonment. Early research has shown that
factors such as fear of the unknown effects of contraceptives, spouse’s disapproval,
religious and cultural beliefs, inadequate information and poor service of family plan-
ning clinics, may be barriers to use of contraceptives [21]. The difficulty in getting
the population to accept the use of contraceptives is a problem, particularly in rural
areas of developing countries. This problem is the motive for the continuous research
on awareness creation on birth control with the use of contraceptives [21].

This paper considers a system made up of individuals that have attained the re-
productive (or child-bearing) age and focuses on the use of a method of contraception
(e.g., condoms). The study is aimed at deriving the optimal number of non-adopters
that should be successfully educated on contraception using optimal control theory.
Models based on optimal control theory are well-known in the literature [1, 5, 6].
The increased application of optimal control theory in ecology and natural resource
management has been discussed as well [29]. In this present study, the state variables,
which are the adopters and the non-adopters of the use of contraceptives, coexist. The
control variable is the fraction of non-adopters successfully educated on contraception
(i.e., the new adopters). This control is used as a proxy for the campaign effort. The
use of a fraction of the population as a control is not novel as it has earlier been
considered [23]. Before delving into the mathematical formulation of the population
dynamics, we provide a review on methods of birth control and population models in
Section 2. The model formulation is given in Section 3. Section 4 is concerned with a
numerical illustration of the population dynamics, and Section 5 concludes the paper.

2. Related Works

Birth control is crucial to reducing population expansion [23] and poverty [36] in
developing economies. The gains of birth control, inter alia, include: a smaller pop-
ulation, higher Gross National Product (GNP) per head and reduction in the ratio
of dependent children to work-age population [8]. The methods of birth control are
found in the literature [21, 32]. These include: the long-term methods such as Intra-
Uterine Device (IUD), sterilization for both male and female and implant; the hor-

1The crusaders in a developing country like Nigeria are mainly physicians, social workers and
non-governmental organisations.
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monal methods such as oral contraceptives, patch and ring; and the barrier methods
such as the condoms, diaphragm and spermicides. It has been found that men who
tend to assign contraceptive responsibility to women have more negative attitudes to-
wards male contraceptive use [35]. The use of contraceptives among women and the
factors that influence their use have been examined [4]. The factors include: being in
a relationship, number of sex partners, pregnancy status, sexual activity status, age
and social class. The prevalence of contraceptive use among women of reproductive
age in Calabar, Nigeria has earlier been studied [7]. Lack of information as one of the
factors that hinders the use of modern methods of birth control has been identified in
Nigeria [21]. Essentially birth control is important in order to attain a steady-state
growth rate of the population [23].

Population studies have gained prominence in the literature. Some of the early
works on population dynamics are found in [16, 24]. Research on the relationship
between population and economic growth has also been carried out [3]. In the study
of pre-industrial societies, the Malthusian model of population dynamics occupies a
central position in the analysis of the demographic change [2, 14, 19, 27]. A competing
model of population dynamics to the Malthusian model is the logistic model. The
Malthusian model is well-suited for populations that are not limited by space, while
the logistic model is the standard model for single-species population growth [34].
The logistic equation, wherein the instantaneous birth rate per individual and the
carrying capacity of the system are the parameters, is a more realistic model in terms
of the birth and death processes of population growth [10]. The logistic curve provides
reliable projections of the total population provided that there is a relationship among
births, deaths and migration [13]. The work of [13] has been generalized [22]. It
has been found that the population size of the logistic model with varying carrying
capacity will eventually be gamma-distributed [25] and that population densities may
exhibit oscillatory behaviour owing to seasonality [15].

Solutions to population models can be either exact or numerical. In [18] exact
solutions to a quasi-linear first-order differential equation that models the growth of a
single population subject to the logistic growth was found. However, in [11], numeri-
cal solutions based on the central finite difference method to the first-order hyperbolic
equation of age and time variables which describes the one-sex models of population
dynamics was provided. The existence of equilibrium solutions of a nonlinear struc-
tured population model and the local asymptotic stability of the equilibria has been
proved [33].

Demographic and environmental variability and the possibility of extinction of
a population may be modelled correctly in stochastic population models [37]. The
structure variables include chronological age of each individual and the population
size. In the stochastic population model it is possible to approximate the model as a
diffusion [12]. In this case the population is at risk of extinction and the stochastic
nature is caused by demographic and environmental fluctuations. The distribution of
the extinction times in the stochastic logistic population model wherein the lifespan
of any population can be described has been investigated [20]. In another study an
alternative approach to the forecasting ability of the logistic population model was
illustrated by modifying the assumption of the homoscedasticity of the error term
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[17]. Later on, a method that can be used to fit a population model in the presence of
observation error was described [31]. This study improves on the existing population
models in the literature [2, 10, 14, 19, 27] by integrating the population dynamics and
the effect of birth control campaign in the same dynamical system. The method of
estimation of parameters for the state-transition equations is similar to the one found
in [31].

3. Model Formulation

In this section, we complete the statement of the problem alongside with the under-
lying assumptions and provide the solution.

3.1. Model Development

Consider a system which consists of individuals of reproductive (or child-bearing)
age. Individuals in the system are assumed to be divided into two mutually exclu-
sive compartments: non-adopters (x(t)) and adopters (y(t)). We assume that the
babies and the people in child-bearing age are distinguishable. This assumption is
necessary because the transition from non-adopter to adopter is only applicable to
people in child-bearing age. Only a portion of x(t) can transfer to adopters and the
new-born babies cannot be adopter or non-adopter in less than a legally allowable
child-bearing age (say, 15 years). We assume that the adopters and the non-adopters
coexist in the system and their interaction precludes personal issues such as the use of
contraceptives. This assumption is consistent with the setting in rural communities
in developing countries like Nigeria, where sex education is seen as either a taboo
or immoral [21]. The non-adopters may change their opinion due to a re-orientation
campaign on the use of contraceptives provided by birth control crusaders (e.g. physi-
cians, social workers and non-governmental organisations) by whatever means. We
assume that the cost of the campaign, which includes the cost of consultation with
physicians and social workers on the use of contraceptives, is negligible. This is be-
cause fertility control is subsidized in both high- and low-income countries [8, 28]. As
a result cost is not considered within the model formulation.

Let θ(t) be the fraction of ’non-adopters successfully educated on contraception’
(new adopters hereinafter). Then θ(t)x(t) is the number of new adopters attributed
to the re-orientation campaign on the use of contraceptives. The changes in the total
population are induced by two effects: maturity (the attainability of reproductive
age) and attrition. On attaining the reproductive age, the new member of the system
may be either adopter or non-adopter. The loss in population may be attributed
to attrition such as death, emigration, or attaining menopause. It is reasonable to
assume that the population dynamics of the birth-control adopters and non-adopters
are different. Consequent upon this, the dynamics of the system is assumed to follow
the population growth models below

dx(t)

dt
= γ1x(t)− γ2x2(t)− θ(t)x(t), x(0) = x0, (3.1)
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and
dy(t)

dt
= β1y(t) + θ(t)x(t), y(0) = y0, (3.2)

where γ1 is the intrinsic growth rate of non-adopters and β1 is the intrinsic growth
rate of adopters. The term γ2x

2(t) in equation (3.1) is used to model the loss of
non-adopters induced by the non-use of contraceptives. This is realistic because ill
health, which is one of the consequences of increased family size [9], is worse-off for
the poorest (most of whom are in rural areas) that are most ignorant and apathetic
on use of contraceptives [8]. The effect of interaction between the adopters and the
non-adopters is not considered. Equations (3.1) and (3.2) are analogous to the well-
known logistic model and Malthusian model of population dynamics, respectively. In
practice, equations (3.1) and (3.2) may be subjected to statistical analysis to ascertain
their significance as an appropriate model for the two population compartments. We
assume that the non-adopters may not all accept and practise contraception no matter
the campaign owing to their religious beliefs. For this reason, the control θ(t) is
assumed to satisfy the relation, 0 ≤ θ(t) < 1.

Let {t : 0 < t ≤ T} be a fixed time horizon. Since efforts are made to increase the
number of adopters, we define the objective function to be

max
θ(t)

∫ T

0

θ(t)x(t)dt. (3.3)

The optimal control problem posed by the objective function (3.3) and the state
transition equations (3.1) and (3.2) together with the initial conditions and the bounds
for the control is thus:

max
θ(t)

∫ T

0

θ(t)x(t)dt,

subject to
dx(t)

dt
= γ1x(t)− γ2x2(t)− θ(t)x(t),

dy(t)

dt
= β1y(t) + θ(t)x(t),

x(0) = x0, y(0) = y0, 0 ≤ θ(t) < 1, t ∈ (0, T ].

This model set-up is a bounded optimal control problem with the bounds being the
closed-open interval 0 ≤ θ(t) < 1.

3.2. Model Solution

To solve the bounded control problem, we employ the Pontryagin’s maximum princi-
ple. The analysis of our solution is as follows.

We compute the control function, θ(t), by assuming that its value is at the lower
bound or it is in the interior. Suppose the total population is a variable, then the
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Hamiltonian, H, with arguments given as (x(t), y(t), θ(t), λ1(t), λ2(t)), for the problem
is

H = θ(t)x(t) + λ1(t)(γ1x(t)− γ2x2(t)− θ(t)x(t)) + λ2(t)(β1y(t) + θ(t)x(t)), (3.4)

where λj(t), j = 1, 2, is a multiplier function, which defines the marginal valuation of
the productive capacity of the respective state variables. The influence equations for
the state variables x(t) and y(t) are obtained as

dλ1(t)

dt
= − ∂H

∂x(t)
= − (θ(t) + λ1(t) (γ1 − 2γ2x(t)− θ(t)) + λ2(t)θ(t)) , (3.5)

and
dλ2(t)

dt
= − ∂H

∂y(t)
= −β1λ2(t). (3.6)

Thus,
λ2(t) = ϕ exp(−β1t), (3.7)

where ϕ is a constant. Equation (3.7) implies that the marginal value of the adopters
decays exponentially with time. The Lagrangian function, L, for the Hamiltonian
subject to the control bounds, 0 ≤ θ(t) < 1, is

L = θ(t)x(t) + λ1(t)
(
γ1x(t)− γ2x2(t)− θ(t)x(t)

)
+

λ2(t)(β1y(t) + θ(t)x(t)) + ρ1θ(t) + ρ2(1− θ(t)), (3.8)

where ρ1 and ρ2 are the Lagrangian multipliers when the total population is a variable.
The necessary conditions for θ(t) to maximise the bounded control problem are

∂L

∂θ(t)
= x(t)− λ1(t)x(t) + λ2(t)x(t) + ρ1 − ρ2 = 0, ρ1 ≥ 0, ρ1θ(t) = 0, ρ2 = 0. (3.9)

Without campaign on contraception, that is, θ(t) = 0, we use equation (3.9) to get

dλ1(t)

dt
≥ dλ2(t)

dt
. (3.10)

In this case, the optimal population, x∗(t) + y∗(t), is obtained from the transition
equations (3.1) and (3.2) by setting θ(t) = 0. Thus the optimal sub-populations are
found by solving the respective state transition equations. We obtain

x∗(t) =
x0 exp(γ1t)(

1− γ2
γ1
x0(1− exp(γ1t))

) , (3.11)

and
y∗(t) = y0 exp(β1t). (3.12)

We use the symbol ∗ to denote the optimal value. To increase the adopters, there
is a need for awareness campaign. Such a campaign is effective when at least one
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non-adopter accepts and practises contraception. With campaign on contraception
θ(t) lies in the open interval (0, 1). In this open interval, we obtain from equation
(3.9) that

dλ1(t)

dt
=
dλ2(t)

dt
. (3.13)

The optimal sub-populations, x∗(t) and y∗(t), are obtained using equation (3.7) to
simplify the influence equation (3.5) and then the solution is substituted into the
transition equations (3.1) and (3.2). We therefore obtain

x∗(t) =
γ1
2γ2
− β1ϕ exp(−β1t)

2γ2(1 + ϕ exp(−β1t))
, (3.14)

y∗(t) = exp(β1t)
(
y0 + ϑ1(1− exp(−β1t)) + ϑ2

(
ln (ζ(t))

2 − ℘(t)
))

, (3.15)

and

θ∗(t) = γ1 − γ2x∗(t)−
x′(t)

x∗(t)
, (3.16)

where

ϕ =
γ1 − 2γ2x0

β1 − γ1 + 2γ2x0
,

ϑ1 =
γ21

4γ2β1
, ϑ2 =

β1(ϕ+ 1)

2γ2ϕ2
, ζ(t) =

1 + ϕ

1 + ϕ exp(−β1t)
,

℘(t) =
ϕ(1− exp(−β1t)) (1 + (1 + ϕ)(1 + ϕ exp(−β1t)))

(1 + ϕ)(1 + ϕ exp(−β1t))
,

and

x′(t) =
β2
1ϕ exp(−β1t)

2γ2(1 + ϕ exp(−β1t))2
.

The optimal solutions (3.14) – (3.16) are feasible, provided that θ(t) ∈ (0, 1).
On the other hand, if the total population is fixed, say N , then

dx(t)

dt
+
dy(t)

dt
= 0,

so that β1y(t) = −(γ1x(t)− γ2x2(t)). In this case, equation (3.4) becomes

H = θ(t)x(t) + λ(t)(γ1x(t)− γ2x2(t)− θ(t)x(t)), (3.17)

where λ(t) = λ1(t)− λ2(t). The influence equations for the state variable x(t) is

dλ(t)

dt
= − (θ(t) + λ(t) (γ1 − 2γ2x(t)− θ(t))) . (3.18)

The Lagrangian function, L, for the Hamiltonian subject to the control bounds,
0 ≤ θ(t) < 1, would be
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L = θ(t)x(t) + λ(t)
(
γ1x(t)− γ2x2(t)− θ(t)x(t)

)
+ w1θ(t) + w2(1− θ(t)), (3.19)

where w1 and w2 are the Lagrangian multipliers when the total population is fixed.
With θ(t) = 0, we obtain the same result as in equation (3.11). For 0 < θ(t) < 1 and
x(t) 6= 0, we obtain λ(t) = 1,

x(t) =
γ1
2γ2

, (3.20)

y(t) = N − γ1
2γ2

, (3.21)

and
θ(t) =

γ1
2
. (3.22)

3.3. Estimation of the Parameters

In most cases, data on population are available at discrete periods, so that the discrete-
time model may be used to approximate the continuous-time process. Suppose his-
torical data are available for t = 1, 2, · · · , η. Then we estimate the parameters of the
model by setting θ(t) = 0 and applying the method of least squares. By so doing, we
use the difference equation

xt − xt−1 = γ1xt−1 − γ2x2t−1 + error, (3.23)

as the discrete-time analogue of the logistic model. Thereafter, we apply the least
squares method to get

γ̂1 =
(

[ 1 0 ]
(
[ X−1 X2

−1 ]′[ X−1 X2
−1 ]

)−1
[ X−1 X2

−1 ]′X
)
− 1,

(3.24)
and

γ̂2 =
(

[ 0 −1 ]
(
[ X−1 X2

−1 ]′[ X−1 X2
−1 ]

)−1
[ X−1 X2

−1 ]′X
)
,

(3.25)
where X is an η × 1 vector of xt, X−1 is an η × 1 vector of the one period lagged
number of non-adopters, xt−1, and X2

−1 is an η × 1 vector of the squares of the one
period lagged number of non-adopters, x2t−1. We use the hat over the parameters to
denote an estimate. Our approach towards obtaining the estimators for γ1 and γ2
is similar to the Solow method [31], except that the first-order derivative dx(t)/dt is
replaced by the first-order difference xt − xt−1 instead of the current value xt as in
[31].

Similarly, we obtain

β̂1 = [ 0 1 ]
(
[ e Ω ]′[ e Ω ]

)−1
[ e Ω ]′Γ, (3.26)

where Γ is an η × 1 vector of ln yt, Ω is an η × 1 vector of time instants and e is an
η × 1 vector of ones.
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4. Numerical Illustration

The model defined by equations (3.14) – (3.16) is illustrated using values tabulated in
Table 1 with the population size at the current period and the proportion of adopters
given as 4.85× 106 and 0.070, respectively.

Table 1: The population size over time
t (in years) 1 2 3 4 5 6 7

Population ×106 2.00 2.28 2.65 3.12 3.45 4.19 4.33

Proportion of adopters 0.043 0.041 0.038 0.040 0.045 0.049 0.045

The parameters of the model are estimated using the least squares estimators in
equations (3.24) – (3.26) as γ̂1 = 0.2893, γ̂2 = 5.1278× 10−8 and β̂1 = 0.1593, respec-
tively. These parameter estimates as well as the model are statistically significant at
the 5% level from the output of the MATLAB program (see Appendix). Using the
parameter estimates, numerical simulations for the optimal sub-populations and the
optimal fraction of new adopters are carried out and depicted in Figure 1.
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Figure 1: 3D plot of the population dynamics and the control

These simulations are performed in the MATLAB environment (see Appendix for
the MATLAB source code). The simulations show that in the absence of campaign,
the non-adopters and the adopters would continue to grow and the total population
would rise rapidly. It is further shown that with the campaign, the non-adopters would
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reduce drastically and the adopters would increase tremendously. On the whole, the
campaign is able to achieve a reduction in the total population, even though the
fraction of new adopters decreases steadily. These simulations therefore suggest that
the campaign on contraception is a way to improve on the use of contraceptives. Since
contraception could be used as a means of population control, the model proposed in
this paper is a way out of reducing population expansion.

5. Conclusion

This study has provided an insight into population dynamics under birth control
campaign. The approach is to develop a continuous-time optimal control model to
serve as an alternative to the discrete-time approach as in [23]. The fundamentals
of optimal control theory and the Malthusian and logistic models of population dy-
namics have been used as theoretical underpinnings. The method of least squares
has been employed to provide the parameter estimates. Our approach to describing
population defined by two sub-populations according to the use of contraceptives is
very inspiring. Nonetheless, further work may be undertaken so as to incorporate the
interaction between the adopters and the non-adopters. One of the innovations of this
study is to integrate population dynamics and the effect of birth control campaign
in the same dynamical system, by adding the term θ(t)x(t) in the formula for both
types of population dynamics, as in equations (3.1) and (3.2). This setting may be
improved upon. This can be achieved by taking into consideration the time lags of
the two processes as well as the delay in adopting the use of contraceptives. The time
lags of the two processes, that is the population dynamics by birth and death and the
transition from non-adopter to adopter, may be different. The population dynam-
ics by birth and death takes some decades, while the transition from non-adopter to
adopter happens in shorter time period, only several months or a few years. Incorpo-
rating these variables will go a long way towards refining the model as the most likely
approach may involve systems of delay differential equations. Finally in the absence
of subsidy, the core check and balance of driving force in the birth control campaign
would be cost. In this case a well-defined cost function needs to be figured out and
added as a part of the objective function.
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Appendix

clc

P=[2; 2.28; 2.65; 3.12; 3.45; 4.19; 4.33]*10∧6;
Xlag=(ones(length(P),1)-[0.043; 0.041; 0.038; 0.040; 0.045; 0.049; 0.045]).*P;
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Ylag=P-Xlag;

P0=4.85*10∧6; x0=(1-0.07)*P0; y0=(P0-x0);

X=[Xlag(2:length(P),1); x0];

Y=[Ylag(2:length(P),1); y0];

T=[1:length(P)]’;

g1=[1 0]*(inv([Xlag Xlag.∧2]’*[Xlag Xlag.∧2])*[Xlag Xlag.∧2]’*X)-1,

g2=[0 -1]*(inv([Xlag Xlag.∧2]’*[Xlag Xlag.∧2])*[Xlag Xlag.∧2]’*X),

b1=[0 1]*(inv([ones(length(P),1) T]’*[ones(length(P),1) T])*[ones(length(P),1)

T]’*log(Ylag)),

%t-test for the significance of parameters.

I=eye(length(P)); N=length(P); p=2; s=inv([Xlag Xlag.∧2]’*[Xlag Xlag.∧2]);
betahat1=(inv([Xlag Xlag.∧2]’*[Xlag Xlag.∧2])*[Xlag Xlag.∧2]’*X);
se=sqrt((X’*(I-[Xlag Xlag.∧2]*s*[Xlag Xlag.∧2]’)*X)/(N-p)),
covbeta=(se∧2)*s,
tcal0=(g1+1)/sqrt(covbeta(1,1)),

tcal1=-g2/sqrt(covbeta(2,2)),

tTab1=2.02;

%Decision rule.

if abs(tcal0)>2.02

disp(’Reject H0: the constant term, g1, is significant at 5% level’)

else

if abs(tcal0)<2.02

disp(’We do not reject H0: the constant term, g1, is not significant at 5%

level’)

end

end

if abs(tcal1)>2.02

disp(’Reject H0: the constant term, g2, is significant at 5% level’)

else

if abs(tcal1)< 2.02

disp(’We do not reject H0: the constant term, g2, is not significant at 5%

level’)

end

end

Rsquare=(betahat1’*[Xlag Xlag.∧2]’*[Xlag Xlag.∧2]*betahat1-N*(mean(X))∧2) ...

/(X’*X-N*(mean(X))∧2),

Fcal=(N-2)*Rsquare/(1-Rsquare),

Ftab=5.59;

if Fcal>Ftab
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disp(’Reject H0: the model 1 is significant at 5% level’)

else

if Fcal<Ftab

disp(’We do not reject H0: the model 1 is not significant at 5% level’)

end

end

%t-test for the significance of parameter beta.

I=eye(length(P)); N=length(P); p=2;

s2=inv([ones(length(P),1) T]’*[ones(length(P),1) T]);

betahat2=(inv([ones(length(P),1) T]’*[ones(length(P),1) T])* ...

[ones(length(P),1) T]’*log(Ylag));

se2=sqrt((log(Ylag)’*(I-[ones(length(P),1) T]*s2*[ones(length(P),1) T]’)* ...

log(Ylag))/(N-p)),

covbeta2=(se2∧2)*s2,
tcal2=b1/sqrt(covbeta2(2,2)),

%Decision rule.

if abs(tcal2)>2.02

disp(’Reject H0: the constant term, b1, is significant at 5% level’)

else

if abs(tcal2)<2.02

disp(’We do not reject H0: the constant term, b1, is not significant at 5%

level’)

end

end

Rsquare=(betahat2’*[ones(length(P),1) T]’*[ones(length(P),1) T]*betahat2-N*...

(mean(log(Ylag)))∧2)/(log(Ylag)’*log(Ylag)-N*(mean(log(Ylag)))∧2),

Fcal=(N-2)*Rsquare/(1-Rsquare),

Ftab=5.59;

if Fcal>Ftab

disp(’Reject H0: the model 2 is significant at 5% level’)

else

if Fcal<Ftab

disp(’We do not reject H0: the model 2 is not significant at 5% level’)

end

end

v=(g1-2*g2*x0)/(b1-g1+2*g2*x0);

n=10;

for t=1:n;

x1(t)=(x0*exp(g1*t))/(1-(g2*x0/g1)*(1-exp(g1*t)));

y1(t)=y0*exp(b1*t);

x(t)=(g1/(2*g2))-(b1*v*exp(-b1*t))/(2*g2*(1+v*exp(-b1*t)));
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th(t)=g1-g2*((g1/(2*g2))-(b1*v*exp(-b1*t))/(2*g2*(1+v*exp(-b1*t))))...

-((b1∧2)*v*exp(-b1*t))/((2*g2*(1+v*exp(-b1*t))∧2)*((g1/(2*g2))...
-(b1*v*exp(-b1*t))/(2*g2*(1+v*exp(-b1*t)))));

z1=(v*(1-exp(-b1*t)))*(1+(1+v)*(1+v*exp(-b1*t)));

z2=(1+v)*(1+v*exp(-b1*t));

k1=b1*(v+1)/(2*g2*v∧2); k0=g2∧2/(4*g2*b1); m=((1+v)/(1+v*exp(-b1*t)))∧2;
y(t)=exp(b1*t)*(y0+k0*(1-exp(-b1*t))+k1*(log(((1+v)/(1+v*exp(-b1*t)))∧2)...
-((v*(1-exp(-b1*t)))*(1+(1+v)*(1+v*exp(-b1*t))))/((1+v)*(1+v*exp(-b1*t)))));

end

clf

subplot(2,2,1)

t=1:n;

ribbon(t’,[x1’ x’],0.5)

zlabel(’x(t)’)

ylabel(’t (in years)’)

title (’Fig. a: 3D plot of the population of non-adopters.’)

subplot(2,2,2)

t=1:n;

ribbon(t’,[y1’ y’],0.5)

zlabel(’y(t)’)

ylabel(’t (in years)’)

title (’Fig. b: 3D plot of the population of adopters.’)

subplot(2,2,3)

t=1:n;

ribbon(t’,th’,0.1)

zlabel(’theta (t)’)

ylabel(’t (in years)’)

title (’Fig. c: 3D plot of the fraction of new adopters.’)

subplot(2,2,4)

t=1:n;

ribbon(t’,[(x1’+y1’), (x’+y’)],0.5)

zlabel(’Total population’)

ylabel(’t (in years)’)

legend(’Absence of Campaign’,’Effective Campaign’)

title (’Fig. d: 3D plot of the total population.’)
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