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Abstract: A method of the finite approximation of continuous non-
cooperative two-person games is presented. The method is based on sam-
pling the functional spaces, which serve as the sets of pure strategies of the
players. The pure strategy is a linear function of time, in which the trend-
defining coefficient is variable. The spaces of the players’ pure strategies
are sampled uniformly so that the resulting finite game is a bimatrix game
whose payoff matrices are square. The approximation procedure starts
with not a great number of intervals. Then this number is gradually in-
creased, and new, bigger, bimatrix games are solved until an acceptable
solution of the bimatrix game becomes sufficiently close to the same-type
solutions at the preceding iterations. The closeness is expressed as the
absolute difference between the trend-defining coefficients of the strate-
gies from the neighboring solutions. These distances should be decreasing
once they are smoothed with respective polynomials of degree 2.
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1. Introduction

Continuous noncooperative two-person games model interactions of a pair of subjects
(players or persons) possessing continuums of their pure strategies [5, 10]. A specificity
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of such games consists in that finding and practicing a solution in mixed strategies
is often intractable [11, 6, 9]. Even if a solution exists in pure strategies, it often is
revealed not to be a single one. Thus, the problem of the single solution selection (or
uniqueness) arises. However, even if the solution is unique, it is not guaranteed to be
simultaneously profitable and symmetric [11, 9, 2, 1].

The solution search in continuous games is not a trivial task also. Analytic search
generalization is possible only in special classes [10, 3]. Therefore, finite approximation
of continuous noncooperative two-person games is not just preferable, but also is
necessary.

2. Motivation

A special class of noncooperative two-person games is when the player’s pure strat-
egy is a time-varying function. Commonly, apart from the time, this function is
determined by a few parameters (coefficients). These coefficients may vary through
intervals. Therefore, the set of the player’s pure strategies is a functional space. Such
a game model is typical for economic interaction processes, where the player uses
short-term time-varying strategies [11, 13, 12].

In the simplest case, the strategy is a linear function of time. The time interval is
usually short, through which a short-term trend of economic activity is realized [11,
9]. Thus, a whole process is modeled as a series of those noncooperative games. Each
game corresponds to its short term. Then, obviously, the games are required to be
solved as fast as possible.

The problems of fast solution and solution uniqueness are addressed in study-
ing finite approximations of continuous games. When the game is defined on finite-
dimensional Euclidean subspaces, it can be approximated by appropriately sampling
the sets of players’ pure strategies [6, 7]. Then an approximating game is solved easily
and faster. Besides, an approximated solution (with respect to the initial game) can
be selected in order to meet demands and rules of the economic system [11, 9]. In
the case when the game is defined on a product of functional spaces, a strict sub-
stantiation is required to sample the functional sets of players’ pure strategies. As in
the case of finite-dimensional Euclidean subspaces, this will allow sampling without
significant losses.

3. Goals and tasks to be fulfilled

Due to above reasons, the goal is to develop a method of finite approximation of
continuous noncooperative two-person games whose kernels are defined on a product
of linear strategy functional spaces. For achieving the goal, the following tasks are to
be fulfilled:

1. To formalize a continuous noncooperative two-person game whose kernel is
defined on a product of linear strategy functional spaces. In such a game, the set of
the player’s pure strategies is a continuum of linear functions of time.
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2. To formalize a method of finite approximation.
3. To discuss applicability and significance of the method.

4. A continuous noncooperative two-person game

Each of the players uses short-term time-varying strategies determined by two coeffi-
cients. The short-term trend is defined by a real-valued coefficient which is multiplied
by time t. The other coefficient is presumed to be known (i. e., it is a constant).
Herein, this real-valued constant is called an offset.

The pure strategy is valid on interval [t1; t2] by t2 > t1, so pure strategies of the
player belong to a functional space of linear functions of time:

L [t1; t2] ⊂ L2 [t1; t2] .

Denote the trend-defining coefficient of the first player by bx, where

bx ∈
[
b(min)
x ; b(max)

x

]
by b(max)

x > b(min)
x . (1)

If the first player’s offset is ax, then its set of pure strategies is

X =
{
x (t) = ax + bxt, t ∈ [t1; t2] : bx ∈

[
b
(min)
x ; b

(max)
x

]
⊂ R

}
⊂

⊂ L [t1; t2] ⊂ L2 [t1; t2] . (2)

For the second player, denote its offset by ay and its trend-defining coefficient by by,
where

by ∈
[
b(min)
y ; b(max)

y

]
by b(max)

y > b(min)
y . (3)

Then the set of pure strategies of the second player is

Y =
{
y (t) = ay + byt, t ∈ [t1; t2] : by ∈

[
b
(min)
y ; b

(max)
y

]
⊂ R

}
⊂

⊂ L [t1; t2] ⊂ L2 [t1; t2] . (4)

The players’ payoffs in situation {x (t) , y (t)} are

Kx (x (t) , y (t)) and Ky (x (t) , y (t)) ,

respectively. These payoffs are integral functionals:

Kx (x (t) , y (t)) =

t2∫
t1

f (x (t) , y (t)) dt (5)

and

Ky (x (t) , y (t)) =

t2∫
t1

g (x (t) , y (t)) dt, (6)
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where f (x (t) , y (t)) and g (x (t) , y (t)) are algebraic functions of x (t) and y (t) de-
fined everywhere on [t1; t2]. Therefore, the continuous noncooperative two-person
game

〈{X, Y } , {Kx (x (t) , y (t)) , Ky (x (t) , y (t))}〉 (7)

is defined on product

X × Y ⊂ L [t1; t2]× L [t1; t2] ⊂ L2 [t1; t2]× L2 [t1; t2] (8)

of linear strategy functional spaces (2) and (4).

5. Acceptable solutions

Since a series of games (7) on product (8) is to be solved in practice, the only ac-
ceptable solutions are equilibrium or/and efficient situations in pure strategies. Such
situations are defined similarly to those in games on finite-dimensional Euclidean
subspaces [5, 10].

Definition 1. Situation {x∗ (t) , y∗ (t)} in game (7) on product (8) by conditions
(1) — (6) is an equilibrium situation in pure strategies if inequalities

Kx (x (t) , y∗ (t)) 6 Kx (x∗ (t) , y∗ (t)) ∀x (t) ∈ X (9)

and

Ky (x∗ (t) , y (t)) 6 Ky (x∗ (t) , y∗ (t)) ∀ y (t) ∈ Y (10)

are simultaneously true.

Definition 2. Situation {x∗∗ (t) , y∗∗ (t)} in game (7) on product (8) by conditions
(1) — (6) is an efficient situation in pure strategies if both a pair of inequalities

Kx (x∗∗ (t) , y∗∗ (t)) 6 Kx (x (t) , y (t)) and

Ky (x∗∗ (t) , y∗∗ (t)) < Ky (x (t) , y (t)) (11)

and a pair of inequalities

Kx (x∗∗ (t) , y∗∗ (t)) < Kx (x (t) , y (t)) and

Ky (x∗∗ (t) , y∗∗ (t)) 6 Ky (x (t) , y (t)) (12)

are impossible for any x (t) ∈ X and y (t) ∈ Y .

The continuous noncooperative two-person game can have the empty set of equilib-
ria in pure strategies [10]. Moreover, every efficient situation can be too asymmetric,
i. e. it is profitable for one player and unacceptably unprofitable for the other player.
In such cases, the game does not have an acceptable solution. Then the concepts of
ε-equilibrium and ε-efficiency are useful [10, 11].
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Definition 3. Situation
{
x∗(ε) (t) , y∗(ε) (t)

}
in game (7) on product (8) by conditions

(1) — (6) is an ε-equilibrium situation in pure strategies for some ε > 0 if inequalities

Kx

(
x (t) , y∗(ε) (t)

)
6 Kx

(
x∗(ε) (t) , y∗(ε) (t)

)
+ ε ∀x (t) ∈ X (13)

and

Ky

(
x∗(ε) (t) , y (t)

)
6 Ky

(
x∗(ε) (t) , y∗(ε) (t)

)
+ ε ∀ y (t) ∈ Y (14)

are simultaneously true.

Definition 4. Situation
{
x∗∗(ε) (t) , y∗∗(ε) (t)

}
in game (7) on product (8) by condi-

tions (1) — (6) is an ε-efficient situation in pure strategies for some ε > 0 if both a
pair of inequalities

Kx

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε 6 Kx (x (t) , y (t)) and

Ky

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε < Ky (x (t) , y (t)) (15)

and a pair of inequalities

Kx

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε < Kx (x (t) , y (t)) and

Ky

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε 6 Ky (x (t) , y (t)) (16)

are impossible for any x (t) ∈ X and y (t) ∈ Y .

The situations given by Definitions 1 — 4 are the acceptable solutions regardless
of whether the game is finite or not. The best consequent is when a situation is
simultaneously equilibrium (by Definition 1) and efficient (by Definition 2). If this
is impossible, then the most preferable is an efficient situation at which the sum of
players’ payoffs is maximal. However, if the payoffs are unacceptably asymmetric,
then the best consequent is to find such ε for which a situation is simultaneously
equilibrium (by Definition 3) and efficient (by Definition 4). This approach relates to
the method of solving games approximately by providing concessions [8]. Eventually,
a payoff asymmetry may be smoothed by a compensation from the player whose payoff
is unacceptably greater [11].

6. The finite approximation

It is obvious that, in game (7) on product (8) by conditions (1) — (6), the pure strategy
of the player is determined by the trend-defining coefficient. Therefore, this game can
be thought of as it is defined, instead of product (8) of linear strategy functional
spaces (2) and (4), on rectangle[

b(min)
x ; b(max)

x

]
×
[
b(min)
y ; b(max)

y

]
⊂ R2. (17)
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This rectangle is easily sampled by using a number of equal intervals along each
dimension. Denote this number by S, S ∈ N\ {1}. Then

Bx =

{
b(min)
x + (s− 1) · b

(max)
x − b(min)

x

S

}S+1

s=1

=
{
b(s)x

}S+1

s=1
⊂
[
b(min)
x ; b(max)

x

]
(18)

and

By =

{
b(min)
y + (s− 1) · b

(max)
y − b(min)

y

S

}S+1

s=1

=
{
b(s)y

}S+1

s=1
⊂
[
b(min)
y ; b(max)

y

]
. (19)

So, rectangle (17) is substituted with grid Bx ×By. Set (18) leads to a finite set

XB =
{
x (t) = ax + bxt, t ∈ [t1; t2] : bx ∈ Bx ⊂

[
b
(min)
x ; b

(max)
x

]
⊂ R

}
=

=
{
xs (t) = ax + b

(s)
x t
}S+1

s=1
⊂ X ⊂ L [t1; t2] ⊂ L2 [t1; t2] (20)

of pure strategies (linear functions of time) of the first player, where

x1 (t) = ax + b(min)
x t, xS+1 (t) = ax + b(max)

x t,

and set (19) leads to a finite set

YB =
{
y (t) = ay + byt, t ∈ [t1; t2] : by ∈ By ⊂

[
b
(min)
y ; b

(max)
y

]
⊂ R

}
=

=
{
ys (t) = ay + b

(s)
y t
}S+1

s=1
⊂ Y ⊂ L [t1; t2] ⊂ L2 [t1; t2] (21)

of pure strategies (linear functions of time) of the second player, where

y1 (t) = ay + b(min)
y t, yS+1 (t) = ay + b(max)

y t.

Subsequently, game (7) on product (8) by conditions (1) — (6) is substituted with a
finite game

〈{XB , YB} , {Kx (x (t) , y (t)) , Ky (x (t) , y (t))}〉
by x (t) ∈ XB and y (t) ∈ YB (22)

defined on product

XB × YB ⊂ X × Y ⊂ L [t1; t2]× L [t1; t2] ⊂ L2 [t1; t2]× L2 [t1; t2] (23)

of linear strategy functional subspaces (20) and (21). In fact, game (22) is a bimatrix
(S + 1)× (S + 1)-game.

To perform an appropriate approximation via the sampling, number S is selected
so that none of S2 rectangles[

b(i)x ; b(i+1)
x

]
×
[
b(j)y ; b(j+1)

y

]
by i = 1, S and j = 1, S (24)

would contain significant specificities of payoff functionals (5) and (6). In fact, such
specificities are extremals of these functionals.
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Theorem 1. In game (7) on product (8) by conditions (1) — (6), the player’s payoff
functional achieves its maximal and minimal values on any closed subset of rectangle
(17) of the trend-defining coefficients.

Proof. Both f (x (t) , y (t)) and g (x (t) , y (t)) are algebraic functions of linear func-
tions x (t) and y (t) defined everywhere on [t1; t2]. Therefore, both integrals in func-
tionals (5) and (6) achieve some maximal and minimal values on any closed subset of
rectangle (17) of the trend-defining coefficients.

Thus, Theorem 1 allows controlling extremals of payoff functionals (5) and (6)
by the trend-defining coefficient. Moreover, Theorem 1 is easily expanded on closed
rectangles (24) for any number S. Consequently, if inequalities

max
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

Kx (x (t) , y (t))− min
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

Kx (x (t) , y (t)) =

= max
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

t2∫
t1

f (x (t) , y (t)) dt− min
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

t2∫
t1

f (x (t) , y (t)) dt 6 µ

∀ i = 1, S and ∀ j = 1, S (25)

and

max
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

Ky (x (t) , y (t))− min
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

Ky (x (t) , y (t)) =

= max
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

t2∫
t1

g (x (t) , y (t)) dt− min
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

t2∫
t1

g (x (t) , y (t)) dt 6 µ

∀ i = 1, S and ∀ j = 1, S (26)

are simultaneously true for some sufficiently small µ > 0, then those µ-variations can
be ignored. Thus, for the properly selected S and µ, game (7) on product (8) by
conditions (1) — (6) can be approximated by finite game (22). The quality of the
approximation can be comprehended by the following assertions.

Theorem 2. If {x∗ (t) , y∗ (t)} is an equilibrium in game (7) on product (8) by
conditions (1) — (6), where functionals (5) and (6) are continuous, conditions (25)
and (26) hold for some S and µ,

x∗ (t) = ax + b∗xt by b∗x ∈
[
b
(h)
x ; b

(h+1)
x

]
and

y∗ (t) = ay + b∗yt by b∗y ∈
[
b
(k)
y ; b

(k+1)
y

]
for h ∈

{
1, S

}
, k ∈

{
1, S

}
, (27)
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then every situation
{
x∗(ε) (t) , y∗(ε) (t)

}
for which

x∗(ε) (t) = ax + b
∗(ε)
x t by b

∗(ε)
x ∈

[
b
(h)
x ; b

(h+1)
x

]
and

y∗(ε) (t) = ay + b
∗(ε)
y t by b

∗(ε)
y ∈

[
b
(k)
y ; b

(k+1)
y

]
for h ∈

{
1, S

}
, k ∈

{
1, S

}
, (28)

is an ε-equilibrium for some ε > 0. As number S is increased, the value of ε can be
made smaller.

Proof. Whichever integer S and the corresponding µ are, the value of ε always can
be chosen such that inequalities (13) and (14) be true for every situation composed of
strategies (28) by (27). It is obvious that, owing to the continuity of the functionals,
increasing number S allows decreasing the value of µ, which provides ε-equilibria to
be closer to the equilibrium composed of strategies (27).

Theorem 3. If {x∗∗ (t) , y∗∗ (t)} is an efficient situation in game (7) on product (8)
by conditions (1) — (6), where functionals (5) and (6) are continuous, conditions (25)
and (26) hold for some S and µ,

x∗∗ (t) = ax + b∗∗x t by b∗∗x ∈
[
b
(h)
x ; b

(h+1)
x

]
and

y∗∗ (t) = ay + b∗∗y t by b∗∗y ∈
[
b
(k)
y ; b

(k+1)
y

]
for h ∈

{
1, S

}
, k ∈

{
1, S

}
, (29)

then every situation
{
x∗∗(ε) (t) , y∗∗(ε) (t)

}
for which

x∗∗(ε) (t) = ax + b
∗∗(ε)
x t by b

∗∗(ε)
x ∈

[
b
(h)
x ; b

(h+1)
x

]
and

y∗∗(ε) (t) = ay + b
∗∗(ε)
y t by b

∗∗(ε)
y ∈

[
b
(k)
y ; b

(k+1)
y

]
for h ∈

{
1, S

}
, k ∈

{
1, S

}
, (30)

is an ε-efficient situation for some ε > 0. As number S is increased, the value of ε
can be made smaller.

Proof. Whichever integer S and the corresponding µ are, value ε always can be
chosen such that inequalities (15) and (16) be true for every situation composed of
strategies (30) by (29). It is obvious that, owing to the continuity of the function-
als, increasing number S allows decreasing the value of µ, which provides ε-efficient
situations to be closer to the efficient situation composed of strategies (29).

Hence, the finite approximation should start from some integer S, for which a
bimatrix (S + 1)×(S + 1)-game (22) is built and solved. Then this integer is gradually
increased (although, the increment is not ascertained for general case), and new,
bigger, bimatrix games are solved. The process can be stopped if the acceptable
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solution (whether it is an equilibrium, efficient, ε-equilibrium, or ε-efficient situation)
by the last iteration does not differ much from the acceptable solutions (of the same
type) by a few preceding iterations. Thus, if{

x<l>∗ (t) , y<l>∗ (t)
}

=
{
ax + b<l>∗

x t, ay + b<l>∗
y t

}
∈ XB × YB ⊂ X × Y (31)

is an acceptable solution at the l-th iteration, then the conditions of the sufficient
closeness to the solutions at the preceding and succeeding iterations are as follows:√√√√√ t2∫

t1

(x<l−1>∗ (t)− x<l>∗ (t))
2
dt >

√√√√√ t2∫
t1

(x<l>∗ (t)− x<l+1>∗ (t))
2
dt and

√√√√√ t2∫
t1

(
y<l−1>∗ (t)− y<l>∗ (t)

)2
dt >

√√√√√ t2∫
t1

(
y<l>∗ (t)− y<l+1>∗ (t)

)2
dt (32)

and

max
t∈[t1; t2]

∣∣x<l−1>∗ (t)− x<l>∗ (t)
∣∣ > max

t∈[t1; t2]

∣∣x<l>∗ (t)− x<l+1>∗ (t)
∣∣ and

max
t∈[t1; t2]

∣∣y<l−1>∗ (t)− y<l>∗ (t)
∣∣ > max

t∈[t1; t2]

∣∣y<l>∗ (t)− y<l+1>∗ (t)
∣∣ (33)

by l = 2, 3, 4, ...

Theorem 4. Conditions (32) and (33) of the sufficient closeness for game (7) on
product (8) by conditions (1) — (6) are expressed as∣∣b<l−1>∗

x − b<l>∗
x

∣∣ > ∣∣b<l>∗
x − b<l+1>∗

x

∣∣ by l = 2, 3, 4, ... (34)

and ∣∣b<l−1>∗
y − b<l>∗

y

∣∣ > ∣∣b<l>∗
y − b<l+1>∗

y

∣∣ by l = 2, 3, 4, ... (35)

Proof. Due to that√√√√√ t2∫
t1

(x<l−1>∗ (t)− x<l>∗ (t))
2
dt =

√√√√√ t2∫
t1

(
ax + b<l−1>∗

x t− ax − b<l>∗
x t

)2
dt =

=

√√√√√ t2∫
t1

(
b<l−1>∗
x − b<l>∗

x

)2
t2dt =

√(
b<l−1>∗
x − b<l>∗

x

)2( t32
3
− t31

3

)
=

=
∣∣b<l−1>∗

x − b<l>∗
x

∣∣√ t32 − t31
3

and

max
t∈[t1; t2]

∣∣x<l−1>∗ (t)− x<l>∗ (t)
∣∣ = max

t∈[t1; t2]

∣∣(b<l−1>∗
x − b<l>∗

x

)
t
∣∣ =



132 V. Romanuke

=
∣∣b<l−1>∗

x − b<l>∗
x

∣∣ t2
(where time is presumed to be nonnegative), inequalities (32) and (33) are simplified
explicitly:

∣∣b<l−1>∗
x − b<l>∗

x

∣∣√ t32 − t31
3

>
∣∣b<l>∗

x − b<l+1>∗
x

∣∣√ t32 − t31
3

and

∣∣b<l−1>∗
y − b<l>∗

y

∣∣√ t32 − t31
3

>
∣∣b<l>∗

y − b<l+1>∗
y

∣∣√ t32 − t31
3

and ∣∣b<l−1>∗
x − b<l>∗

x

∣∣ t2 >
∣∣b<l>∗

x − b<l+1>∗
x

∣∣ t2 and∣∣b<l−1>∗
y − b<l>∗

y

∣∣ t2 >
∣∣b<l>∗

y − b<l+1>∗
y

∣∣ t2,
whence they are expressed as (34) and (35), respectively.

If inequalities (34) and (35) hold for at least three iterations, the approximation
procedure can be stopped. Clearly, the closeness strengthens if inequalities (34) and
(35) hold strictly. However, inequalities (34) and (35) may not hold for a wide range
of iterations, so it is better to require that both polylines

λx (l) =
∣∣b<l>∗

x − b<l+1>∗
x

∣∣ by l = 1, 2, 3, ... (36)

and
λy (l) =

∣∣b<l>∗
y − b<l+1>∗

y

∣∣ by l = 1, 2, 3, ... (37)

be decreasing on average. Herein, term “on average” implies that, in the case when
inequalities (34) and (35) do not hold, polylines (36) and (37) are smoothed (approx-
imated) with the respective polynomials of degree 2.

7. Exemplification

To exemplify the method of the game finite approximation, consider a case in which
t ∈ [1; 30], the set of pure strategies of the first player is

X = {x (t) = 100 + bxt, t ∈ [1; 30] : bx ∈ [−0.4; 0.4] ⊂ R} ⊂
⊂ L [1; 30] ⊂ L2 [1; 30] , (38)

and the set of pure strategies of the second player is

Y = {y (t) = 120 + byt, t ∈ [1; 30] : by ∈ [−0.6; 0.6] ⊂ R} ⊂
⊂ L [1; 30] ⊂ L2 [1; 30] . (39)

The payoff functionals are

Kx (x (t) , y (t)) =

30∫
1

10000 · 5x2 (t) + x (t)− x (t) y (t)− y2 (t)

x3 (t) + x2 (t) + x (t)− x (t) y (t)− y2 (t)
dt (40)
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and

Ky (x (t) , y (t)) =

30∫
1

(y (t)− 1.2x (t))
2
dt. (41)

Consequently, this game can be thought of as it is defined on rectangle (17):

[−0.4; 0.4]× [−0.6; 0.6] ⊂ R2. (42)

It is easy to show that functional (40) is continuous (Figure 1). The continuity of
functional (41) is quite clear (Figure 2). Therefore, Theorem 2 and Theorem 3 will
ensure fast approximation here. At S = 5 the respective bimatrix 6 × 6-game has a
single equilibrium and two efficient situations. By increasing the number of intervals

Figure 1: The first player’s payoff functional (40) shown on rectangle (42)
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Figure 2: The second player’s payoff functional (41) shown on rectangle (42)

with a step of 5 up to 100, a single equilibrium is still found, but the number of efficient
situations grows. One of those efficient situations is equilibrium (by Definition 1). In
such a situation, the equilibrium-and-efficient strategies of the first player become
“stable” as S increases (Figure 3). Eventually,

x<20>∗ (t) = 100 + 0.344t,

whereas the equilibrium-and-efficient strategy of the second player remains the same
for all S = 5, 10, 15, ..., 100 (Figure 4). So, condition (35) of the sufficient closeness
of the second player’s strategies holds trivially. After all, the first player’s polyline by
(36) decreases on average (Figure 5). This means that situation
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Figure 3: The series of 20 equilibrium-and-efficient strategies of the first player

Figure 4: The second player’s unvarying equilibrium-and-efficient strategy
y<l>∗ (t) = 120− 0.6t (l = 1, 20)
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Figure 5: The first player’s polyline from (36), which decreases on average

{
x<20>∗ (t) , y<20>∗ (t)

}
= {100 + 0.344t, 120− 0.6t}

is the solution of the corresponding bimatrix 101 × 101-game, which is the single
acceptable approximate solution to the initial game with (38) — (41).

8. Discussion

Continuous games are approximated to finite games not just for the sake of simplic-
ity itself. The matter is the finite approximation makes solutions tractable so that
they can be easily implemented and practiced. So, the presented method of finite
approximation specifies and, what is more important, establishes the applicability of
continuous noncooperative two-person games on a product of linear strategy func-
tional spaces. Mainly, it concerns modeling economic interaction processes, where
the player can use a continuum of short-term time-varying strategies.
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The presented method is quite significant for avoiding too complicated solutions
resulting from game continuities and, moreover, functional spaces of pure strategies.
This is similar to preventing Einstellung effect in modeling [4]. The transfer from a
functional space product to a real-valued rectangle with subsequently sampling it into
a grid herein “deeinstellungizes” the continuous noncooperative two-person game.

9. Conclusion

For solving continuous noncooperative two-person games on a product of linear strat-
egy functional spaces, a method of their finite approximation is presented, which is
based on sampling the linear strategy functional spaces. The sets (i. e., the spaces) of
the players’ pure strategies are sampled uniformly so that the resulting finite game is a
bimatrix game whose payoff matrices are square. The approximation procedure starts
with not a great number of intervals. Then this number is gradually increased, and
new, bigger, bimatrix games are solved until an acceptable solution of the bimatrix
game becomes sufficiently close to the same-type solutions at the preceding iterations.
The closeness is expressed in terms of the respective functional spaces, which is sim-
plified by Theorem 4, giving just the absolute difference between the trend-defining
coefficients of the strategies from the neighboring solutions. These distances should
be decreasing once they are smoothed with respective polynomials of degree 2.

A question of the game finite approximation for cases of nonlinear strategy spaces
(when, say, the player’s strategy space is of parabolas or cubic polynomials) is believed
to be answered in the similar manner. Nevertheless, some peculiarities concerning the
continuity of the payoff functionals may weaken the impact of Theorem 2 and Theo-
rem 3. Despite this, the game finite approximation will definitely have an expansion
in order not to admit the above-mentioned Einstellung effect in modeling economic
interaction processes, where players use short-term time-varying strategies of various
types.
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