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ABSTRACT: The aim of the paper is to provide sufficient conditions for
starlikeness of order a for meromorphic m-valent functions in the punc-
tured disc. The present work is based on some results involving differential
subordinations.

AMS Subject Classification: 30C45
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1 Introduction and preliminaries

Let 3, denote the class of functions of the form

1 %)
f(Z) =— + Z am+n—1zm+n71, m € N* (11)

m
n=1

which are analytic and m-valent in the punctured disc
U={2€C: 0<|z| <1} =U\{0}.

A function f € %,, is said [1] to be in the class () of meromorphic m-valently
starlike functions of order « in U if and only if

!
Re {Zf(z)}>a, zeU, 0<a<m, meN*, (1.2)
f(z)
We denote ,,(0) = Q.
The following definitions and lemmas will be used in the next section.
Let H(U) denote the space of analytic functions in U. For n a positive integer
and a € C let

Ho={fEHU): f(2)=an2" +an 12" +...} (1.3)

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszow, Poland



6 Adriana Catas
and
Hla,n) ={f € HU): f(z) =a+anz" +an1z" +... }. (1.4)

For two functions f and g analytic in U, we say that the function f(z) is subor-
dinate to g(z) in U and write

f=<g or f(z)=<g(z), z€U
if there exists a Schwarz function w(z), analytic in U with
w(0)=0 and |w(z)|<1, z€U,

such that
f(z) =g(w(z)), zeU. (1.5)

In particular, if the function g is univalent in U, the above subordination is equiv-
alent to

f(0) =g(0) and f(U) C g(U).

Lemma 1.1 [2] Let m be a positive integer and let o be real, with 0 < o < m. Let
q € H(U), with ¢(0) =0, ¢'(0) # 0 and

W)\ e
Re <1+ 70 ) > — (1.6)
Define the function h as
h(z) = mzq'(2) — aq(z). (1.7)
If pe Hy, and
2p'(z) — ap(z) < h(z) (1.8)

then p(z) < q(z) and this result is sharp.

Lemma 1.2 [3] Let n € N*, let o € [0,1] and let

- n+1l—a
Mn(a)i\/(n—i-l—a)2+0¢2+1—oz' (1.9)
If the function f(z) of the form
f(z) = % + gakzk (1.10)
satisfies the condition
|22f(2) + (1 —a)z2f(2) + a| < My(a), z€U (1.11)

then

JEOR
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2 Main results

Theorem 2.1 If f € ¥,,,, m € N*, on the form

I =
flz) = e + Z apz
k=m
and satisfies the condition
(1 — a)mz™f(2) + 2" f'(2) +am| < M, a€]0,2) (2.1)
then
m —1 _— 2.2
) =1l < s (2.2
and this result is sharp.
Proof. If we let
p(z) =2"f(z) -1 (2.3)
then p € Hap, and (2.1) can be rewritten as
|zp' (2) — amp(z)| < M (2.4)
or
2p'(z) — amp(z) < Mz. (2.5)
If we take in Lemma 1.1
Mz
q(2) ma—ay 9€ H(U),

/!
o (149 0

q'(2)

then from (1.7), h(z) = Mz and the result follows from Lemma 1.1, that is p(z) < ¢q(z)

m Mz
z f(z)—1<7m(2_a)
m M
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Theorem 2.2 Let m e N*, 0 < a < and let

+1
B m(2 —a)(m— a)
M(m, @) = m(l—a)—a+m(m—a)y/a?+(2—a)? (2:6)

If f € X, satisfies the condition

(1= @)ma™ f(2) + 2™/ (2) + am| < M(m, o) (2.7)
then f € Q).
Proof. Let
0< M < M(m,a), (2.8)
where M (m, «) is given by (2.6), and suppose that f € ¥, satisfies the condition
(1 —a)ymz"f(2) + 2" f'(2) + am| < M. (2.9)
If we set
P(z) = 2" f(2), (2.10)
then by Theorem 2.1 we obtain
|P(z) — 1] < m(QJM—a) =R, zeUl. (2.11)
From (2.6), we easily deduce R < 1, which implies P(z) # 0, z € U. Hence if we
let
p(z) = —a— zﬁg), (2.12)
then p(z) € H[m — a,2m] and (2.9) can be written in the form
| —p(2)P(2) + [m(1l — o) — a]P(2) + am| < M. (2.13)

We claim that this inequality implies Re p(z) > 0, z € U. If this is false, then
there exists a point zg € U, such that p(zg) = ip, where p is real. We will show that
at such a point the negation of condition (2.13) holds, that is

| —ipP(z0) + [m(1 — a) — a]P(z0) + am| > M, (2.14)

for all real p.
If we let Py = P(zp), one obtains

| —ipPo + [m(1 — a) = o] Py + am[* = p*| Po|* + [m(1 — @) — af*| Po[*

+a?m? 4 2am[m(1 — o) — a]Re Py + 2amplm P.
The inequality (2.14) is equivalent to

E = p?|Py]? + 2ampIm Py + [m(1 — o) — o?| Po|* + a®m?+ (2.15)
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+2am[m(1 — a) — a]Re Py — R*m?(2 — a)? > 0.
Since from (2.11) we have
|[Po)) >1—R and Re Py >1-R,
from (2.11) and (2.15) one obtains
E > |Py*p? + 2amIm Pyp + [m(1 — a) — a)*(1 — R)*+

+a?m? 4 2am[m(1 — a) — a](1 — R) — R*m?(2 — a)?.
Hence £ > 0 if

o?m?*(Im Py)? < |Po)*{[(m(1 — a) — ) (1 — R) + am]® — R*m?*(2 — a)*} (2.16)

or
o*m?*(Im Py)? < |Po)*{[m — a — [m(1 — a) — o] R]* — R*m?(2 — a)*}. (2.17)
A simple geometric argument shows that the inequality (2.11) implies
(Im Py)* < R?*|Py|? (2.18)
By comparing (2.17) and (2.18) we deduce that (2.14) holds if
?m?R?* < {m —a—[m(l —a) — a]R}* — R*m?*(2 — a)? (2.19)
or
R*{a*m? + m?(2 — a)? — [m(1 — o) — a]®}+ (2.20)

+2(m — a)[m(l —a) —a]R— (m —a)? <0
This last inequality holds if R < Ry, where
Ro = n-d L 0<a< 2 (2.21)
m(l—a)—a+my/a?+ (2 —a)? m+1

that is M < M(m, ).
Thus we have a contradiction of (2.13), therefore Re p(z) > 0, z € U and f €
Q). O

Remark 2.1 Note that for the special case m = 1, a = 0, the value M (1,0) = 2/3
is the same with that obtained from (1.9) Lemma 1.2: M;(0) = 2/3.

We obtain the following criterion of starlikeness for meromorphic m-valent func-
tions.

Corollary 2.1 Let m € N* and let f € X, satisfies the condition

() + ) < (2.22)

then f € Q7.
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Since a function f € ¥, can be written as
1

where g € H,,,, Theorem 2.2 can be rewritten in the following equivalent form, that
is useful for the other results.

Corollary 2.2 Let m e N*, 0 < a <

™ and let f € X, have the form
m-+1

where g € Hy,. If
(1 —a)ymz"g(z) + 2" (2)| < M(m,a), z€U (2.24)
where M (m, a) is given by (2.6), then f € Q. (a).
This form has an interesting interpretation in terms of integral operators. If we let
h(z) = (1 —a)mz"g(2) + 2™ g (2), (2.25)

then
1

z
9() = —a=aym / h(t)t~(Fam) g (2.26)
Z 0

which leads to the following result.

Corollary 2.3 Let h € Hap, and M(m, ) is given by (2.6) with 0 < a < mnjr 1 If
h satisfies the condition
[h(z)| < M(m,a), z€U (2.27)
then ) ) ;
_ - - —(1+am)
flz) = p; + —aym /0 h(t)t dt € Q). (2.28)
Example 2.1 For the Corollary 2.3 we consider the following function
h(z) = az®(z — sin 2) (2.29)

Since h € Hg we deduce that m = 3 and we choose for « a value such that

2
0<ax< mm 1 Let the value be o = 3" Then, from (2.28) we get
1 a "3 : -3
flz)==+— [ 2@t —sint)t™>dt (2.30)
z Z Jo
or )
1) =< (1 — 2asin® g) + C;—Z (2.31)
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From (2.27) we obtain

Ih()] < M(m,a) = M (3, g) . (2.32)

The above inequality leads to the relation

249 —1
jaz3||z — sin 2| < a| SF2C (2.33)
2e
The condition (2.32) will be satisfied if
249 —1 21
o] S22 < , (2.34)
2e 14 7v20
and we obtain 19
la| < c —0.208...

(2 + €2 — 1)(1 + 7v/20)

1
Hence, if we take a = 1 we conclude that

f(z):i(l—;sin2;>+§€§23 (;)
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1 Introduction
Let A denote the class of functions which are analytic in U = U(1), where
U(r)={z€C:|z| < r}.

and let A (p, k) (p,k e N={1,2,3...}, p < k) denote the class of functions f € A of
the form

oo
f(z) = ap2? + Z anz" (2 €U; a, > 0). (1)
n=~k
For multivalent fuction f € A (p, k) the normalization
1) =0 and 1) =1. (2)
Zp_l z=0 2P z=0

is clasical. One can obtain interesting results by applying normalization of the form

=0 and F(2)

p—1 P
< 2=0 Z z2=p

~1. (3)

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszow, Poland



14 Jacek Dziok, Anna Szpila

where p is a fixed point of the unit disk /. In particular, for p = 1 we obtain Montel’s
normaliztion (cf. [1]). We see that for p = 0 the normalization (3) is the clasical.
We denote by A, (p, k) the classes of functions f € A (p, k) with the normalization
(3). Tt will be called the class of functions with two fixed points.
Also, by T (p,k;n) (n € R) we denote the class of functions f € A (p, k) of the
form (1) for which

arg(a,)=m+(p—-n)n (n=kk+1,..). (4)

For n = 0 we obtain the class T (p, k; 0) of functions with negative coefficients. More-
over, we define
T (p,k):={J T (p,kim) . (5)
neR

The classes T (p, k) and T (p, k;n) are called the classes of functions with varying
argument of coefficients. The class T (1,2) was introduced by Silverman [2] (see also

3)-
Let oo € (0,p), r € (0,1). A function f € A(p,k) is said to be convex of order

a in U(r) if and only if

2f"(2)

f'(z)

A function f € A(p,k) is said to be starlike of order o in U(r) if and only if

Re (1—1— ) >a (zeU(r)).

Re (fo(g)> >a (zeU(r)). (6)

We denote by S ¢ («) the class of all functions f € A(p,p + 1), which are convex of
order a in U and by S ; (a) we denote the class of all functions f € A(p,p+1),
which are starlike of order a in Y. We also set

8¢ =87(0) and §* = S7(0).

It is easy to show that for a function f from the class T (p, k) the condition (6) is
equivalent to the following

2f'(2)
f(2)

—p\ <p-a (zeU). (7)

Let B be a subclass of the class A (p, k). We define the radius of starlikeness of
order o and the radius of convexity of order o for the class B by

R,(B) =
Ro(B) =

}ng (sup{r € (0,1] : f is starlike of order o in U(r)}),

€

}ng (sup {r € (0,1] : f is convex of order « in U(r)}),
€

respectively.
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We say that a function f € A is subordinate to a function F' € A, and write f(z) <
F(z) (or simply f < F'), if and only if there exists a functionw € A (Jw(z)| < |z|, z€U) }
such that

f(z) = Fw(z)) (z€ U).

In particular, if F' is univalent in U, we have the following equivalence.

f(z) < F(z2) <= f(0) = F(0) and f(U) C F(UU).
For functions f,g € A of the form

Zanz and g(z sz

by f * g we denote the Hadamard product (or convolution) of f and g, defined by
(f*g) Z anbnz™  (z€U).

Let 7,0 be real parameters, 0 <y <1, § > 0, and let ¢, ¢ € Ao (p, k) .
By W (p, k; ¢, v;, ) we denote the class of functions f € A (p, k) such that

(x f)(2) #0 (z €U\{0}) (8)

e 6+ 1)(2) N
ES z * V4
5 - .
Re{(w &) ”}> ‘w*f)(z) 1‘ el ®)
Also, let us denote
TW (p,k; 6,07, 0) =T (p, k) "W (p, k; ¢, 057, 6),
TW (p, ks ¢, 037,65m) =T (p,k;n) "W (D, k; 6, 037,0)
TW, (p, k; b, 0;7,05m) =A, (0. k)NTW (p,k; b, 0:7,03m)
TW, (p, k; &, 057, 9) = A, (p, k) NTW (p, k; ¢, 0:7,9) .

For the presented investigations we assume that ¢, ¢ are the functions of the form
oo o0
=2+ ", d(z) =2+ B2 (z€U), (10)
n=k n=~k

where
0<a,<fB, (m=kk+1,..).

Moreover, let us put

=48, -+ an (m=kk+1,.). (11)
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The families W, (p, k; ¢, ¢;7,0;m) and W, (p, k; ¢, ¢;, ) unify various new and
well-known classes of analytic functions. In particular, the class

20 (2
W, (57, 95m) :=Wp( ks s@p( )#P(Z)Wﬂs;ﬂ),

contains functions f € A, (p, k), such that

(S e hE e | een

The class
Hr (p57,0) == TWo (1,2;¢;7,0;0)

was introduced and studied by Raina and Bansal [4]. If we set

h(al’z) = Zqu(al,...,Oéq;ﬁl,...768;2)7

where . F} is the generalized hypergeometric function (see for details [5] and [6]), then
we obtain the class

UH (g,5,N,7,0) :=TWo (1,2 Ah(ag +1,2) + (1 = A) h(ay,2);7,8;0)  (0<A<1)
defined by Srivastava et al. [7]. The classes

WO (1727 12:77a5> )
—Z
z
2% 1a2777 75 )
( -2 )

are the well-known classes of of d-starlike function of order v and J-uniformly convex
function of order 7, respectively. In particular, the classes UCV := UCV (1,0),
0 —UCV :=UCV(4,0) were introduced by Goodman [8] (see also [9, 10, 11]), and
Kanas and Wisniowska [12], respectively.

Many other classes, are also particular cases of the class investigated here, see for
example [13, 14, 15].

The object of the present paper is to investigate the coefficients estimates, distor-
tion properties and the radii of starlikeness and convexity.

5 —UST (v)

0 —UCV (v)

2 Coefficients estimates

We first mention a sufficient condition for the function to belong to the class
W (p, k; ¢, 05, 6).

Theorem 1 Let {d,,} be defined by (11), and let 0 < v < 1. If a function f of the
form (1) satisfies the condition

S dolanl < (1-7) ay, (12)
n=~k

then f belongs to the class W(p, k; ¢, @;,9).
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Proof. By definition of the class W (p, k; ¢, ¢;v,9) , it suffices to show that

@xNG) | g f@xN(z) I
6‘<¢*f><z> 1‘ R{wf)(z) 1}“ 7 (zeld). (13)

Simply calculations give

e A (i)

S (B — ) [an]|2]7
< (6+1)‘W—1‘<(5+1)”="‘ .
(o= f)(2) ap — ioj un|an ||z —P
n==k

Now the last expression is bounded above by (1 — ) if (12) holds. Whence f €
W(p, k;9,0;7,6). R

Our next theorem shows that the condition (12) is necessary as well for functions
of the form (1), with (4) to belong to the class TW (p, k; ¢, ;7,03 1).

Theorem 2 Let f be a function of the form (1), satisfying the argument property

(4). Then f belongs to the class TW (p, k; b, v;7,0;m) if and only if the condition
(12) holds true.

Proof. In view of Theorem 1 we need only show that each function f from
the class TW (p, k; ¢, ¢;7,9;n) satisfies the coefficient inequality (12). Let a func-
tion f of the form (1), satisfying the argument property (4) belong to the class
TW (p, k; &, 037, 6;m). Then by (9), we have

o0 oo
apz? + 3 B,an2" apz? + Y Bhanz”
n=~k n=k
o — —1| <Re — -Y7,
apzP + Y ananz” apzP + Y apanz®
n=k n==k

or equivalently

oo o0
> By —an)anz"P (1- 'Y)QP + > (B —yan) anz"7?
p L — < Re n=k
ap+ > papz" P ap+ > apapz"P
n==k n=~k

In view of (4), we set z = 7¢" (0 < r < 1) in the above inequality to obtain

Zk5 (B — an) lan| =P (1- 'V)GP - Zk (B, —yan) lan|r"=P

ap — Y. Oy lap| TP ap — Y. Qplap|rmP
n=~k n=k
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Thus, by (8) we have

oo

ST U6 +1) B, — (5 +7) ] lanlr™ P < (1—7)ay,

n=~k

which, upon letting r — 1 ~, readily yields the assertion (12). H
By applying Theorem 2 we can deduce following result.

Theorem 3 Let f be a function of the form (1), satisfying the argument property
(4). A function f of the form (1) belongs to the class TW, (p, k; ¢, ¢;v,8;m) if and
only if it satisfies (3) and

> (dn = (1= lpl" ") lan <17, (14)

n==k

where {d,} is defined by (11).

Proof. For a function f of the form (1) with the normalization (3), we have

)
ap =1+ laa o7 (15)
n=~k

Applying the equality (15) to (12), we obtain the assertions (14). H
Since the condition (14) is independent of 1, Theorem 3 yields the following the-
orem.

Theorem 4 Let [ be a function of the form (1), satisfying the argument property
(4). Then f belongs to the class TW, (p, k; ¢, v;7,0) if and only if the condition (14)
holds true.

By applying Theorem 3 we obtain the following lemma.

Lemma 1 Let {d,} be defined by (11), p € U, and let us assume, that there exists
an integer ng (ng € Ny = {k,k +1,...}) such that

dny — (1 =) p|""" £ 0. (16)
Then the function
Frg(2) = (1 + ap"o_p) 2P — qet(P—no)n no

belongs to the class TW, (p, k; ¢, 0;7,0;n) for all positive real numbers a. Moreover,
for alln (n € Ny) such that

dp — (1=7)|p|" 7" >0, (17)
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the functions
fa(2) = (1 +ap™ =P + b2"7P) 2P — qe'PTmoIn gm0 _ peilp=minn
where
1=+ (A=) T~ dn ) @
dn — (1 =) [p["™"
belong to the class TW, (p, k; ¢, ¢;7v,0;m) .

)

By Lemma 1 and Theorem 3, we have following corollary.

Corollary 1 Let a function f of the form (1) belongs to the class
TW,(p, k; &, ¢;7,0;m) and let {d,,} be defined by (11). Then all of the coefficients a,
for which

dp—(1=7)p|" " =0

are unbounded. Moreover, if there exists an integer ng (ng € Ny = {k,k+1,...}) such
that
dng — (1 =) p["7" <0,

then all of the coefficients of the function f are unbounded. In the remaining cases

-y
(T=)]pl""

The result is sharp, the functions f,, of the form

an| <
oul £ —

_ dpa? — (1 — ) ellPmngn

dp — (1 =) |p" ™"

are the extremal functions.

fnan(2) (zeld; n=k,k+1,...)

Remark 1 The coefficients estimates for the class TW,, (p, k; ¢, ¢;7,0) are the same
as for the class TW, (p,k; ¢, ¢;7,0;n).

By puting p = 0 in Theorems 3 and 4, and Corollary 1, we have the corollaries
listed below.

Corollary 2 Let f be a function of the form (1), satisfying the argument property
(4). A function f of the form (1) belongs to the class

TWo (p, k3 &, 037, 6;m) if and only if
Z dnlan| <1 -7, (18)
n=~k

where {d,} is defined by (11).
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Corollary 3 Let f be a function of the form (1), satisfying the argument property
(4). Then f belongs to the class TWy (p, k; ¢, v;7, ) if and only if the condition (18)
holds true.

Corollary 4 If a function [ of the form (1) belongs to the class
TWo (p, k; ¢, 037, 05m), then

1—
jan] € — (n=kk+1,..), (19)

n

where d,, is defined by (11). The result is sharp. The functions f, , of the form

1— .
fn,n(z) =2P - Tfyez(p—n)nzn (ZEZ/{; n:k,kﬁ-i-l,) (20)

n

are the extremal functions.

Corollary 5 If a function f of the form (1) belongs to the class TWo (p, k; ¢, ©;7,9),
then the coefficients estimates (19) holds true. The result is sharp. The functions fy, ,,
(n € R) of the form (20) are the extremal functions.

3 Distortion theorems

From Theorem 2 we have the following lemma.

Lemma 2 Let a function f of the form (1) belong to the class TW, (p, k; ¢, ¢;7,0;7) .
If the sequence {d,,} defined by (11) satisfies the inequality

0<dy—(1=)[p/" " <dy— (1= """ (n=kk+1,..), (21

then

o0 1 _
Z |an| S ! k—p"
ot dr. — (1 =) |pl

Moreover, if

B €)1 R P € 1
k - n

0 (n=kk+1,..), (22

then

ad k(1—
Zn|an| < (1=7) prl
ik di — (1 =) |pl

Remark 2 The second part of Lemma 2 we can rewritten in terms of o-neighborhood

N, defined by

Ng:{f(z)zapzp—i—Zanz"ET(p,k‘;n): Zn|an|§a}

n=k n==k
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in the following form:
if the sequence {dy,} defined by (11) satisfies (22), then

TW, (p, k; ¢, 037,0;m) C No.

where

__ kKA=-7
di = (1 =) [p|*™?

Theorem 5 Let a function f belong to the class TW,, (p, k; ¢, ¢;7v,0;n) and let |z| =
r < 1. If the sequence {d,} defined by (11) satisfies (21), then

dgr? + (1 — ) rk

o(r) < |f(2)] < —» (23)
di = (L=7) |p/"™"
where <)
rP rsp
¢(r) = { dyer? —(1—)r* (24)
de—aere (>0
Moreover, if (22) holds, then
1— P 1— k—1
paprp—l i k ( 7) Tk_l < |f/(Z)‘ < pdr? +k ( 7) r ) (25)

dp — (1 =) [p|"" dp — (1 =) [p|""
The result is sharp, with the extremal function fi, of the form (20) and f(z) = z.

Proof. Suppose that the function f of the form (1) belongs to the class
TW, (p, k; ¢, ¢;7,0;n). By Lemma 2 we have

o0 o0
] =|ape? + ¥ anzn| <rv (ap+ > |an|r”‘”>
n=k n==k
o0 oo
= <1+ 5 Janl |7 + 3 )
n==k n==k

k— — = dprP+(1—~)r"
ST’p (1+(|p| p+7’k p) Z |an|> S %,

n=~k
and
f(2)] =7 ( = lau ) - (1 +3 (ol =) |an|> - (26)
n=~k n==k

If r < p, then we obtain |f(z)| = r?. If r > p, then the sequence {(p"~! —r""1)} is
decreasing and negative. Thus, by (26), we obtain

o (1 (kp .= dkrp—(l—v)r’“’
|f(z)|_r< (r ol );a>—dk_(1—7)|p|’“‘p

and we have the assertion (23). Making use of Lemma 2, in conjunction with (15),
we readily obtain the assertion (25) of Theorem 5. W
Theorem 5 implies the following results.
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Corollary 6 Let a function f belong to the class TW, (p,k; ¢, ¢;v,9). If the se-
quence {d,} defined by (11) satisfies (21), then the assertion (23) holds true.
Moreover, if we assume (22), then then the assertion (25) holds true. The result is
sharp, with the extremal functions fr, (n € R) of the form (20).

Corollary 7 Let a function [ belong to the class TWq (p, k; &, p;7,0;m) and let the
sequence {d,} be defined by (11). If

dp <dp, ((n=kk+1,...), (27)
then 1 1
- < @) <t (e =1 <), (28)
k
Moreover, if
nd <kd, (n=kk+1,...), (29)
then
k(11— k(1 —
prP=t — 7( 7 7)1“’“_1 <I1f'(2)] < prP=t 4 %rk_l (lzl=r<1). (30)
k k

The result is sharp, with the extremal function fi.,, of the form (20).

Corollary 8 Let a function f belong to the class TWy (p, k; ¢, v;7, 6). If the sequence
{d,} defined by (11) satisfies (27), then the assertion (28) holds true. Moreover,
if we assume (29), then then the assertion (28) holds true. The result is sharp, with
the extremal functions fr, (n € R) of the form (20).

4 The Radii of convexity and starlikeness

Theorem 6 The radius of starlikeness of order o for the class TW (p, k; ¢, v;7, 6;n)
s given by

. (p—a)d, P
* . . . — f 1
R (TW (ks b)) = int (2298077 )
where d,, is defined by (11). The functions fy , of the form

1 —~ .
fan(2) =ap <zp — fye“”””’z") (zeU; n=k,k+1,...;5a, >0) (32)
are the extremal functions.

Proof. A function f € T (p,k;n) of the form (1) is starlike of order o in the disk
U(r), 0 <r <1, if and only if it satisfies the condition (7). Since

5 (n— pagz" § (n = p) [an] |27

<

o0 o0 _
apzP + Y. apz" ap— > lanllz]""
n=~k n=~k

3

') ‘ _|&
i)
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putting |z| = r the condition (7) is true if

S a7 <y, (33)
n==~k p
By Theorem 2, we have
e} dn
Z 1— lan| < ap, (34)
n==k v

Thus, the condition (33) is true if

n_ar”_p§ dn (n=kk+1,...),
p—a -~
that is, if
@—w¢l)n%
r< | —" n=kk+1,..). 35
(maﬂlw ( (35)

It follows that each function f € TW (p, k; ¢, v;,d;n) is starlike of order @ in the

disk U(r), where
_ s (p—a)d, =7
= ((n—a)(l—’y)

The functions f, , of the form (32) realize equality in (34), and the radius r can not
be larger. Thus we have (31). W
The following result may be proved in much the same way as Theorem 6.

Theorem 7 The radius of convezity of order v for the class TW (p, k; ¢, ©;7,6;n)
s given by

C . . . — 3 (p _ Oé) dn o
Ra (TW(p7k7¢aS&7ﬁya6an))7ég€c <n(n_a) (1_7)) ’

where d,, is defined by (11). The functions f,, of the form (32) are the extremal
functions.

It is clear that for p
ap - 2 n—p > O
dn — (L=7)1p|
the extremal functions f,, ,, of the form (32) belong to the class TW, (p, k; ¢, ©;7, ;).
Moreover, we have

TW, (p, ks ¢, 057, 8;m) CTW (p, ks ¢, 057, 6;m) -

Thus, by Theorems 6 and 7 we have the following results.
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Corollary 9 Let the sequence {dn —(1—9) |p|"_p}, where d,, is defined by (11), be
positive. The radius of starlikeness of order a for the class TW, (p, k; ¢, p;y,0;n) is
given by

Ro (TW, (0. k: 6,917, 83m)) = tnf (%) o

The functions f, ., of the form (32) are the extremal functions.

Corollary 10 Let the sequence {dn —(1—-7) \p\"_p}, where d,, is defined by (11),

be positive. The radius of convezity of order o for the class TW, (p, k; ¢, ¢;7, ;1) is
given by

. b o S = (p=a)dn )™
Ra(TWp(p7k7¢7(pa'7767n))_;r;flg(n(na)(lry)) ’

where d,, is defined by (11).

Remark 3 We conclude this paper by observing that, in view of the definitions of
investigated classes which is expressed in terms of the convolution of the functions
in (10), involving arbitrary sequences, our main results can lead to several additional
new results. In fact, by appropriately selecting these arbitrary sequences, the results
presented in this paper would find further applications for the class of analytic func-
tions which would incorporate linear operators. Some of these results were obtained
in earlier works, see for example [16, 17, 18, 19, 20].
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ABSTRACT: In this paper we are concerned with the mixed type inte-
gral inclusion

z(t) € p(t) +/O k(t, s) F1(57Iﬁf2(871'(8)))d87 t €[0,1].

The existence of monotonic continuous solution will be proved. As an
application the initial-value problem of the arbitrary (fractional) orders
differential inclusion

dz(t)
dt

1
€ p(t) +/ k(t,s)Fi(s, D%x(s))ds, a.e., t>0
0

will be studied.
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Key Words and Phrases: Fractional calculus; Caratheodory condition; fixed point
theorem; mized type integral inclusion.

1 Introduction

The existence of monotonic integrable solution for the mixed type nonlinear integral
equation

z(t) = p(t) +/0 k(t,s) fi(s,I? fo(s,x(s))ds, te€[0,1], B>0 (1)

has been studied in [6] where the given function P is nondecreasing on [0, 1] and the
two functions f; and fo are monotonic nondecreasing (in both variables) and satisfy
Caratheodory condition.

COPYRIGHT (© by Publishing Department Rzeszéw University of Technology
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Here we relax the condition of monotonicity on the two functions f; and fo and
prove the existence of positive continuous solution of (1).

When the given function p is nondecreasing and the kernel k(¢, s) is nondecreasing in
t, t € [0,1], we prove that the solution of (1) is nondecreasing.

As a generalization of our results we study the existence of positive monotonic con-
tinuous solution of the mixed type integral inclusion

1
x(t) € p(t) Jr/o k(t,s)Fl(s,Iﬁfg(s,z(s)))ds, te[0,1], 8>0 (2)

where the set-valued map F'(t,.) is lower semicontinuous from R™ into R* and F(.,.)
is measurable.
Finally the differential inclusion of arbitrary (fractional) orders

dx(t !
xdi) € p(t) +/ k(t,s)Fi(s, D%z(s))ds, a.e., t>0 (3)
0
with the initial data
z(0)=xz, >0 (4)

will be studied.

2 Preliminaries

Let L'(I) be the class of Lebesgue integrable functions defined on the interval I =
[a, b], where 0 < a< b < 0o and let I'(.) be the gamma function.

Definition 2.1 The fractional integral of the function f € L!(I) of order a € R™ is
defined by ([7], [9] and [12])

ﬁf@=/wﬂw4ﬂ$@

Definition 2.2 The (Caputo) fractional derivative D® of order a € (0,1] of the
absolutely continuous function g is defined as ([2], [9], [10] and [12])

d
g g(t) =127 L gt) . € [ad],

Now, we shall state the following theorems which are used in the sequel.

Theorem 2.1 Schauder’s fixed-point Theorem [§]
Let S be a convex subset of a Banach space B, let the mapping 7 : S — S be
compact and continuous. Then T has at least one fixed-point in S.
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Theorem 2.2 Arzela -Ascoli Theorem [4]

Let E be a compact metric space and C(FE) be the Banach space of real or complex
valued continuous function normed by

[fIl = sup [£(2)]-
tek

If A= {f.} isasequence in C(E) such that f, is uniformly bounded and equi-
continuous, then A is compact.

3 Main results

Let C(I), I =[0,1] be the class of continuous functions defined on I.
In this section we present our main result by proving the existence of monotonic

positive solution = € C(I) for the mixed type integral equation (1).
To facilitate our discussion, let us first state the following assumptions:

(i) p:[0,1] — RT is continuous. There is a positive constant p such that |p(t)| < p.

(i) fi:[0,1] x RT — R*, i = 1,2 satisfy caratheodory condition i.e. f is measur-
able in ¢ for any z € R and continuous in x for almost all ¢ € [0, 1].
There exist two functions a1, as € L' and two positive numbers by, by such that

Ifi(t,2)| < a;(t) + bijz|, i=1,2 V ¢t €[0,1] and x€ RT.

(iii) k:[0,1] x [0,1] — R™ is continuous in ¢ for any s € [0,1] and measurable in
s for any t € [0,1] such that

1 1
/ k(t,s)(a1(s) + bi1Pas(s)) ds < M; and / k(t,s)sPds < M,.
0 0
(iV) bl bg My < F(ﬁ—F 1)

Remark: It must be noticed that assumption (iii) implies that the two functions

/1 k(t,s)(a1(s) + b1I%as(s)) ds and /1 k(t,s)sPds.
0 0

are continuous in ¢, t € [0,1].

Now, we are in position to formulate and prove our main result.
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Theorem 3.1 Let the assumptions (i)-(iv) be satisfied. Then equation (1) has at
least one positive solution = € C(I).

Proof Define the subset S of C(I) by

S={zeC : |z@®)|< r}, te]0,1],

where r is a positive constant. It is clear that S is closed and convex.
Let T be an operator defined by

1
(Tw)(t) = p(t) + / k(t,8)f1(s, 17 fals,a(s)))ds ¥ @ € S. (5)

Assumption (ii) implies that T : S — C is continuous in z.
Now for every = € S we have

|(Tz)(t)| < |p(t)] +/O k(t,s) |fi(s, I? fa(s,z(s)))|ds
1
<p+ [k )+ bl s al)]ds
0
<+ /0 k(t, $)a1 (s)ds + b1/0 k(t, )P [as(s) + bola(s)[]ds
<p+ /0 k(t,s)[a1(s) + bil%as(s)]ds + b1b2/0 k(t,s) I?|x(s)|ds

bib
<p+ M o+ 2 /kts )sPds

T(B+1)
b1b2 M2 r
< + M, + ————.
= p 1 F(ﬂJrl)
Therefore,
b1b2 M2 T
Tx)(t)| < + My + ————. 6
(@O < p o+ M+ FET (6)
From the last estimate we deduce that
b1ba Mo )
= + M
r=0 1)< T(B+1)



Monotonic continuous solution for a mixed type ... 31

and Tx € S and hence T'S C S.
Also for t1,t5 € [0, 1] such that ¢; < tg, we have

(Tz)(t2) — (Tx)(t1) =p(t2)—p(t1)+/o (k(ta, s) — k(t1,5)) fi(s, 17 fa(s, 2(s)))ds.
Then

|(Tz)(t2) — (Tx)(t1)| < [p(t2) — p(ta |+/ k(t2, s) — k(t1, s)| fi(s, 17 fa(s, 2(s)))|ds
< Ip(ta) — p(t1) |+/ le(ta, 5) — k(t1, 5)|[as(s) + ba | I° fa(s, o(s))[|ds

< |p t2 tl |+/ |]€ tQ, tl S |a1( )ds

+b1/ e(ta, 5) — k(tr, $)1T° fols, 2(s))|ds

< Ip(ta) — plts |+/ le(ta, 8) — k(ty, 8)|as (s ds+b1/ le(ta, 5) — k(t1, 5)|IPas(s)ds

+ blbg/ |k(ta, s) — k(t1, s)|I°|x(s)|ds
0

< |p tz tl | + / ‘k tQ, tl S | [al(s) +b1]ﬁa2(s) ] ds

+ blbgT/ ‘k’ t2 S tl |/

<|p(t2) — p(t1)] + / |k(ta, s) — k(t1, 9)] [a1(8)+b115a2(s) | ds

des

b1b
Bljrrl / |k(ta, s) — k(t1, s)|s"ds.
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From the last inequality, the continuity of the function p and assumption (iii) we
deduce the equicontinuity of the functions of T'S on [0,1]. Then by Arzela-Ascoli
Theorem the closure of T'S is compact.

Now, all conditions of Schauder’s fixed-point Theorem are hold, then 7" has a fixed
point in S. Hence there exists at least one positive solution z € C(I) of (1).

Corollary 3.1 Let the assumption (i)-(iv) are satisfied. If the function p is non-
decreasing and k is nondecreasing in ¢ € I, then the solution of (1) is nondecreasing.
Proof For ti,t5 € I and t; < ty, we have

1
o) = pltr) + / k(t1,) fu(s, I fa(s, 2(s))) ds
< plta) + / K(ta.5) f1(5. 1% fo(s, 2(5))) ds = x(ts).

4 Mixed type integral inclusion

Consider now the integral inclusion (2), where Fj : [0,1] x RT — 2%" has nonempty
closed convex values.
As an important consequence of the main result we can present the following;:

Theorem 4.1 Let the assumptions of Theorem 3.1 are satisfied and the multi-
function F satisfies the following assumptions:

(1) Fi(t,x) are non empty, closed and convex for all (¢,z) € [0,1] x RT,

(2)
(3)
(4)

4) There exist a function a; € L' and a positive number b; such that

Fi(t,.) is lower semicontinuous from R* into RT,
Fi(.,.) is measurable,

IFi(t,z)] < ay(t) + by 2| ¥V telo,1].

Then there exists at least one positive solution = € C(I) of the integral inclusion (2).

Proof By conditions (1) — (4) (see [1], [3], [5] and [11]) we can find a selection
function f; (Caratheodory function) f; :[0,1] x RT — RT such that fi(t,z) €
Fy(t,z) for all (t,z) € [0,1] x RT, this function satisfies condition (ii) of Theorem
3.1

Clearly all assumption of Theorem 3.1 are hold, then there exists a continuous positive
solution = € C(I) such that

z(t) —p(t) :/0 K(t,s) fi(s, I fa(s,(s)))ds € /0 K(t,s) Fi(s,I? fo(s,x(s)))ds.
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Now, we can easily prove the following Corollary.

Corollary 4.1 Let the assumptions of Theorem 4.1 and the Corollary 3.2 are satisfied,
then the solution of (1) is nondecreasing.

5 Differential inclusion

Consider now the initial value problem of the differential inclusion (3) with the initial
data (4).

Theorem 5.1 Let the assumptions of Theorem 4.1 are satisfied, then the initial

value problem (3)-(4) has at least one positive nondecreasing solution « € C(I).

Proof Let y(t) = dﬁt), then equation (3) transformed to the integral inclusion

u(t) € plt) + / K(t, $)Fi (s, T2 y(s))ds

which by Theorem 4.1 has at least one positive solution y € C(I).
This implies that the existence of the absolutely continuous solution

z(t) = zo + /Oy(s)ds

which is nondecreasing solution of the initial-value problem (3)-(4).
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1 Introduction

The nonlinear composition operator (which is also known as the superposition oper-
ator) is frequently used in many branches of nonlinear analysis and its applications.
In order to define such an operator let us assume that I is a real interval (bounded
or not) and f(t,z) = f : I x R — R is a given function. For an arbitrary function
xz(t) = x : I — R we may assign the function Fx defined as (Fz)(t) = f(t,z(t))
for t € I. The operator F defined in such a way is called the composition operator
generated by the function f(¢,x).

One of the basic problems considered in the theory of composition operator can
be formulated as follows. Let us assume that S(I) is a set (a space, an algebra, etc.)
of some functions acting from I into R. One has to formulate assumptions on the
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function f(¢,z) guaranteeing that the composition operator F' generated by f(¢,x)
transforms S(I) into itself.

Such a problem was solved in a lot of particular cases. We refer to the monograph [1]
for more details concerning that problem.

The second important problem concerning the composition operator depends on
the characterization of operators being Lipschitzian in a suitable function space. Such
a problem in various situations was studied in a lot of papers (for instance [1], [2], [3],
], [6], [7). [8], [11)).

In the paper we investigate the problem of characterization of the composition
operator being a self-mapping of the Banach algebra of functions of two variables
with bounded total variation in the Schramm sense. Namely, we show that such a
composition operator is Lipschitzian if and only if it is affine.

The results obtained in the paper generalize those obtained for example in the
papers [4], [10].

2 Preliminaries

In this section we collect all auxiliary facts which will be needed in the sequel. Let
be R the set of real numbers and Ry = [0,00). A function ¢ : Ry — Ry is said to be
-function if it is continuous on Ry, ¢(0) = 0, ¢ is increasing on Ry and ¢(t) — oo
as t — oo.

Further, let ® = {¢,,} be a sequence of p-functions. The sequence & is called the
D-sequence if ¢, is convex and ¢p41(t) < ¢y (t) for n =1,2,... and for t € R. Apart
from this we assume that these series > ¢, diverge for each ¢ > 0.

Next, let us fix an interval I = [a,b]. Assume that u : [a,b] — R is a given
function. Let ¢, be a ®-sequence of functions. If I, = [an, b,] is a subinterval of the
interval I we write u (I,) = u (b,) — u (a,) (for n =1,2,...).

We say that the function u has the bounded total ®-variation in the Schramm
sense on the interval [a, b] if

S 6 (lu (L) ) < o0

for each sequence {I,} of closed subintervals of I such that the intersection I; N I; is
empty or is a singleton for all 4, j = 1,2,..., 9 # j.

We introduced the ® = {¢y, ,, } bidimensional sequence of increasing convex functions,
such that ¢, ,,(0) = 0 and ¢y m(t) > 0 for t > 0 and n, m = 1,2,.... We shall say
that @ is a ®*-sequence if ¢p/ s (t) < Py, m(t) for each n’ <n, m’ <mand ¢ € [0, o).

If > > ¢nm diverge for t > 0, we will say that @ is a $-sequence.
n=1 m=1
In what follows let us assume that a = (a1,¢1), b = (b1,d1) are two fixed points
in the plane R2. Denote by I° the rectangle generated by the points a and b, i.e.
Ig = [al,bl] X [Cl,dl].
Further, let us take two sequences {I,, }, {J} of the closed subintervals of the intervals
[a1,b1] and [c1,d1], respectively. In other words, I, = [an,by] (n = 1,2,...), Jp, =
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[¢m,dm] (m=1,2,...). Moreover, let ® = {¢,, ,»} be a fixed double ®-sequence and

let w : I; — R be a given function. Now, fix 9 € J; = [c¢1,d;] and consider the
function u(-, z2) : I1 — R. The quantity Vgh defined by the formula

Vq?,[l (u)

sup Z ¢n,m (|u(1na 372)')
n=1

SUPZ‘an,m (|u(bn, x2) — ulan, x2)|) (1)

is called the ®-variation in the Schramm sense of the function u(-,x2). In the case
when ngg’h (u) < oo we will say that u has a bounded ®-variation in the sense of
Schramm with respect to the first variable (with the second one fixed).
In the same way we define the ®-variation of the function wu(z1,-) in the Schramm
sense, which will be denoted by Vg e If Vq;g, 7, (u) < oo then u is said to be a function
with bounded ®-variation in Schramm sense with respect to the second variable (with
the first one fixed).

Additionally, let us explain that the supremum in formula (1) is taken with respect
to all sequences {I,} of the closed subintervals of the interval I;. Obviously, in a
similar way we understand the supremum in the formula of the quantity V¢,37 g
Below we provide the definition of the main concept introduced in [4].

Definition 2.1. The quantity qu v defined by the formula

Vi () =sup Y > b ([u(Tns Jn)|)

n=1m=1

Supz Z ¢n,m (|U(bn, Jm) - u(an, Jm)D

n=1m=1

sup Z Z n,m (|uan, em) + u(bn, dim) — ulan, dm) — u(bn, cm)|)

n=1m=1

is said to be the bidimensional variation in the sense of Schramm of the function wu.
Now, let us set the quantity TV4 by putting

TV (u) = Vi 1, (w) + Va5 g, (u) + Vi o (w). (2)

This quantity is referred to the total ®-variation of the function w in the Schramm
sense. In the case when TV{ < oo we say that u is a function with bounded total
®-variation in Schramm sense.
The set of all functions u : I? — R having a bounded total ®-variation will be denoted
by BV (I%).

Next, let us consider the functional Py defined on the set BV (1Y) by the formula

P<p(f)inf{e>0:TVq§ ({) 31}. (3)
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The main result proved in [4] asserts that the set BV (I%) forms a Banach algebra
with the norm obtained by the formula

1115 = If (@) + Pa(f)- (4)

Our next result depends on the following lemma.
Lemma 2.1. Let f € BVF (1Y) and ® € ®*. Then f has the following properties:

(a) If (t,5), (t',s") € I then |f(t,s) = f(t',s)] < 4oy} (3) Po(f)-
(b) If Ps(f) > 0 then TVE (f/Ps(f)) < 1.

(c) Let 7> 0. Then TVE(f/r) <1 if and only if Ps(f) <

(d) If r >0 and TV (f/Po(f)) = 1 then Ps(f) =

In what follows let us fix arbitrary f € BV{ (18). Then, the function f*: 12 — R
defined by formula

lim  f(y1,y2) if (21,22) € (a1,b1] x (c1,d4],
y1—x1—0
Y2 —>T2— 0

lim  f(y1,y2) if z1 € (a1,b1] and z2 = ¢4,

U1—>11;0
[ (@1, @0) = 2 .
lim  f(y1,y2) if 1 =a; and x5 € (¢1,d4],

y1—ra1+0
ya—x2—0

lim  f(yi,y2) if 2y =a; and 23 =c;
y1—a1+0
Yy2—c1+0

will be called the left-left regularization of the function f.
The existence of all one-side limits used above was proved in the book [5].

In the sequel we will denote by G~ (I%) the class of all left-left regularizations of
the function f € BV (I?). It can be shown that G~ (I?) forms a linear space ([9]).
Apart from this space G~ (I?) has the structure of a Banach space with respect to
the norm

I£1l = sup{|f] : (z,9) € I3}
To present the first result of this paper let us denote by Bti . (I%) the subspace

of the space BV (1Y) containing all functions being left-left continuous on (a1, b1] x
(c1,di].
We have the following result.

Lemma 2.2. If f € BV (1Y) then f* € BVy (I7).
Proof. First, let us note that according to the definition of the left-left regularization,

if f € BV (1Y) then the function f* is left-left continuous on the set (a1, b1] x (c1, d1].
We show that f* € BVg (I0), i.e.

TVE (F*) = Vi, (f) + Vi (F) + Vg pp (f) < oo

(cf. formulas (1) and (2)).
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At the beginning we show that Vq;g,h (f*) < 0.
To do this we fix € > 0 and take a partition 7 of the interval I; generated by the
points a; = to < t1 < --- <t, = b;. Then by virtue of the definition of f* we can
find t; € (tifl,ti) C [tifl,ti] =1I; (Z =1,2,.. .,n) and t6 € (aht’l), So € (C1,d1) cJp
such that
1 _ €
£ b e) = £ (ki e0)| < [ (Hhs0) = F(E-s50)| + gk ().
Hence, keeping in mind that ¢,, ,,, is increasing, we deduce the following estimate

('bnvm (|f*(tla Cl) - f*(ti_l,cl)b
< nan (1000 = 11050 + Jonke (5)

- £ (t,50) = f(ti_gs50)| 1 (b (
= Onm (2[ + -1

2

3n

SN—
~—
—_
~—

2
1 1 1
< g LS50~ sl + 00 (50 (5)). O

which is also a consequence of the convexity of ¢, p,.
On the other hand, since (;S;’lm is concave, we have

2 (2) - e ()
< 2000 (5-)- (6)
From (5) i (6) we obtain

Grm (IF*(tisc1) — fH(tiz1, 1))
S %d)n,m (2 ’f(t;,SO) - f(t;_l,so)‘) + %(bnﬂn ( ;,%rn ( ‘ ))

2m
< Gnom (2170t 50) = F(E1,50)]) + dman (670 (5))
= Gum (2170 50) — Ft1,50)]) + 5

Consequently, we get

k k
Z¢n,m ( f*(jzacl)D S Z(bn,m (2‘f(t:a80)_f(t;71780)|) te
n=1 n=1
< tifl(Qf(',So)) +e
< Vo, (2f(,d)) +e

since ¢; < sg < di. The last estimate allows us to derive the following one

Vi, (£ (o)) < Vip, (2f (- dh)) < oo (7)
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Analogically we can show that

Vi 5 (f*(a1,2) < Vg 5, (2f(by, ) < 0. (8)

In what follows fix two partitions 7y, w9 of the intervals I;, Ji, respectively, i.e.
moiap =tg <ty < <t =0y, M1 =80 <851 << Sy =dy. In view of the
definition of f* we infer that there exist t; € (t;—1,t;) C [ti—1,t:] =1; (i=1,2,...,n)
and s} € (sj-1,5;) C [sj-1,85] = J; (j = 1,2,...,m), tg € (a1,1}), 55 € (c1,5}) such
that

£, jj)‘ = [f"(tic1,85-1) + [ (tiy s5) — ["(tim1,85) — f7(ti,55-1)]

S P $50) (s s5) — F(Ermsh) = £t )|+ ot ().

nm
In a similar way, as earlier, we obtain

Dnm ( df>)
€
< ( |f i—155 ] 1)+f( [ j) f(t27173;)—f(t;73;‘71)|)+%~
This yields
ko1 1
ZZ ( IJD S Zz¢nm 2|f21’]1)+f(2’ j)
n=1m=1 n=1m=1
—ftiy,s5) — f(ti, s5_1)]) + e

Consequently, we get

Ve (F*,13) < Vg (2f,13) + € < oo. (9)
Finally, combining (7), (8) and (9) we derive

TV3 () STV (2f) < o0

which means that f* € BVg*(I(ZL’).
Thus the proof is complete. ([l

3 Main result

In this section we prove the main theorem of the paper.
This result characterizes the composition operator acting from the space BVg (1%)
into itself which is Lipschitzian.

Theorem 3.1. Let ® be convex and let H : BV (1Y) — BVE (1Y) be a composition
operator generated by the function h: I? x R = R, i.e.

(Hf)(t,s) = h(t,s, f(t,5)), f€RM for (t,s) € I.
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If the operator H acts from the space BVg(IS) and is Lipschitzian, then
|h(z,u1) — h(z, uz)| < 6ur — ugl (10)

for all x € I” and uy,us € R, where § > 0 is a constant.
Moreover, there exist functions hg, h1 € BVg)*(Ig) such that

h*(xz,u) = ho(x) + hy(z)u, (11)
for x € I? and u € R. Conversely, if ho, h1 € BVg*(IQ) are functions such that (11)
holds, then H acts from the space BVq;q(If;) into itself and is Lipschitzian.

Proof. Let us fix arbitrarily a,8 € R, a < § and define an auxiliary function
Nos ' R =R

0 for t < a,
t—«

Nas(t) = o for a<t<g, (12)
1 for t > .

Keeping in mind that the operator H : BV (I°) — BV{ (1Y) is Lipschitzian, we infer
that there exists a constant p > 0 such that |Hf; — Hfa|3 < ullfi — f2l|3 for any
f1, fo € BVF(I). The definition of the norm implies

Py(Hf1 — Hfs) < |Hf1 — Hfollg < pllf1 — foll3- (13)

In order to simplify the notation let us put H = Hf; — H fo. Then, in view of (13)
we get

Py(H) < |[H|3 < M||f1 - f2ll3- (14)
If || f1 — fa||3 > O then from Lemma 2.1 (c ) ) we have

TV ( ) 1.
® pllfr — f2||<1>
From the definition of TV(I> , we infer that

Hiver) ) (H ) 1 .
¢"”"(m|f1—fz||g < A - sz<1> =h 15

H(ay,-) ) ( (z1,-) >
¢”’m(u||f1—f2llé = unfl f2||¢ =h

) < (ot
¢’”””(u||f1—f2||g = unfl szcp =t

Thus, for any u;,uz € R and a = (ay,c1), b= (b1,d1), © = (z1,72) € I? we deduce
|h(z1, 22, u1) — h(z1, 22, u2)| = |H(x)
= |H(z1,c1) — H(ar,e1) + H(ar, x2) — H(ar, 1)
+H(ar, e1) — H(ar, x2) — H(zr, 1) + H(z) + H(ar, e1))]
< [H(zr, ) = H(ar, a)| + [H(ar, z2) — H(ar, e1))]
+|H(a1,c1) — H(ar, x2) — H(x1,c1) + H(z)| + |H(a1, c1)]
3bmm(Dpll fr — follg + H(ar, e1)]. (16)

IN
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To prove the inequality (10) we consider the following cases:

i) a1 <z <by and 01<x2§d1,

(
(i) a1 <z <b; and z9=c,
(iil) x1 =a1 and ¢ <o <dj,
(iv) z1=a; and xo=c;.

Case (i). Consider the functions fi, fo € BV{ (IZ) defined by the formulas

Je(yi,v2) = (Nay,zr (Y1) + Ney 2o (Y2)) we such that a1 < y1 < by, ¢ < yo < dy for
¢ = 1,2. Note that fi(a) = fi(a1,¢1) = 0 and fo(x1,¢1) = ug for £ = 1,2, and
[H(a)| = [H(ar,c1)| = 0.

Let ¢ > 0 such that TV (ﬁ;ﬁ) = 1. Next, we get

i (U520 o {5 o (|22 1
SUp{Z¢nm<J‘z> (fi=h)
:
— an)

S (| 750

~

Vi g, ((h;f?)(ah ')>

- sup{iqsn,m (|22 {Jm}}

m=1

) :{In}}
)i, }}

( nvcl) -

anacl)

) :{In}}

(u1 —u2)

Aa €
- up{ini o (|2 1,10 ) {In},{Jm}} -0

Moreover, we deduce

_ b1 — a1 |uy — us|

Grom (1) lz1 — x|
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By virtue of Lemma 2.1 (d), we choose Py (f1 — f2) = € and derive
Ifi — fll2 |(f1 = f2)(a)| + Po (f1 — f2)

b1 — a1| |u1 — us
G (1) |1 — a

Now, employing (17) in the inequality (16) we obtain (10), i.e.

0+

(17)

b1 — ay] Jur — g
Gnm (1) |21 — @
b1 — a1 Jug — us

[h(z,ur) = h(z,u2)] < 3¢y, (1)p

+|H(a, 1)l

= 3u +0

|1 — a1

by —
= §|ug — ug| (Where<5 = 3”1‘11—(Zz11||) .

Case (ii). Define the functions
fe(y1,92) = (May oy (1)) we for £=1,2, a1 <y < b, e <y < da. (18)
Observe that fo(a) = fe(a1,c1) = (May,:(@1)) ue = 0 for £ = 1,2. As in the case (i),

we get
): {In}}

vin (P2 ee) - p{iqsm(\”‘”a)

9
= ¢n,m< )a

Fix some arbitrary € > 0 such that
=g (D) — o (| )

_ b1 — a1 |ug — ug
$rm (1) 21 — a1
Taking Py (f1 — f2) = € and using the Lemma 2.1 (d) we get

‘We obtain

b1 — x| [ur — g
Grm (1) |1 — a1

Employing (19) in the inequality (16) we get (10), i.e.

Ifi—follz = 0+

b1 — ay] [ur — g
Grom (1) |21 — a1

by —
= 0lu; — ug] (Where 0= 3M||acll—zll||) .

[A(z,ur) = Wz, u2)] < 3¢5, (1)u + [H(as, e1)
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Case (iii). In this case we proceed in the analogous manner as in the case (ii),
for which the functions fi, fo € BVg (I (ZL’) are defined by the formulas

fe(y1,y2) = (Mey 2o (Y2))ue for £=1,2, a1 <y1 < by, e1 <yo < ds.
Case (iv). Consider the functions fi, fo € BV (Iab) defined by

ff(ylva) = [2 — Nay by (yl) — Ney,dy (:(/2)] up for £=1,2

SuCh that aq S Y1 S b1 and C1 S Y2 S dl.
Observe that

fl(a) fl(ahCl) = [2 Nay by (al) Nea, d1(61)] UL = [2 —0— O] ug = 2us,
fala) = falar,c1) =[2 = Nayby (@1) — Ny ay (€1)] w2 = [2 — 0 — 0] ug = 2ug,
1) = fi(bi,d1) =2 = Nay by, (b1) = Ney gy (dr)]ur = [2 =1 —1]ug =0,
fob) = fa(br,di) = [2 = Nay by (01) — Ney.ay (d1)]ug = [2 — 1 — 1] ug = 0,
H(a) = h(a,u1) — h(a,uz),
H() = H(bi,d1) =0,
(fl f2) (al’ ) = [2 — Ney,da (dm) -2+ MNey,dy (Cm)] (’LL1 — ’U,Q)
_ [ dm — 1 Cm —C1
T di—a + d1_01:| (ur — u2)
= __dczzn] (Ul —U2),
(= e = |22 (w1~ ua)
(fl - f2) (In; Jm) = 0.
Hence
Vg,h <(f1€_f2)(ln7cl)> = ¢n,m ( @ > s
Vqﬁ-h <(flng)(a17Jm)> = ¢n,m ( @ > ,
Vi 1y <(f1€fQ)(In,J )) = 0.
Therefore
Taking € > 0 such that
1=TVS <f1f2) 2¢n7m((“1“2))’
€ €
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we get the following
_u —us

E=———.

Gnm(1/2)

Now, we select Pg (f1 — f2) = € and by virtue of the Lemma 2.1 (d) we get the
result

_ 20,,(1/2) +1

S
I = folls = =22

lur — ual. (20)
In consequence

|h(a17cl7ul) - h(a1,617u2)| = ‘H(a')l
[H(b1,c1) — H(ar, c1) + H(ar,dr) — H(ar, c1)
+H(ar, 1) — H(ar, di) — H(b1,c1) + H(b1,d1) — H(b1,d1)]

< |H(bi,e1) — H(ar, e1)| + [H(ar, dr) — H(as, 1)
+|H(ar,c1) — H(ar,dr) — H(bi,c1) + H(br,dv)| + |H (b1, dy)|
< 3¢, (Wl fi — follz + [H(b1,dy)|
, 205 7,(1/2) +1
= 3¢nﬁn(1)ﬂm|ul —ug| + 0]
_ 20;70(1/2) +1
= dlup — ug (Where 0= 3¢n"1m(1)u¢’mlm(1/2)> . (21)

From the foregoing cases we conclude that h is Lipschitzian.

Next, we show the estimation expressed in (11). Let us fix arbitrarily z; € (a1, by],
w3 € (c1,d1] and put & = (x1,22) € I°. For each k € N we consider

<o <Pi<ag<fa<az<fz<---<ap<pBr<ux,

a<m<Bi<mm<Be<az<PBz<--<ay <P <

with n : [a1,b1] — [0,1] and 7, : [e1,d1] — [0, 1] two auxiliaries functions defined by
the following formulas

0 for a1y <t <ay,
Mo, .3, (t) for a; <t<p;, i=12,...,k,
k() == L () for fi<t<a o (22)
N804 or 0 =1 = Q+1, t=1,4..., ,
1 for Br <t <b
and
0 for ¢y <s<aj,
_ e 7 (5) for @ <s<PB; i=12,...k
Mi(s) := 1 t — _ o (23)
_nﬁ_,ﬁi+l(8) for B, <s<ayi, t=1,2,...,k—1,
1 for BkSSSdl-
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For any uy,us € R we define the functions f1, fo by

fe(yi,y2) = [=ne(y1) + M (y2)]ur + (2 = Ouz, a1 <y1 < by, e Syo < dy,
where ¢ =1, 2.
We denote the intervals I,, and I, by I, = [o,Bk] C [a1,01] = I and I5, =
[@k, Bi) C [c1,d1] = Jp, then
il = fol) =uz and [|fi = foll§ = [ua]-
Using inequality (15) we have

zk:d)i,m <’H(ﬂ1751) — H(asz)
=1

pll f1 —f2||§

— H(Iakagk) )
< m | |————| | {Lay
< S“p{,;¢k’ (=il }}
S H(Iak7Bk}) ) 1
- (M||f1f2||qs> =t
Thus

Ek:gb |h (ﬂmﬁmfl(ﬂwgz)) —h (517Bz7f2(ﬂ7751)) —h (ai7Bi7f1(aivﬁi))
i pluz|

<1.

+h (v, By, fo(ai, By)) |>

ilus|
Since fl(ﬁiagi) = Uz, f2(/817Bz) = 07 fl(aiagi) = U + Uz, fQ(O[i)Bi) = Ui, we get

from the foregoing estimation
zk:(b |h(/8iaBiau2) 7h(51a5170) *h(OLi,BmUlﬁ“Ug)
o |z ]

i=1

+ M <1. (24)
fulus|

It is great importance to remark that the constant functions of two variables defined
on the rectangle I’ belong to the space Bqu (Ig) since the composition operator
H generated by h acts from BV{ (1Y) into BV (I%) and the functions h(-,u)[z —
h(z,u)] belong to the space BV (I%) for each u € R. On the other hand, we know
from Lemma 2.2 that the regularization left-left in the first two variables h*(-, u)
belongs to the space BV, (1Y) for all uw € R. If we apply limit in (24) when (o, @) =
(1 — 0,22 — 0) we obtain

Xk:qﬁ <| h* (21, 22, u2) — h* (21, 22,0) — h* (z1, 22, u1 + u2)
i,m

— |z

<1

h* ) b)
n (w1, 72,u1) |>

f|uz|
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Without losing generality we fix i =n forn=1,2,...,k

k¢ (| h* (1'1,1'2,1142) - h* (1'1,1'2)0) - h* (mlvaaul + u2)
o ]z

_|_h ($1,I2,U1)|> Sl
|z
Hence
p (|h*(x17x2au2)_h*(xlal‘%o)_h*($17l‘27ul+u2)
- gl

h* (xq, 2, u1) |> <
pluz| -

| =

Since k € N is arbitrary we derive

o (| h* (.’131,$2,U2) —h* (xl,l‘g,O) —h* (xl,xg,ul + UQ)
- pfus|
h* (a:l,xg,ul) |> —0
pulus| '

Because ¢y, m, is convex for n,m =1,2,... and ¢(¢) = 0 only if ¢ = 0, then

| W (21,22, u2) — h* (21, 22,0) — h* (21, 22, u1 + ug) + A" (21,22, u1) |
pluz|

=0.

Therefore
W (x1,x2,u2) — h* (1, 22,0) — h* (21,29, u1 +ug) + h* (1, 22,u1) =0
or equivalently
W (zyuy +ug) + A" (2,0) = h* (z,u1) + h* (z,u2) (25)

for each z = (z1,x2) € (a1,b1] x (¢1,dq] and all uy,us € R.
Let z1 € (a1,b1] and 23 = ¢1, now we consider the following inequalities

<o <Pr<ag<fo<az<pfz<-<ap<pBp<ax,

a<m<Bi<m<Po<tz<Pg<---<ap<pf<di, keN.

We proceed in the similar way as in the result (24). Taking limit when (a1, 8;) —

(1 —0,2240) in (24) we obtain (25). The cases 1 = a1 and z2 € (¢1,d1] or 1 = a1

and x9 = ¢ are similar.

Thus the equation (25) holds for each 2 = (21, 22) € I? and for any uy,us € R.
Now, we fix x = (21, 72) € I’ and define the mapping T, : R — R by

Ty(u) = h*(z,u) — h*(z,0) Yue€R.
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Note that we can rewrite the expression in (25) as follows
Ty (up +ug) =Ty (ur) + Ty (u2)  Vug,ug € R. (26)

This shows that T}, is an additive operator.
For any u;,us € R we have

Ty (u1) — Ty (u2)] = |h" (x,u1) — h" (2,0) — A" (x,uz) + A* (2,0)]
= |h" (x,u1) — A" (z,usz)]
S M |’LL1 - ’LL2| )

i.e. T,(-) is Lipschitz-continuous on R. Then exists a mapping hy : I” — R such that
Tp(u) = hy(x)u Vx eI, Yuck.
Taking ho(z) = h*(x,0), x € I? we derive
h*(z,u) = Ty(u) + h*(z,0) = hi(z)u + ho(x).

Since ho(-) = h*(+,0), h1(:) = h*(-,1) — h*(,0) and Lemma 2.2 we have that hg, hy €
BV, (It). Thus

W (z,u) = hi(z)u+ ho(z) Va € IY, Vu € R with ho, by € BV, (7).
Sufficient Condition. Suppose that the composition operator H is given by
(Hf)(@) = ho(x) + hi(2)f(x), zely, feBVg(L).

As BVq;g (Ig) is a Banach algebra, then H maps the space Bqu (Ig) into itself.
Further

IH(f1) — H(f2)llg = llho +hifi —ho — hafally
< Kllhlly [Ifs — foll3
= AMf—fly (wheed=K[ml3). (1)
In consequence H is a Lipschitzian operator. ([l
Remark 3.1.

1) The Theorem 3.1 is valid for the regularization right-right, left-right and right-
left of h(-,u) Yu € R.

2) If ho,hy € BVq‘i* (1%) and ||h1Hi < 1/K, then by Principium of contraction of
Banach in combination with (27), exists only one function f € BVy (I 2) such
that

f(x) = ho(z) + hy(x)f(x) VorellcCR.
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The following corollary is the immediate consequence of the Theorem 3.1.

Corollary 3.1. Suppose that h : I? x R — R is such that h* = h in I’ x R — R,
and composition operator H maps space BV(I)S (Ig) into itself. Then it is Lipschitzian
if and only if there exist functions hg, hy € BV,;;C”* (Ig) such that

h(z,u) = ho(z) + hi(x)u Yz eI, ucR.
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ABSTRACT: In this paper we prove the interior approximate controlla-
bility of the following Generalized Benjamin-Bona-Mahony type equation
(BBM) with homogeneous Dirichlet boundary conditions

zt —alAzy — bAz = L,u(t,z), te(0,7), x € Q,
z(t,z) =0, t>0, x € 09,

where a > 0 and b > 0 are constants, ) is a domain in R", w is an open
nonempty subset of 2, 1, denotes the characteristic function of the set
w and the distributed control u € L?(0,7; L?(2)). We prove that for all
7 > 0 and any nonempty open subset w of § the system is approximately
controllable on [0, 7]. Moreover, we exhibit a sequence of controls steering
the system from an initial state to a final state in a prefixed time. As a
consequence of this result we obtain the interior approximate controllabil-
ity of the heat equation by putting a = 0 and b = 1.

AMS Subject Classification: 93B05, 953C25
Key Words and Phrases: interior controllability, reaction diffusion equations, strongly
continuous semigroups

1 Introduction.

The original Benjamin-Bona-Mahony equation was proposed in [4] for the case N =1
as a model for the propagation of long waves. This equation and related types of
pseudo-parabolic equations have been studied by many authors. Results about ex-
istence and uniqueness of solutions can be found in [3]; the long time behavior of
solutions and the existence of attractors were studied e.g. in [5], [7], [8] and [15], and
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the controllability for the case N =1 with control in the boundary has been studied
in [13]. Recently the BBM equation with boundary conditions has been studied in [6]
and [12].

The interior approximate controllability is a well known, fascinating and important
subject in systems theory; there are some works done by [14], [16], [17], [18] and [19].
Particularly, Zuazua in [19] proves the interior approximate controllability of the heat
equation

2= Az + 1,u(t,x), in (0,7)xQ,
z=0, on (0,7) x99, (1.1)
2(0,2) = zo(x), in Q,

in two different ways. In the first one, he uses the Hahn-Banach theorem, integration
by parts, the adjoint equation, the Carleman estimates and the Holmgren Uniqueness
Theorem([11]).

The second method is constructive and uses a variational technique: fix the control
time 7 > 0, the initial and final state zop = 0, z; € L?(Q) respectively and € > 0; the
control steering the initial state zg to a ball of radius € > 0 and center z; is given by
the point in which the following functional achieves its minimum value

1 T
Jé(cp.,.):i/o /¢2d$dt+6”gp7—”[‘2(g)7/92190,—,

where ¢ is the solution of the corresponding adjoint equation with initial data ..

In this paper we prove the interior approximate controllability of the following
Generalized Benjamin-Bona-Mahony type equation (BBM) with homogeneous Dirich-
let boundary conditions

{ 2t — alAzy — bAz = 1 u(t,z), te(0,7), x €1, (1.2)

z(t,x) =0, t>0, x € 01,

where @ > 0 and b > 0 are constants,  is a domain in IR", w is an open nonempty
subset of , 1, denotes the characteristic function of the set w and the distributed
control u € L%(0,7; L?(Q)).

The controllability of such systems, with the controls acting on the whole set 2 was
studied in [1]; they considered the approximate controllability of the system

{ 2zt —alzy — bAz = by (z)us + ... + b () Uy, >0, T €, (13)

z(t,z) =0, t>0, x € 09,

where b; € L?(Q; IR), the control functions u; € L2(0,7;IR); i = 1,2,...,m and § is
a bounded domain in IRY (N > 1). More precisely, they prove the following result:
the system (1.3) is approximately controllable on [0, 7], 7 > 0 iff each of the following
finite dimensional systems are controllable on [0, 7]

bA;
r_ J
¥y= 1+(L)\jy

+Bju, yeR(E), j=12,... 00, (1.4)
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where

Vi
m 1
B;: R™ — R(E;), BjU:ZmEjbiUi,
i=1 J

A;’ s are the eigenvalues of —A with Dirichlet boundary condition and «; the corre-
sponding multiplicity, £;’ s are the projections on the corresponding eigenspaces and
R(Ej) denotes the range of E; . Since dimR(E;) = v; < oo, the controllability of
(1.4) is equivalent to the following algebraic condition:

Rank[B;| =~;, j=1,2,...,00. (1.5)

In this paper, we are interested in the interior approximate controllability of system
(1.2). This is an important problem from the applications point of view, and more
general since the control is acting only on a subset w of (2. We prove that for all 7 > 0
and any nonempty open subset w of {2 the system is approximately controllable on
[0,7]. Moreover, we can exhibit a sequence of controls steering the system from an
initial state to a final state in a prefixed time (see Theorem 3.2). As a consequence
of this result we obtain the interior approximate controllability of the heat equation
(1.1) by putting a =0 and b = 1.

The technique given here is simple and based on the following results:
Theorem 1.1 (see Theorem 1.23 from [2], pg. 20) Suppose Q@ C IR" is an open,

non-empty and connected set, and f is real analytic function in Q with f =0 on a
non-empty open subset w of Q. Then, f =0 in 2.

Lemma 1.1 (see Lemma 3.14 from [9], pg. 62) Let {c;}j>1 and {B;; :i=1,2,...,m};>1
be two sequences of real numbers such that: oy > g > ag---. Then

Zeajtﬁi,jzo, Vte[0,7], i=1,2,---,m
j=1

iff
Bij=0, i=1,2-,mj=1,2--,00.

Theorem 1.2 The eigenfunctions of the operator —A with Dirichlet boundary con-
ditions on € are real analytic functions in ).

2 Abstract Formulation of the Problem

In this section we choose the space in which this problem will be set as an abstract
ordinary differential equation.

Let Z = L?(Q2) = L?(£2, IR) and consider the linear unbounded operator A : D(A) C
Z — 7 defined by A¢ = —A¢, where

D(A) = H*(Q,R) N Hy (2, IR).
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The operator A has the following very well known properties: the spectrum of A
consists of eigenvalues

0<A <A< -<Aj <o with ) = o0, (2.1)

each one with finite multiplicity v; equal to the dimension of the corresponding
eigenspace. Therefore:

a) there exists a complete orthonormal set {¢, ;} of eigenvectors of A.

b) for all z € D(A) we have

Az:i)\J

j=1 k=

Vi

%)
<z, (Zsj,k > ¢j,k = Z AjEjZ, (22)
1 j=1

where < -,- > is the inner product in Z and

Vi
Ejiz=Y_ <z¢jk> bk (2.3)
k=1

So, {E;} is a family of complete orthogonal projections in Z and
z = ZEjz, z€Z. (2.4)
j=1

c) —A generates the analytic semigroup {e~4'} given by

e Aty = ZefAthjz. (2.5)

j=1

Hence, the equation (1.3) can be written as an abstract ordinary differential equation

in Z as follows
2 +aAZ +bAz = 1,u(t), te(0,7] (2.6)

Since (I + aA) = a(A — (—=1)I) and —1 € p(A)(p(A) is the resolvent set of A), then
the operator:
I+aA:D(A)— Z

is invertible with bounded inverse
(I+aA)™':Z = D(A).
Therefore, the equation (2.6) also can be written as follows
2+ b(I+aA) Az = (I +aA) M1 u(t) t€(0,7). (2.7)

Moreover, (I + aA) and (I + aA)~! can be written in terms of the eigenvalues of A:

(I + aA)Z = i(l + GAJ‘)E]'Z

Jj=1
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oo

1
-1 _ )
(I+aA) " z= E 71+a)\jE]Z'

j=1

Therefore, if we put B = (I + aA)~!, the equation (2.7) can be written as follows
2’ +bBAz = BB,u(t), te€(0,7), (2.8)

where B, f = 1, f is a linear a bounded operator from Z to Z and u € L?(0,7; L?(Q)) =
L?(0,7; 7).
Now, we formulate a simple proposition.

Proposition 2.1 The operators bBA and T(t) = e~"BAt are given by the following

expression
o0

b,
bBAz = l_F, 2.
: ;1—|—a/\j 3% (2.9)
S —bA, .
T(t)z = e PBAL, = Ze““i E;z, (2.10)
j=1
and
IT(@) |<e™?, t>0, (2.11)
where " "
= inf i_1=_"1_ 2.12
o=t {ven | = Tren 212)

With this notation the system (2.8) can be written as follows
2 = —Az+ BB,u(t), te(0,7], (2.13)

where A = bBA.

3 Main Theorem

In this section we shall prove the main result of this paper on the controllability of the
linear system (2.13). But first we give the definition of approximate controllability
for this system. To this end, for all 29 € Z and a control u € L?(0,7; Z) the equation
(2.13) with z(0) = zp has a unique mild solution given by

z2(t) =T (t)z0 + /Ot T(t — s)BByu(s)ds, 0<t<r. (3.1)

Definition 3.1 We say that (2.183) is approzimately controllable in [0, 7] if for all z,
21 € Z and € > 0, there exists a control u € L?(0,7;Z) such that the solution z(t)
given by (3.1) satisfies

l|2(7) — 21| <e. (3.2)
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Consider the following bounded linear operator:
G:L*0,7;2) = Z, Gu= / T(r — s)BB,u(s)ds, (3.3)
0

whose adjoint operator G* : Z — L?(0,7; Z) is given by
(G*2)(s) = (BB,)"T*(r — s)z = BLB*T* (1t — )z, Vse€l[0,7], Vze€Z (34)
The following lemma is trivial:

Lema 3.1 The equation (2.13) is approximately controllable on [0, 7] if, and only if,

Rang(G) = Z.
The following result is well known from linear operator theory:

Lema 3.2 Let W and Z be Hilbert spaces and G* € L(Z,W) the adjoint operator of
the linear operator G € L(W, Z). Then

Rang(G) = Z < Ker(G") = {0}.
As a consequence of the foregoing Lemma one can prove the following result:

Lema 3.3 Let W and Z be Hilbert spaces and G* € L(Z,W) the adjoint operator

of the linear operator G € L(W,Z). Then Rang(G) = Z if, and only if, one of the
following statements holds:

a) Ker(G*) = {0}.
b) (GG*z,2z) >0, z#0 in Z.
c¢) lim,_,o+ a(al + GG*)7 1z = 0.
d) sup,~q |la(al + GG*)7Y| < 1.
The following theorem follows directly from (3.4), lemma 3.1 and lemma 3.3.
Theorem 3.1 (2.13) is approxzimately controllable on [0, 1] iff
B:B*'T*(t)z=0, Vtel0,7], =2z=0. (3.5)

Theorem 3.2 (Main Result) For all 7 > 0 and any open nonempty subset w of Q the
system (2.13) is approzimately controllable on [0,7]. Moreover, a sequence of controls
steering the system (2.13) from initial state zy to an € neighborhood of the final state
z1 at time T > 0 s given by

U (t) = BEB*T(1 — t)(al + GG*) " (21 — T(7)20),
and the error of this approxzimation E, is given by

E, = alal + GG*) (21 — T(1)20).
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Proof. We shall apply Theorem 3.1 to prove the controllability of system (2.13). To
this end, we observe that

—bA.

T (t)z = Ze”a;thjz, B’ =B! and B*=B.
7=1

Then,
i il I 1
* _ * _ Tfax; PV
(BB,)*T*(t)z = B,BT*(t)z = ;e Fa; Ta)\ijEJZ =0, Vtelo,7].
Since {1:_?/\3'_ :j=1,2,...} is a decreasing sequence, then from Lemma 1.1 we obtain
that

Vi
(BuEjz)(x) = Z <z,0ik > 1upjp(x) =0, VxeQ, j=12 ...
k=1

ie.,
Vi
Y <z ik >din(r) =0 Vrew, j=12....
k=1

Now, from theorem 1.2 we know that ¢; .’ s are analytic functions, which implies the
analyticity of E;z. Then, from Theorem 1.1 we get that

Vi
Y <zip> k(@) =0 YreQ, j=12....
k=1

Hence, Ejz =0, j=1,2,..., which implies that z = 0.
Now, given the initial and the final states zy and z;, we consider the sequence of
controls

ue() = BIB*T(r —-)(al + GG*) (2, — T(1)20)
G* (ol + GG*) Mz — T(T)2), > 0.
Then,
Guy, = GG*(al +GG*) Yz —T(1)20)

= (ol + GG* —al)(al + GG*) (21 — T(1)z)

= 21— T(1)z — alal + GG*) (21 — T(1)20).
From part ¢) of Lemma 3.3 we know that

lim a(al + GG*) "'z — T(1)20) = 0.
a—07t

Therefore,

aliglJr Guo = 21 — T(7)20.
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i.e.
lim {T(r)z0 + / T(r — 8)BBou(s)ds} = z1.
a—0t 0

This completes the proof of the Theorem.
0

Corollary 3.1 For all 7 > 0 and all open nonempty subset w of ) the heat equation
(1.1) is approzimately controllable on [0, T].

Proof. It is enough to take ¢ = 0 and b =1 in the equation (1.2). 0

4 Final Remarks

The original Benjamin -Bona-Mohany Equation is a non-linear one, here we have
proved the approximate controllability of the linear part of this equation, which is the
fundamental base for the study of the controllability of the non linear BBM equation.
So, our next work is concerned with the controllability of non linear BBM equation

z(t,x)=0, t>0, €, (4.1)

{ 2zt — alAzy — bAz = 1yu(t, z)