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Abstract: In this paper we are concerned with the asymptotic be-
havior of random (unrestricted) infinite products of nonexpansive self-
mappings of closed and convex subsets of a complete hyperbolic space. In
contrast with our previous work in this direction, we no longer assume
that these subsets are bounded. We first establish two theorems regard-
ing the stability of the random weak ergodic property and then prove a
related generic result. These results also extend our recent investigations
regarding nonrandom infinite products.
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1. Introduction and preliminaries

It is well known that (unrestricted) infinite products of operators find applications in
many areas of mathematics (see, for example, [1, 2, 3, 4, 5, 9, 11] and the references
mentioned therein). In this paper we establish weak ergodic theorems concerning
the asymptotic behavior of random (that is, unrestricted) infinite products of non-
expansive mappings on closed and convex subsets of a Banach space which are not
necessarily bounded. These theorems continue our previous work [9], where we as-
sumed that the mappings under consideration act on a bounded set. They also extend
the results of [12], which were obtained for nonrandom infinite products.

More precisely, our paper contains three theorems. The first two show that if
the random weak ergodic property (see the definition below) holds for a sequence of
nonexpansive mappings, then it is stable under small perturbations of these mappings.
In our second theorem the perturbed mappings are also nonexpansive, while in the
first one the perturbations can be arbitrary. The third theorem establishes the random
weak ergodic property for a generic sequence of nonexpansive mappings. Namely, we
show that in an appropriate space of sequences of nonexpansive mappings there exists
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a subset which is a countable intersection of open and everywhere dense sets such that
each sequence belonging to this subset has the random weak ergodic property. Such
an approach is common in nonlinear analysis [9, 10, 11]. Thus, instead of considering
a certain convergence property for a single sequence of operators, we investigate it for
a space of all such sequences equipped with some natural metric, and show that this
property holds for most of these sequences in the sense of Baire category. This allows
us to establish convergence without restrictive assumptions on the space and on the
operators themselves.

As a matter of fact, it turns out that our results also hold for nonexpansive self-
mappings of closed and convex sets in complete hyperbolic spaces, an important class
of metric spaces the definition of which we now recall for the reader’s convenience.

Let (X, ρ) be a metric space and let R1 denote the real line. We say that a mapping
c : R1 → X is a metric embedding of R1 into X if ρ(c(s), c(t)) = |s − t| for all real s
and t. The image of R1 under a metric embedding is called a metric line. The image
of a real interval [a, b] = {t ∈ R1 : a ≤ t ≤ b} under such a mapping is called a metric
segment.

Assume that (X, ρ) contains a family M of metric lines such that for each pair of
distinct points x and y in X, there is a unique metric line in M which passes through
x and y. This metric line determines a unique metric segment joining x and y. We
denote this segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point z in [x, y]
such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point will be denoted by (1−t)x⊕ty. We say that X, or more precisely (X, ρ,M),
is a hyperbolic space if

ρ(
1

2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z) ≤ 1

2
ρ(y, z)

for all x, y and z in X. An equivalent requirement is that

ρ(
1

2
x⊕ 1

2
y,

1

2
w ⊕ 1

2
z) ≤ 1

2
(ρ(x,w) + ρ(y, z))

for all x, y, z and w in X. This inequality, in its turn, implies that

ρ((1− t)x⊕ ty, (1− t)w ⊕ tz) ≤ (1− t)ρ(x,w) + tρ(y, z)

for all points x, y, z and w in X, and all numbers 0 ≤ t ≤ 1.
It is clear that all normed linear spaces are hyperbolic in this sense. A discussion

of more examples of hyperbolic spaces and, in particular, of the Hilbert ball with the
hyperbolic metric can be found, for example, in [6, 7, 8].

We call a set K ⊂ X ρ-convex if [x, y] ⊂ K for all x and y in K.
Suppose that (X, ρ,M) is a complete hyperbolic space and that K is a nonempty,

closed and ρ-convex subset of the space X. Denote by A the collection of all operators
T : K → K which satisfy

ρ(T (x), T (y)) ≤ ρ(x, y) for all x, y ∈ K. (1.1)
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Denote byM the set of all sequences of operators {Ti}∞i=1 ⊂ A. For every sequence of
operators {Bi}∞i=1 ∈M and every pair of integers p > n ≥ 1, we define compositions
of the corresponding operators by

p∏
i=n

Bi := Bp · · ·Bn.

For every point x ∈ K and every positive number r, set

B(x, r) := {y ∈ K : ρ(x, y) ≤ r}.

Fix a point θ ∈ K. We equip the set M with the uniformity determined by the
following base:

U(n) := {({At}∞t=1, {Bt}∞t=1) ∈M×M :

ρ(At(x), Bt(x)) ≤ n−1 for all x ∈ B(θ, n) and all integers t ≥ 1}, (1.2)

where n ≥ 1 is an integer. It is not difficult to see that the uniform space M is
metrizable (by a metric d) and complete. In principle, one can obtain an explicit
expression for this metric d, but we do not need it because in our case it is more
convenient to use the uniformity itself.

Denote by I : K → K the identity operator; that is, I(x) = x for all x ∈ K.
In this paper we are interested in those sequences of mappings in M which are

uniformly bounded on bounded sets.

Proposition 1.1. Let {At}∞t=1 ∈M, x ∈ K and assume that {At(x)}∞t=1 is a bounded
sequence. Then for every y ∈ K, the sequence {At(y)}∞t=1 is bounded and

sup{ρ(θ,At(y)) : t = 1, 2, . . . } ≤ sup{ρ(θ,At(x)) : t = 1, 2, . . . }+ ρ(x, y).

Proof. Clearly, the real sequence {ρ(θ,At(x))}∞t=1 is bounded. Let y ∈ K. Then in
view of (1.1), for every integer t ≥ 1,

ρ(θ,At(y)) ≤ ρ(θ,At(x)) + ρ(At(x), At(y)) ≤ ρ(θ,At(x)) + ρ(x, y).

Proposition 1.1 now follows immediately.

We denote by Mn the set of all sequences {At}∞t=1 ∈ M such that the sequence
{At(θ) : t = 1, 2, . . . } is bounded. Clearly, Mn is a closed and open subset of the
complete metric space (M, d). In this paper we focus on the complete metric space
(Mn, d).

For every point z ∈ K and every nonempty set D ⊂ K, set

ρ(z,D) := inf{ρ(z, ξ) : ξ ∈ D}.

We say that a sequence of mappings {At}∞t=1 ∈ M possesses the weak ergodic
property [12] (WEP, for short) if for every pair of positive numbers ε, s, there exists
an integer n0 ≥ 1 such that for every pair of points x, y ∈ B(θ, s), we have

ρ(An0
· · ·A1(x), An0

· · ·A1(y)) ≤ ε.
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In [12] we consider the spaceM equipped with the uniformity determined by the base

Ũ(n) := {({At}∞t=1, {Bt}∞t=1) ∈M×M :

ρ(At(x), Bt(x)) ≤ n−1 for all x ∈ B(θ, n) and all t = 1, . . . , n},

where n is a natural number, and show that most sequences in M, in the sense of
Baire category, have the WEP and that the WEP is stable under small perturbations.

We say that a sequence of mappings {At}∞t=1 ∈ M possesses the random weak
ergodic property (RWEP, for short) if for every pair of positive numbers ε, s, there
exists an integer n0 ≥ 1 such that for every pair of points x, y ∈ B(θ, s) and every
mapping r : {1, . . . , n0} → {1, 2, . . . }, we have

ρ(Ar(n0) · · ·Ar(1)(x), Ar(n0) · · ·Ar(1)(y)) ≤ ε.

In [13] we continue to study the space M with the uniformity introduced in [12]
and show that most sequences in M, in the sense of Baire category, do not have the
RWEP and that they display, in fact, chaotic asymptotic behavior. In the present
paper we show, on the other hand, that the RWEP does hold generically in the
complete metric space (Mn, d). We begin with the following stability result.

2. First stability result

Theorem 2.1. Assume that a sequence of mappings {At}∞t=1 ∈ M possesses the
RWEP and let ε, s be positive numbers. Then there exists an integer n0 ≥ 1 such that
for every natural number n ≥ n0, there exists a number δ > 0 such that for every map-
ping r : {1, 2, . . . , n} → {1, 2, . . . } and every pair of sequences {xi}ni=0, {yi}ni=0 ⊂ K
satisfying

x0, y0 ∈ B(θ, s) (2.1)

and
ρ(xi+1, Ar(i+1)(xi)) ≤ δ, ρ(yi+1, Ar(i+1)(yi)) ≤ δ (2.2)

for all integers i = 0, . . . , n − 1, the inequality ρ(xi, yi) ≤ ε is valid for all integers
i = n0, . . . , n.

Proof. By definition, there exists an integer n0 ≥ 1 such that the following property
holds:

(i) for every mappings r : {1, . . . , n0} → {1, 2, . . . } and every pair of points

x, y ∈ B(θ, s),

we have
ρ(Ar(n0) · · ·Ar(1)(x), Ar(n0) · · ·Ar(1)(y)) ≤ ε/2.

Let n ≥ n0 be a natural number and let

δ = ε(4n)−1. (2.3)
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Assume that
r : {1, . . . , n} → {1, 2, . . . }

and that two sequences
{xi}ni=0, {yi}nt=0 ⊂ K

satisfy inclusion (2.1) and inequalities (2.2). It then follows from property (i) and
(2.1) that

ρ(Ar(n0) · · ·Ar(1)(x0), Ar(n0) · · ·Ar(1)(y0)) ≤ ε/2.

When combined with (1.1), this inequality implies that

ρ(Ar(p) · · ·Ar(1)(x0), Ar(p) · · ·Ar(1)(y0)) ≤ ε/2 for all p = n0, . . . , n. (2.4)

Let
{zi}ni=0 ∈ {{xi}ni=0, {yi}ni=0}, (2.5)

ξ0 = z0 (2.6)

and let for all i = 0, . . . , n− 1,

ξi+1 = Ar(i+1)(ξi). (2.7)

We claim that for all integers i = 0, . . . , n, we have

ρ(zi, ξi) ≤ iδ. (2.8)

We first note that it follows from (2.6) that inequality (2.8) is valid for i = 0.
Assume now that i < n is a nonnegative integer and that inequality (2.8) is true.

By (1.1), (2.2), (2.5), (2.7) and (2.8), we have

ρ(zi+1, ξi+1) = ρ(zi+1, Ar(i+1)(ξi))

≤ ρ(zi+1, Ar(i+1)(zi)) + ρ(Ar(i+1)(zi), Ar(i+1)(ξi))

≤ δ + ρ(zi, ξi) ≤ (i+ 1)δ.

Thus we have shown by induction that inequality (2.8) is indeed true for all integers
i = 0, . . . , n, as claimed. When combined with (2.5)–(2.7), this implies that for all
integers i = 1, . . . , n, we have

ρ(xi, Ar(i) · · ·Ar(1)(x0)) ≤ iδ,

ρ(yi, Ar(i) · · ·Ar(1)(y0)) ≤ iδ

and
ρ(xi, yi) ≤ ρ(Ar(i) · · ·Ar(1)(x0), Ar(i) · · ·Ar(1)(y0)) + 2iδ. (2.9)

It now follows from (1.1), (2.3), (2.4) and (2.9) that for all integers i = n0, . . . , n,

ρ(xi, yi) ≤ ρ(Ar(i) · · ·Ar(1)(x0), Ar(i) · · ·Ar(1)(y0)) + 2nδ ≤ ε/2 + ε/2.

This completes the proof of Theorem 2.1.
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3. Second stability result

Theorem 3.1. Assume that a sequence of mappings {At}∞t=1 ∈ Mn possesses the
RWEP and let ε, s be positive numbers. Then there exists an integer n0 ≥ 1
and a neighborhood U of {At}∞t=1 in M such that for every sequence of map-
pings {Bt}∞t=1 ∈ U , every mapping r : {1, 2, . . . } → {1, 2, . . . }, every pair of points
x, y ∈ B(θ, s) and every natural number n ≥ n0, the inequality

ρ(Br(n) · · ·Br(1)(x), Br(n) · · ·Br(1)(y)) ≤ ε

is true.

Proof. Theorem 2.1 implies that there exist an integer n0 ≥ 1 and a real number
δ ∈ (0, 1) such that the following property holds:

(i) for every mapping r : {1, , . . . , n0} → {1, 2, . . . } and every pair of sequences
{xi}n0

t=0, {yi}
n0
t=0 ⊂ K satisfying

x0, y0 ∈ B(θ, s)

and
ρ(xi+1, Ar(i+1)(xi)) ≤ δ, ρ(yi+1, Ar(i+1)(yi)) ≤ δ

for all i = 0, . . . , n0 − 1, we have ρ(xn0
, yn0

) ≤ ε.
Define

F0 := B(θ, s) (3.1)

and for all i = 1, . . . , n0 − 1, define

Fi+1 := {y ∈ K : ρ(y,∪{Ap(Fi) : p = 1, 2, . . . }) ≤ 1}. (3.2)

We now show by induction that all the sets F0, . . . , Fn0 are bounded. In view of (3.1),
F0 is clearly bounded. Assume that i < n0 is a nonnegative integer and that the set
Fi is bounded. Then there exists M0 > 0 such that

ρ(θ, z) ≤M0 for all z ∈ Fi. (3.3)

By (3.3) and Proposition 1.1, for each y ∈ Fi,

sup{ρ(θ,Ap(y)) : p = 1, 2, . . . }

≤ sup{ρ(θ,Ap(θ)) : p = 1, 2, . . . }+ ρ(θ, y)

≤ sup{ρ(θ,Ap(θ)) : p = 1, 2, . . . }+M0.

This implies that

∪{Ap(Fi) : p = 1, 2, . . . } ⊂ B(θ,M0 + sup{ρ(θ,Ap(θ)) : p = 1, 2, . . . })

and that the set Fi+1 is bounded. Thus we have shown by induction that all the sets
F0, . . . , Fn0

are bounded, as asserted.
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Next, choose s0 > s such that

Fi ⊂ B(θ, s0), i = 0, . . . , n0. (3.4)

There exists a neighborhood U of {At}∞t=1 in M such that the following property
holds:

(ii) for every sequence of mappings {Bt}∞t=1 ∈ U , every point x ∈ B(θ, s0) and
every integer t ≥ 1, we have

ρ(Bt(x), At(x)) ≤ δ.

Assume that

{Bt}∞t=1 ∈ U , r : {1, 2, . . . } → {1, 2, . . . } and x ∈ B(θ, s). (3.5)

We claim that for all integers i = 1, . . . , n0,

i∏
j=1

Br(j)(x) ∈ Fi. (3.6)

Property (ii), (3.1), (3.2) and (3.5) imply that (3.6) is indeed true for i = 1.
Assume now that i < n0 is a nonnegative integer and that (3.6) holds. Then it

follows from property (ii), (3.2), (3.4), (3.5) and (3.6) that

ρ(Br(i+1)

i∏
j=1

Br(j)(x), Ar(i+1)

i∏
j=1

Br(j)(x)) ≤ δ,

ρ(Br(i+1)

i∏
j=1

Br(j)(x), Ar(i+1)(Fi)) ≤ δ ≤ 1

and that
i+1∏
j=1

Br(j)(x) ∈ Fi+1. (3.7)

Thus we have shown by induction that for all integers i = 1, . . . , n0, inclusion (3.6)
indeed holds. When combined with (3.4), this implies that

i∏
j=1

Br(j)(x) ∈ B(θ, s0), i = 1, . . . , n0. (3.8)

It follows from property (ii) and inclusion (3.8) that for all integers i = 0, . . . , n0 − 1
and every point y ∈ B(θ, s), we have

ρ(Br(i+1)

i∏
j=1

Br(j)(y), Ar(i+1)

i∏
j=1

Br(j)(y)) ≤ δ
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(here we assume that
∏i
j=1Br(j) = I if i = 0). Thus we have shown that if (3.5)

holds and y ∈ B(θ, s), then the sequences {xi}n0
i=0 and {yi}n0

i=0 defined by

x0 = x, y0 = y, xi =

i∏
j=1

Br(j)(x), yi =

i∏
j=1

Br(j)(y), i = 1, . . . , n0,

satisfy the conditions assumed in property (i). This leads to the inequality

ε ≥ ρ(xn0 , yn0) = ρ(

n0∏
j=1

Br(j)(x),

n0∏
j=1

Br(j)(y)),

which in its turn implies that

ε ≥ ρ(

n∏
j=1

Br(j)(x),

n∏
j=1

Br(j)(y))

for each integer n ≥ n0. This completes the proof of Theorem 3.1.

4. Generic result

Theorem 4.1. There exists a set F ⊂ Mn, which is a countable intersection of
open and everywhere dense subsets of Mn, such that every sequence of mappings
{At}∞t=1 ∈ F possesses the RWEP.

Proof. Let {At}∞t=1 ∈Mn and γ ∈ (0, 1). For every natural number t, define

A
(γ)
t (x) := (1− γ)At(x)⊕ γθ, x ∈ K. (4.1)

In view of (1.1) and (4.1), for every natural number t and every pair of points x, y ∈ K,
we have

ρ(A
(γ)
t (x), A

(γ)
t (y))

= ρ((1− γ)At(x)⊕ γθ, (1− γ)At(y)⊕ γθ)

≤ (1− γ)ρ(At(x), At(y)) ≤ (1− γ)ρ(x, y). (4.2)

This implies that {A(γ)
t }∞t=1 ∈M. By (4.1), for every natural number t ≥ 1, we have

ρ(A
(γ)
t (θ), θ) = ρ((1− γ)At(θ)⊕ γθ, θ) ≤ (1− γ)ρ(At(θ), θ).

This implies that {A(γ)
t }∞t=1 ∈Mn.

We claim that {A(γ)
t }∞t=1 has the RWEP. To this end, let ε, s be positive numbers.

Choose an integer n0 ≥ 1 for which

2s(1− γ)n0 < ε. (4.3)
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Assume that r : {1, . . . , n0} → {1, 2, . . . } and that x, y ∈ B(θ, s). It follows from (4.2)
and (4.3) that

ρ(A
(γ)
r(n0)

· · ·A(γ)
r(1)(x), A

(γ)
r(n0)

· · ·A(γ)
r(1)(y))

≤ (1− γ)n0ρ(x, y) ≤ 2s(1− γ)n0 < ε.

Therefore {A(γ)
t }∞t=1 indeed possesses the RWEP, as claimed.

By (4.1), for every natural number t and every point x ∈ K, we have

ρ(A
(γ)
t (x), At(x)) = ρ((1− γ)At(x)⊕ γθ,At(x)) ≤ γρ(At(x), θ). (4.4)

We claim that
{A(γ)

t }∞t=1 → {At}∞t=1 in Mn as γ → 0+.

Let ε be a positive number and let m ≥ 1 be an integer. Choose a number γ0 ∈ (0, 1)
satisfying

γ0(m+ sup{ρ(At(θ), θ) : t = 1, 2, . . . }) < ε. (4.5)

Assume that γ ∈ (0, γ0). In view of (4.1), (4.4) and (4.5), for every point x ∈ B(θ,m)
and each natural number t, we have

ρ(A
(γ)
t (x), At(x)) ≤ γρ(At(x), θ)

≤ γ0(ρ(At(x), At(θ)) + ρ(At(θ), θ))

≤ γ0((ρ(x, θ) + ρ(At(θ), θ)) ≤ γ0(m+ ρ(At(θ), θ)) < ε.

Thus the set
{{A(γ)

t }∞t=1 : {At}∞t=1 ∈Mn, γ ∈ (0, 1)}

is everywhere dense in Mn and its elements possess the RWEP.
Let {At}∞t=1 ∈ Mn, γ ∈ (0, 1) and let q ≥ 1 be an integer. Theorem 3.1 im-

plies that there exist an integer n({At}∞t=1, γ, q) ≥ 1 and an open neighborhood

U({At}∞t=1, γ, q) of {A(γ)
t }∞t=1 in the metric spaceMn such that the following property

holds:
(i) for every sequence of mappings {Bt}∞t=1 ∈ U({At}∞t=1, γ, q), every mapping

r : {1, 2, . . . } → {1, 2, . . . }, every pair of points x, y ∈ B(θ, q) and every natural
number n ≥ n({At}∞t=1, γ, q), we have

ρ(Br(n) · · ·Br(1)(x), Br(n) · · ·Br(1)(y)) ≤ q−1.

Now define

F : = ∩∞p=1 ∪ {U({At}∞t=1, γ, q) : {At}∞t=1 ∈Mn,
γ ∈ (0, 1), q ≥ p is an integer}. (4.6)

It is clear that F is a countable intersection of open and everywhere dense subsets of
Mn.

Let
{Bt}∞t=1 ∈ F , s > 0 and ε > 0. (4.7)
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Choose a natural number p such that

p > s+ ε−1. (4.8)

In view of (4.6) and (4.7), there exist

{At}∞t=1 ∈Mn, γ ∈ (0, 1), and q ∈ {p, p+ 1, . . . }

such that
{Bt}∞t=1 ∈ U({At}∞t=1, γ, q). (4.9)

It follows from property (i), (4.8) and (4.9) that for every mapping

r : {1, 2, . . . , } → {1, 2, . . . },

every pair of points
x, y ∈ B(θ, s) ⊂ B(θ, q)

and every integer
n ≥ n({At}∞t=1, γ, q),

ρ(

n∏
i=1

Br(i)(x),

n∏
i=1

Br(i)(y)) ≤ q−1 ≤ p−1 < ε.

Thus {Bt}∞t=1 has the RWEP. This completes the proof of Theorem 4.1.
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