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Abstract: A ring R is called a J(n)-ring if there exists a natural
number n ≥ 1 such that for each element r ∈ R the equality rn+1 = r
holds and a weakly J(n)-ring if there exists a natural number n ≥ 1 such
that for each element r ∈ R the equalities rn+1 = r or rn+1 = −r hold.

We completely describe both classes of these rings R for any n, thus
considerably extending some well-known results in the subject, especially
that of V. Perić in Publ. Inst. Math. Beograd (1983) as well as, in
particular, the classical description of Boolean rings when n = 1.
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1. Introduction and Background Material

Throughout, all rings R examined in the current paper shall be assumed associa-
tive, containing the identity element 1 which possibly differs from the zero element
0. Standardly, U(R) denotes the set of all invertible elements of R, Id(R) the set of
all idempotent elements of R and Nil(R) the set of all nilpotent elements of R. Tra-
ditionally, J(R) denotes the Jacobson radical of R. All other notions and notations,
not explicitly defined herein, are well-established in the existing literature. About
the specific terminology, specifically that of a PI-ring, let us recall that it is a ring
whose elements satisfy a polynomial identity with coefficients in Z, the ring of all
integers, and at least one coefficient has to be invertible, that is, ±1. In particular,
commutative rings are always PI-rings.

The following concept is rather well-known.

Definition 1.1. A ring R is called Boolean if x2 = x for each x ∈ R, that is,
R = Id(R).
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These rings have a complete characterization as (the subring of) the direct product
of family of copies of the two element field Z2 (see, e.g., [2]). Hence, Boolean rings
are themselves commutative.

To consider some other generalizations, for a fixed prime p, a p-ring is a ring R
in which ap = a and pa = 0 for all a ∈ R. Thus any Boolean ring is simply a 2-ring.
It is known that a ring is a p-ring if, and only if, it is a subdirect product of fields of
order p (cf. [15]). On the other hand, for a prime p and a positive integer k, a pk-ring

is a ring R in which ap
k

= a and pa = 0 for all a ∈ R. The structure of pk-rings has
been described in [1]. A ring R is said to be periodic if, for each a ∈ R, there is a
positive integer n(a) such that an(a)+1 = a. Every periodic ring is commutative by
a fundamental result due to Jacobson from [12]. If such a natural number n(a) does
not depend on the choice of the element a, that is it could be fixed, we thus come to
the following concept.

Definition 1.2. Let n ≥ 1 be a natural number. We shall say that the ring R is a
J(n)-ring if, for every x ∈ R, the equation xn+1 = x holds.

The special case when n = 1 gives the famous Boolean rings; notice also that
x = x2 always implies that x = xj for all j ∈ N. Likewise, these rings are obviously
perfect, i.e., R = Rn+1. Moreover, it was proved in [14] that a ring is a J(n)-ring if, and
only if, it is the direct sum of finitely many pk-rings. Hence, with the aforementioned
result in [1] at hand, the structural characterization of J(n)-rings can be assumed for
totally exhausted. On the other side, they are also somewhat studied in [10], but
without any concrete full description given.

However, the complete description of J(n)-rings was given in [17]. There was
proved that R is a J(n)-ring if, and only if, R is a subdirect product of fields Fpk ,
where p is a prime and k is an integer such that pk−1 divides n. Nevertheless, we will
give here a new more convenient and attractive for further applications description
of their structure in terms of the simple p-element fields Zp, where p is a prime, and
the fields Fq of q = pk elements, where k ∈ N. So, the objective of this article is to
do that by using an elementary algebraic approach. We refer also to [3] and [13] for
more account to that topic.

In order to substantially enlarge the above explorations, we shall be concerned here
and with giving up the full characterization up to isomorphism of weakly J(n)-rings,
that are, rings whose elements satisfy the polynomial identities xn+1 − x = 0 or
xn+1 + x = 0.

We thus come to the following new concept:

Definition 1.3. Suppose that n ≥ 1 be a natural number. We shall say that the ring
R is a weakly J(n)-ring if, for every x ∈ R, the equations xn+1 = x or xn+1 = −x
hold.

It is pretty obvious that subrings and homomorphic images of (weakly) J(n)-rings
are again (weakly) J(n)-rings. Some concrete folklore examples are these:

• ”n = 1”: A ring R is a J(2)-ring if, and only if, R can be embedded as a subring
of the direct product of family of copies of the fields Z2 and Z3.
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As usual, F4 denotes the field of characteristic 2 consisting of four elements con-
structed as follows: It is well known that in the polynomial ring Z2[x] the polynomial
1 + x + x2 is irreducible over Z2 and hence Z2[x]/(x2 + x + 1) ∼= Z2(θ) is a field of
4 elements, denoting it by F4, where θ 6∈ Z2 is a solution of the equation x3 = 1. In
fact, the elements in F4 are {0, 1, θ, θ2} taking into account that θ + 1 = θ−1 = θ2

and that x3 − 1 = (x2 + x + 1)(x − 1) whence x3 = 1 has the set {1 = θ0, θ, θ2} as
solutions. Thus F4 is the splitting field of these two polynomials. Note that under
such a construction the equality F2 = Z2 is true.

• ”n = 2”: A ring R is a J(3)-ring if, and only if, R can be embedded as a subring
of the direct product of family of copies of the fields Z2 and F4.

• ”n = 3”: A ring R is a J(4)-ring if, and only if, R can be embedded as a subring
of the direct product of family of copies of the fields Z2, Z3 and Z5.

In what follows in the subsequent section, we shall provide a full characterizing of
both J(n)-rings and weakly J(n)-rings.

2. The Main Results

We start in this section with the following technicality by treating the general case of
J(n)-rings, as our purpose is to give a new more transparent and conceptual proof of
the characterization result for these rings than that in [17]. In doing that, we need
the following technical claim.

Lemma 2.1. Let n ∈ N and let R be a ring whose elements satisfy the identity
xn+1 = x, while xk+1 6= x for some x, provided k < n and k ∈ N, that is, for every
k < n there exists x in R for which xk+1 is not equal to x. The next three items are
true:

1. R is reduced.

2. J(R) = 0.

3. If R is primitive, then n = pm − 1 for some m ∈ N and R is a field with pm

elements.

Proof. Items (1) and (2) are rather obvious, which follow directly from the condition
xn+1 = x, so we omit their verification. The third item is an immediate consequence
of the fact that R is a PI-ring and of the well-known Kaplansky’s theorem by using
the method presented in detail in [8].

We are now proceed by proving with the following basic statement, which some-
what improves on the aforementioned characterizing result from [17] concerning J(n)-
rings.
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Theorem 2.2. Suppose that n ∈ N. Then, for a ring R, the following two conditions
are equivalent:

1. R is a J(n)-ring.

2. R is a subdirect product of finite fields Fp
mk
k

for some primes pk and integers

mk, k ∈ N, where (pmk

k − 1)/n for each k.

Proof. ”(1) ⇒ (2)”. With Lemma 2.1 at hand, R is a subdirect products of finite
fields Fi satisfying the equality xn+1 = x. Let us fix such a field F with pm elements.
It is then well known that U(F ) is a cyclic group of order pm − 1 which satisfies the
identity xn = 1. Thus pm − 1 divides n.

”(2) ⇒ (1)”. Letting R be a subdirect product of the fields Fi, we then easily see
that each field satisfies xn+1 = x, thus R will also satisfy this identity.

By the same token, we can derive the following consequence for J(n)-rings in the
presence of minimality of the existing natural number n.

Corollary 2.3. Suppose n ∈ N. Then, for a ring R, the following two conditions are
tantamount:

1. R satisfies the equation xn+1 = x with n minimal possible.

2. R is a subdirect product of finite fields Fp
mk
k

for some primes pk and integers

mk, k ∈ N, where (pmk

k − 1)/n for each k and n = LCM(pmk

k − 1 | k ∈ N).

For a convenience of the reader, let us recall that Fq is the finite field with q
elements with q a prime power. We are now ready to prepare our chief result which
completely settles the question when an arbitrary ring is weakly J(n) and which states
as follows:

Theorem 2.4. Let n ≥ 1 be a natural and let R be a ring. Then R is a weakly
J(n)-ring if, and only if, R is a J(n)-ring, or either R = Fq or R = P × Fq, where
q − 1 divides 2n but not n, and P is a J(n)-ring of characteristic 2.

Proof. In one direction, if R = P × Fq, where P is the zero ring or a J(n)-ring of
characteristic 2, for any pair (x, y) ∈ R we indeed have (x, y)n+1 = ±(x, y) depending
on the fact whether y ∈ Fq is a square or not.

In the other direction, we first observe that x2n+1 = x for all x ∈ R. By the famous
Jacobson’s theorem for commutativity, R is really commutative. Moreover, by the
usage of classical arguments, R is the direct product of characteristic p rings, where
p is one of the finitely many primes, for which p− 1 divides 2n. Then, at least one of
these rings, say K, contains an element a with an+1 6= a. Certainly, char(K) = p > 2.
If foremost R 6= K, then R is of the form K×P , where P is a non-zero ring. Consider
the element (a, 1) in R. Its n+ 1-th power is (an+1, 1), and is equal to ±(a, 1). Since
an+1 differs from a, it must be that (an+1, 1) = −(a, 1) = (−a,−1) whence 1 = −1
in P and, therefore, it follows that P is necessarily of characteristic 2.
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So, it suffices to show that K = Fq, where q has the properties indicated in the
statement of the theorem. To that goal, since the element a satisfied the inequality
an+1 6= a, we must have an+1 = −a. Besides, since every prime ideal of K is maximal
and since the nil-radical of K is trivial, there exists a maximal ideal I of K for which
an+1 = −a modulo I. Then the field K/I is finite of characteristic p. We denote it
by Fq. Now, every element y ∈ K/I satisfies y2n+1 = y. Since F∗

q is a cyclic group of
order q − 1, q − 1 divides 2n. Since an+1 = −a and the characteristic of Fq is not 2,
the number n is not divisible by q − 1.

If now K admits a second maximal ideal M , then I and M are co-prime, so that
(K/I) × (K/M) is a quotient of K. Consider its element (a, 1). Then (a, 1)n+1 =
(−a, 1) which is not equal to ±(a, 1) – a contradiction. Thus I is the only maximal
ideal of K. This means that K is a local ring, and hence equal to its residue field
K/I = Fq. The last claim is a direct consequence of the fact that xn+1 = ±x for all
x ∈ K.

Remark 2.5. It is worthwhile noticing that the cases n = 1 are settled in [9] and
[4]; n = 2 in [5]; and n = 3 in [6]. Moreover, by virtue of the main Theorem 2.4,
in accordance with Theorem 2.2, or with the main result from [17], the study of the
structure of weakly J(n)-rings is completely exhausted.

We shall now be involved with some applications by giving up a slight generaliza-
tion of J(n)-rings for n ∈ N to rings with elements satisfying the equation xn = ςx,
where ς is a (primitive) d-th root of unity for some positive integer d (compare with
the slightly weaker version stated in Problem 3 listed below). Precisely, the following
assertion is true:

Theorem 2.6. Let R be a commutative ring and let f(X) =
∑

n≥0 anX
n be a polyno-

mial in R[X]. Suppose also that the polynomial f̃(X) =
∑

n≥0 ana
n−1
0 Xn has a root

in R and that ana
n−1
0 = 1 for n = 0. Then, for all y ∈ R and each ideal I ⊆ Ann(y),

the annihilator of y, we have

f(y) ≡ 0(mod I) ⇐⇒ ∃ ς ∈ R : ς ≡ y(mod I)
∧
f(ς) = 0.

Proof. The implication ”⇐” being elementary, we will be concentrated on the reverse
one ”⇒”. To that goal, let λ ∈ R be a zero of f̃(X). We therefore readily check that
ς = y + λf(y) is a zero of f(X). Keeping in mind that yf(y) = 0, we deduce that

f(y+λf(y)) =
∑
n≥0

an(y+λf(y))n = f(y)+
∑
n≥1

anλ
nf(y)n = f(y)+

∑
n≥1

anλ
nf(y)an−1

0 .

This is obviously equal to

f(y)
∑
n≥0

ana
n−1
0 λn = f(y)f̃(λ) = 0,
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as required.

As a valuable consequence, one derives the following.

Corollary 2.7. Let R be a ring and let d, n be positive integers. Then, for all x ∈ R,
we have

xd(n−1)+1 = x ⇐⇒ ∃ ς ∈ R : ςd = 1
∧
xn = ςx.

Proof. Let x ∈ R. Since for any ς ∈ R and for i = d, . . . , 1, we obtain

xi(n−1)+1 = ςxxi(n−1)+1−n = ςx(i−1)(n−1)+1,

the implication ”⇐” is clear. To prove the converse implication ”⇒”, we may with
no harm in generality replace R by the subring generated by 1 and x. In particular,
we can assume even that R is commutative.

Now, put I = Ann(x). Consequently, the statement of the corollary is equivalent
to

xd(n−1) ≡ 1(mod I) ⇐⇒ ∃ ς ∈ R : ςd = 1
∧
ς ≡ xn−1(mod I).

Next put f(X) = Xd − 1 ∈ R[X] and y = xn−1; thus f(ς) = 0. So, the statement of
the corollary is amounting to

f(y) ≡ 0(mod I) ⇐⇒ ∃ ς ∈ R : f(ς) = 0
∧
ς ≡ y(mod I).

Note that the ideal I is pretty obviously contained in Ann(y). Since λ = −1 is a zero

of f̃(X) = (−1)d−1Xd + 1, the condition of the previous theorem is satisfied and thus
the corollary follows after all.

It is worthwhile noticing that Theorem 2.6 perhaps can be considerably extended
in the non-commutative case as follows (actually, its formulation smells a little like
the classical well-known Hensel’s lemma):

Let R be a ring and let f(X) ∈ R[X] be a polynomial with coefficients in the center
of R. Suppose also that f(X) has an invertible root in the center of R and that f(0)
inverts in R. Then, for all y ∈ R and every ideal I ⊂ Ann(y), the annihilator of y,
we have

f(y) ≡ 0(mod I) ⇐⇒ ∃ ς ∈ R : ς ≡ y(mod I)
∧
f(ς) = 0.

Some idea for an eventual proof could be the following: The right-to-left part
being self-evident, we will deal with the left-to-right one. To that purpose, let ε ∈ R
be an invertible central root of f(X). Put
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h(X) =
εf(X)

f(0)
.

Notice that h(0) = ε inverts in R. Thus h(y) lies in I. We easily check that ς = y+h(y)
satisfies the equality f(ς) = 0. Writing f(X) =

∑
n≥0 anX

n and bearing in mind that
yh(y) = 0, one infers that

f(y + h(y)) =
∑
n≥0

an(y + h(y))n = f(y) +
∑
n≥1

anh(y)n.

We however see that h(y)n = h(0)n−1h(y) for every n ≥ 1. Therefore, we get that

0 = f(y + h(y)) = f(y) + h(y)
∑
n≥1

anh(0)n−1 = f(y)− h(y)

h(0)
f(0) +

h(y)

h(0)
f(h(0)).

Since h(0) = ε and f(ε) = 0, the last expression on the right must be zero, and thus

f(y) = h(y)
h(0)f(0) is in I, which demonstrably riches us that we are done.

3. Concluding Discussion and Open Questions

We call a ring R π-simply presented if, for any a ∈ R, there exists an integer n =
n(a) ≥ 2 such that either an = a or an = 0. If such a natural n is fixed, and so it
does not depend on a, the ring R is just called n-simply presented.

It is rather clear that 2-simply presented rings R are just the Boolean ones. In
fact, if u ∈ U(R), then u2 = u and hence u = 1. This means that U(R) = {1} whence
Nil(R) = {0}. Consequently, for every r ∈ R, it must be that r2 = r, as required. It
is worthwhile noticing that this could also be deduced from [7].

Recall also that (see, e.g., [16]) a ring is strongly clean if every its element is the
sum of a unit and an idempotent which commute each to other. Thus the following is
true: Any n-simply presented ring is strongly clean with nil Jacobson radical. In fact, if
R is such a ring and a ∈ R with an = 0, one represents a = (a−1)+1 ∈ U(R)+Id(R).
If now an = a, one checks that a = a2b = ba2, where b = an−1 + an−2− 1. Therefore,
a is strongly regular element and, thereby, it follows from [16] that such an element
a is strongly clean. Finally, this enables us that R is strongly clean. Also, it is pretty
easy to find that U(R) is torsion having Un−1(R) = {1} and thus, in view of [8], one
infers that R is strongly m-torsion clean for some m ≤ n. We, consequently, again
appeal to [8] to get some expected subdirect isomorphism.

About the nil property of J(R), choose an arbitrary z ∈ J(R). If zn = 0, we are
set. If, however, zn = z, then z(1− zn−1) = 0 which allows us to conclude that z = 0
since 1− zn−1 ∈ U(R).

We close the work with the following three problems of interest and importance.
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Problem 1. Describe n-simply presented rings for all n ∈ N as well as π-simply
presented rings.

Problem 2. For an arbitrary natural n ≥ 1 and a ring R such that its characteristic
is the prime number n + 1, does it follow that R is a J(n)-ring if, and only if, each
element of R is a sum of n idempotents? Equivalently, is such a ring R a J(n)-ring
exactly when R = Id(R) + · · ·+ Id(R) (where the sum is taken n-times)?

We conjecture that the answer is ”yes”, provided that n+1 runs over some special
primes by noticing in this way that if n = 1, we just identify Boolean rings, and that
if n = 2, the conjecture holds in the affirmative in accordance with [11, Theorem 1].

Problem 3. Describe those rings whose elements satisfy the polynomial identity
xn+1 − vx = 0, where n ∈ N and v2 = 1.

It is pretty obvious that weakly J(n)-rings are a partial case of these rings, when
v = ±1.
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