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ABSTRACT: This paper focuses on the problem concerning the loca-
tion and the number of zeros of polynomials in a specific region when their
coefficients are restricted with special conditions. We obtain extensions of
some classical results concerning the number of zeros of polynomials in a
prescribed region by imposing the restrictions on the moduli of the coeffi-
cients, the real parts(only) of the coefficients, and the real and imaginary
parts of the coefficients.
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1. Introduction

Locating zeros of polynomials with special conditions for the coefficients, in particu-
lar, the number of zeros of complex polynomials in a disk when their coefficients are
restricted with special conditions has applications in many areas of applied mathe-
matics, including linear control systems, electrical networks, root approximation and
signal processing, and for this reason there is always a need for better and better esti-
mates for the region containing some or all the zeros of a polynomial. A review on the
location of zeros of polynomials can be found in ([1], [5], [8], [11]). Tf P(z) = >_7_; a;2
is a polynomial of degree n such that a, > a,—1 > ... > a1 > ag > 0, then P(z) has
all its zeros in |z| < 1. This famous result is known as Enestrom-Kakeya theorem, for
reference see (section 8.3 of [11]). In the literature, for example see ([1] - [12]), there
exist various extensions and generalizations of Enestrom-Kakeya theorem. Taking

COPYRIGHT (© by Publishing House of Rzeszéw University of Technology
P.O. Box 85, 35-959 Rzeszéw, Poland



136 A. Mir, A. Ahmad and A.H. Malik

account of the restrictions on the coefficients of a polynomial allows for establishing
improved bounds and here, in this paper, we impose some restrictions on the coeffi-
cients of polynomials in order to count the number of zeros in a specific region. The
following result concerning the number of zeros of a polynomial in a closed disk can
be found in Titchmarsh’s classic “The Theory of Functions”, see ([13], page 171, 2nd
edition).

Theorem A. Let F(z) be analytic in |z| < R. Let |F(z)| < M in |z| < R and suppose
F(0) # 0. Then for 0 < § < 1, the number of zeros of F(z) in the disk |z| < RS does

not exceed
1 ) M
—— log————.
logz |F(0)]

Regarding the number of zeros in |z] < % and by putting a restriction on the coefhi-
cients of a polynomial similar to that of the Enestrom-Kakeya theorem, Mohammad
[9] used a special case of Theorem A to prove the following result.

Theorem B. If P(z) = Z?:o a;z’ is a polynomial of degree n such that 0 < ag <
a1 < ... < ap, then the number of zeros of P(z) in |z| < 1 does not exceed

1 an
14+ ——log( — ).
+10g2 Og<a0)

The above result of Mohammad [9] was generalized in different ways for example
see ([1], [2], [4], [5], [11]). Using hypotheses related to those of Theorem B, very
recently Qasim et al. [6] imposed a monotonic condition on the moduli and then on
the real and imaginary parts of the coefficients of the Lucanary type of polynomials
P(z) =ap+ Y a;jz7 and proved the following results.
Jj=p
Theorem C. Let P(z) = ap+ Y. a;z7,1 < pu < n—1,a9 # 0 be a polynomial of
J=p
degree n. If for some real a and B

larg a; — Bl <a< 5, p<j<n,

IV

and for some t > 0 and some k with p < k <n,
tMa,| < . <P Hago | < tFlag] > T agg | > > " Han 1| > " an),

then the number of zeros of P(z) in |z| < 3 does not exceed
Lo (M
log2 *\aol )’

M =2|ag|t + |a, [t (1 — sina — cosar) + 2|ag [t* T cosa+
n
lan|t" (1 — sina — cosa) + 2 Z |a |t sina.
J=p

where



Number of Zeros of a Polynomial ina Specific Region with Restricted Coefficients137

n .
Theorem D. Let P(z) = ap+ . a;27,1 < p < n—1,a9 # 0 be a polynomial of
J=n
degree n with Re a; = a; and Im a; = 3; for p < j < n. Suppose that for somet >0
and some k with p < k <n, we have
tra, < .. <t oy <tPap >t Tlagy > > a, g > tay,

then the number of zeros of P(z) in |z| < L does not exceed

e[ M
log2 *\aol )’

where
M =2(Jao| + [Bol)t + (lay| — e )t + + 2|eug [t

(lom| = )t 42> |37

J=p

n .
Theorem E. Let P(z) = ag+ ) a;jz’,1 < p<n—1, ag # 0 be a polynomial of
j=n
degree n with Re a; = o and Im aj = B; for p < j < n. Suppose that for somet > 0
and some k with p < k < n, we have
thray, <. <t lag g <tFap > T oy > >t e, > "y,
and for some p <1 < n we have

B, < SHTIB SRR >R > L > T B > 7B,

then the number of zeros of P(z) in |z| < § does not exceed
1 1 M
T oo 22
og2 "\ Jaol )

M =2(lag| + [Bol)t + (Jap| — o + Byl — Bu)t" T
+ 20 t* T 4+ Bt ) + (o] — a4 |8 — Bu)t" T

where

In this paper, we further weaken the hypotheses of the above results and prove
the following.
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2. Main results

n .
Theorem 1. Let P(z) =ap+ Y a;27,1 < p <n, ag # 0, where for somet > 0 and
J=p
some u < k <n,

t'ay,| < ... <P Hag| < tFlag] > T aga| > > a1 > s

and |arg a; — B| < a < § for p < j <n, for some real a and 3. Then for 0 <6 <1,
the number of zeros of P(z) in the disk |z| < 6t does not exceed

1 M

L log—
log% g\a0|

where
M =2|ag|t + (la,[t" " + |a,[t"T) (1 — cosa — sina)
n
+ 2|ag|[t" T cosar + 2 Z |a;|t/ Tsina.
J=n
Notice that when ¢t = 1 in Theorem 1, we get the following.
n

Corollary 1. Let P(z) = ap+ Y, ajzj,l < p < n,ag # 0, where for some p < k <mn,
J=u

lap| < .o <Hag—1| < ak| = lagt1] = . = [an—1] = |an]

and |arg aj — B| < a < § for p < j <n, for some real o and 3. Then for 0 <0 <1,
the number of zeros of P(z) in the disk |z| <& does not exceed

1 M
—log—,
logg |ao

where
M =2|ao| + (|au| + |an|)(1 — cosa — sina)

n
+ 2|ag|cosa + 2 Z |a;|sinc.
J=u

Clearly for 6 = %, Theorem 1 reduces to Theorem C and Corollary 1 reduces to
Corollary 1.1 of Qasim et al. [6]. With ¢ =1 and k = n in Theorem 1, the hypothesis
becomes |a,| < ... < |an—1]| < |ay,|, and the value of M becomes 2|ag|+ (|a,|+|an])(1—

cosa — sina) + 2|ay|cosa+ 2 Y |aj[sine, and hence Theorem 1 implies Corollary 1.2
Jj=p

of Qasim et al. [6]. In the same way for t = 1, k = p and for § = , Theorem 1

implies Corollary 1.3 of Qasim et al. [6].
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n .
Theorem 2. Let P(z) = ap+ Y, a;2?,1 < p <mn, ap # 0, where Re a; = a; and
J=p
Im a; = B; for p < j <n. Suppose that for somet > 0 and some k with uy <k <n,
we have

tra, < .. <t oy <tPap >t Tlagy > > a g > "y,

Then for 0 < § < 1, the number of zeros of P(z) in the disk |z| < 0t does not exceed
1 M
—log—,
logs " laol
where

M =2(|ao| + |Bol)t + (lovu| = O‘u)tu—H

+ 2005 (o | — )t 42 B[
J=Hn
Remark 1. For § = %, Theorem 2 reduces to Theorem D.
Notice that with t =1 in Theorem 2, we get the following.
Corollary 2. Let P(z) = ag+ Y, a;27,1 < p <n, ag # 0, where Re a; = a; and

j=p
Im aj; = B for p < j < n. Suppose we have for some p < k < n,

< S S 2 Qg 2 2 Gy 2 Q.
Then for 0 < § < 1, the number of zeros of P(z) in the disk |z| < 6 does not exceed
1 M
—log—,
logg |ao
n
where M = 2(|ao| + [Bol) + (] — ) + 20 + (Jan| — an) +2 5 [B5]-
J=p

Clearly for 6 = %, the Corollary 2 reduces to Corollary 2.1 of Qasim et al. [6].
With t =1,k = n in Theorem 2, the hypothesis becomes o, < ... < ap—1 < ap,1 <
@ < n and the value of M becomes

2(Jxo] + Bol) + (o] — ) + (Jon| + ) +2 ) 185,
Jj=p

therefore, Corollary 2.2 of Qasim et al. [6] follows from Theorem 2.

By manipulating the parameter k, p and ¢, we easily get Corollary 2.3 and Corollary
2.4 of Qasim et al. [6] from Theorem 2.

Finally, we put the monotonicity-type condition on the real and imaginary parts of
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the coefficient of P(z) = ag + i ajz’ and get the following result.
j=n
Theorem 3. Let P(z) = ap + i ajz9,1 < p < n, ag # 0 where Re a; = oj and
Imaj; =B; forp <j<n. Suppoj;uthat for some t > 0, for some p < k < n, we have
tra, <. <t oy <trPa > tFTlag > L > g > 7y,
and for some pu <1 <n, we have

B, < S HTIB SRR >R > L T B > B

Then for 0 < 6 < 1, the number of zeros of P(z) in the disk |z| < 0t does not exceed

1 M
—Hog—,
logs lao|
where
M = 2(|aol + 8ot + (laul — ap + 1Bul = Bt

+2(apt* T 4 Bt + (lam| — e + | Bul = Bt

Taking § = % in Theorem 3, we get Theorem E. Theorem 3 gives several corollaries

with hypotheses concerning monotonicity of real and imaginary parts. For example,
with ¢ = 1, we have the following result.

Corollary 3. Let P(z) = ag + Zn: a;jz?,1 < p<n, ag # 0, where Re a; = oj and
Imaj =8; forp <j<n. Suppézg that for some pu < k <n, we have
oy < oSl SO 2 Qg 2 2 Q1 2 Oy
and for some pu <1 <n, we have
By L o P11 < B2 Big1 2 . 2 Bt = Ba.
Then for 0 < § < 1, the number of zeros of P(z) in the disk |z| < 6 does not exceed

1 M
—llog—7
logs lao|

where

M = 2(Jeol +[Bol) + (lap] = i + [Bul = B) + 2(ex + Bi) + (|an| = an + |Bu] = By)-

With ¢ =1 and k =1 =n in Theorem 3, we get the following.
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Corollary 4. Let P(z) = ag + zn: a;jz?,1 < p<n, ag # 0, where Re a; = o and
Imaj =85 forp <j<n. Suppé:: that for some p < k <mn, we have
o, <o Sapo <ag
and
By < oo < Bn-1 < Bn.
Then for 0 < § < 1, the number of zeros of P(z) in the disk |z| < & does not exceed

1 M
Tlog—,
logs laol

where

M = 2(Jewol + [Bol) + (lau| = +[Bul = Bu) + (lan] + an + [Bul + Bu)-

Fort =1, k=1 = p in Theorem 3, we get the following

Corollary 5. Let P(z) = ag+ Y. a;27,1 < p < n, ag # 0, where Re a; = o; and
J=n
Im aj = B for p < j <n. Suppose that

> .. Zan—l Zan

Qu

and
B,u Z Z Bn—l Z Bn

Then for 0 < § < 1, the number of zeros of P(z) in the disk |z| < 6 does not exceed

1 M
T log—,
logs ~laol

where

M = 2([eol + [Bol) + (lau| + e + [Bul + Bu) + (lan| = an + [Bul = Bu)-

3. Proofs of theorems

We need the following lemma for the proofs of theorems.

Lemma 1. For any two complex numbers by and by such that |bg| > |b1|. Suppose
larg b; — B8] < a < 7, for j = 0,1 for some real o and 3, then

|bo — b1] < (Jbo| — |b1])cosa + (|bg| + |b1])sinc.
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The above lemma is due to Govil and Rahman [5].

Proof of Theorem 1. Consider the polynomial
F(z) = (t —2)P(z)

=(t—2) (ao + iaﬁ)

n n
= agt + E ta;z’ —apz — g aszH
J=w J=n

n n+1
=ag(t—2)+ g ta;z? — g a;_12’
J=u J=p+1

n
=ao(t — z) + ta,z" + Z (ta; —aj_1)z7 — a,z".
J=p+1

For |z| = ¢, we have

n
|F(2)] < 2tlao| + lault"™ + > [ta; — aj_a|t! + |an|t"™

J=p+l
k n
= 2t|ag| + |a, [t" Tt + Z lta; —a; 1|t + Z laj—1 — ta;|t! + |a,[t" T
j=p+1 j=k+1

Using Lemma 1 with by = a;t and by = a;_; when pu+1 < j <k and with by = a;_;
and by = a;jt when k+1 <5 <n,

k
|F(2)] < 2tlao| + lau|t* ™ + > {(lalt — |aj_1])cosa + (|aj |t + |a;—1[)sina }t?
Jj=p+1
n

+ Y {(lag1] = laj|t)cosa + (as|t + a;—1|)sina }t7 + |a,[¢"+!

j=k+1
k k
= 2laot + |a,[t" Tt + Z la; |t T cosar — Z |la;—1|t cosa
Jj=p+1 Jj=p+l
k k n
+ Z |a;|t7Hsina + Z la;—1|t!sina + Z la;—1|t cosa
J=p+1 J=ptl J=k+1

n n n
- Z |a;[t7 cosar + Z la;—1|t'sina + Z |la;|t7 sina + |a, [t
j=k+1 j=k+1 j=k+1
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= 2|aot + |a, |t" Tt — |a,|t" T cosa + |ax|[tF T cosa + |a, |t sina

k—1
+ |ag|t*Hsina + 2 Z |a; [t/ sine + |ag |[tF T cosa — |an [t cosa + |ag |tF T sina
Jj=ptl
n—1
+ |, |t" T sina 4 2 Z |la; |t Hsina + |a, [t 1.
j=k+1
n—1
= 2lagt + |a,|t" Tt + |a,|t" T (sina — cosa) + 2 Z |a; |t/ sina
Jj=ptl

+ 2|ag[tF T cosar + (sina — cosa 4 1) |ay, [t

= 2|aot + |a, [t" T (1 — sina — cosa) + 2|ag [t"cosa + |ay, [t"TH (1 — sina — cosa)

n
+2 Z |aj|tj+1sina.
J=n

= M (say).
Now F(z) is analytic in [z| <t and [F(2)| < M for |2| = t. So by Theorem A and the

Maximum Modulus Theorem, the number of zeros of F' (and hence of P) in |z| < §t
is less than or equal to

Hence the Theorem 1 follows.
Proof of Theorem 2. As in the proof of Theorem 1,

F(z)=(t—2)P(2)

n
=ag(t — z) + ta,z" + Z (ta; —aj_1)z7 — a,z"t,
Jj=p+l

and so
F(z) = (oo +ifo)(t — 2) + (au +iB,)t2" + Z (ot —aj_1)2?
J=p+1

+ 1 Z (ﬁjt - ,Bj_l)zj - (Oén + iﬁn)2n+1.

J=p+1
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For |z| = t, we have

[F(2)] < 2(|aol + 8ot + (o] + [Bu)#H + > oyt — |t
Jj=p+1
n .
+ D (Bt + 18- ) + (o] + |Ba )"+
j=p+1
n

= 2(Jao| + [Bol)t + (la| + BT + D (ajt — 1)t

J=p+1
n n—1
+ Y (agor —agt)t + (Bt 42 B B
j=k+1 j=nt1

+ (| + Ba )"+
= 2(|o| + [Bo])t + (lovu| = )t + 200" + (Jown| — o )"

+2) B[
J=n

=M
The result follows as in the proof of Theorem 1.
Proof of Theorem 3. As in the proof of Theorem 2,
F(z)=(t—2)P(2)

n
=ao(t — z) + ta, 2" + Z (ajt —aj_1)z7 —a,z"t"
J=p+1

= (a0 +ifo)(t — 2) + (u +iBu)t=" + Y (ayt — 1)’
Jj=ptl

+i > (Bt —Bi—1)2 — (an +1iBn)2"

Jj=ptl
For |z| = ¢, we have

|F(2)] < 2(|ao| + |Bol)t + (ol + 1B+ Y oyt — o[t
Jj=p+1

+ > 1Bt = Bialt + (o] + [Ba)t" !

Jj=ptl
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k n

2(Jo] + [Bo)t + (Jp| + [Bu)E T + Y (gt —ay ) + Y (1 —azt)t!

j=p+1 j=k+1

l n
+ Y (Bt =B + D (Bjo1 = Bt + (Jan| + |Bal) T

j=pt1 j=l+1

=2(|ao| + [Bol)t + (Jap| — v + |Bul — ﬁu)tu—ﬂ + 2(aktk+1 + BltH_l)

+ (|an| —an+ |Bn‘ - ﬂn)tn+1
= M.

The result now follows as in the proof of Theorem 1.

References

1]

[10]

[11]

K.K. Dewan, Eztremal properties and coefficient estimates for polynomials with
restricted zeros and on location of zeros of polynomials, Ph.D. Thesis, Indian
Institute of Technology, Delhi, 1980.

K.K. Dewan, M. Bidkham, On the Enestrém-Kakeya theorem, J. Math. Anal.
Appl. 180 (1993) 29-36.

R.B. Gardner, N.K. Govil, On the location of the zeros of a polynomial, J. Approx.
Theory 78 (1994) 286-292.

R. Gardner, B. Shields, The number of zeros of a polynomial in a disk, J. Class.
Anal. 3 (2013) 167-176.

N.K. Govil, Q.I. Rahman, On the Enestrom-Kakeya theorem, Tohoku Math.
Jour. 20 (1968) 126-136.

I. Qasim, T. Rasool, A. Liman, Number of zeros of a polynomial (Lucanary-
type) in a disk, J. Math. Appl. 41 (2018) 181-194.

A. Joyal, G. Labelle, Q.I. Rahman, On the location of zeros of polynomials,
Canad. Math. Bull. 10 (1967) 53-63.

M. Marden, Geometry of Polynomials, Math. Surveys, No.3, Amer, Math. Soc.,
Providence, R.I., 1966.

Q.G. Mohammad, On the zeros of the polynomials, Amer. Math. Monthly 72
(1965) 631-633.

M.S. Pukhta, On the zeros of a polynomial, Appl. Math. 2 (2011) 1356-1358.

Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Oxford University
Press, 2002.



146 A. Mir, A. Ahmad and A.H. Malik

[12] T. Rasool, I. Ahmad, A. Liman, On zeros of polynomials with restricted coeffi-
cients, Kyungpook Math. J. 55 (2015) 807-816.

[13] E.C. Titchmarsh, The Theory of Functions, 2nd Edition, Oxford University
Press, London, 1939.

DOI: 10.7862/rf.2019.9

Abdullah Mir

email: mabdullah mir@yahoo.co.in
Department of Mathematics
University of Kashmir

Srinagar, 190006

INDIA

Abrar Ahmad

email: abrarahmad1100@gmail.com
Department of Mathematics
University of Kashmir

Srinagar, 190006

INDIA

Adil Hussain Malik

email: malikadil6909@gmail.com
Department of Mathematics
University of Kashmir

Srinagar, 190006

INDIA

Received 09.02.2019 Accepted 22.06.2019



