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On the Alternative Structures for

a Three-Grade Markov Manpower System

Vincent A. Amenaghawon, Virtue U. Ekhosuehi
and Augustine A. Osagiede

Abstract: This paper considers a manpower system modelled within
the Markov chain context under the condition that recruitment is done
to replace outgoing flows. The paper takes up the embeddability problem
in a three-grade manpower system and examines it from the standpoint
of generating function (i.e., the z-transform of stochastic matrices). The
method constructs a stochastic matrix that is made up of a limiting-state
probability matrix and a partial sum of transient matrices. Examples are
provided to illustrate the utility of the method.

AMS Subject Classification: 15A18, 91D35.
Keywords and Phrases: Embeddability problem; Manpower system; Markov chain;
Stochastic matrix; Z-transform.

1. Introduction

Mathematical models are often used to describe how changes take place in a manpower
system, where individuals move through a network of states which may be defined
in terms of ranks or position. One of the widely used approaches to the modeling of
manpower systems is the Markov chain framework [1, 7, 9]. The basic Markov chain
model for a k−grade manpower system is expressed algebraically using the following
recursive relation

nj(t+ 1) =

k∑
i=1

ni(t)pij +R(t+ 1)rj , j = 1, 2, · · · , k, (1.1)
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where ni(t) is the expected number of individuals in state i at time t, pij is the internal
homogeneous transition probability from state i to state j, rj is the proportion of
recruits allocated to state j and R(t + 1) is the expected number of recruits to the
system at time t+1. The manpower accounts for the system are assumed to take place
at the end of the time period and recruitment is recorded as if it took place at the
beginning of the next time period [1]. The transition probabilities, pij ’s, are estimated
based on data from observable variables using the maximum likelihood method [14].
In many practical instances, the transition probability, pij , satisfies the conditions:∑k

j=1 pij ≤ 1, i ∈ S, pij ≥ 0, i, j ∈ S, where S = {1, 2, · · · , k} is the set of mutually
exclusive and collectively exhaustive states of the k−grade manpower system. The
shortfall in the sum

∑k
j=1 pij ≤ 1 is attributed to outgoing flows (wastage) from the

system. With wi as the wastage from the system,

k∑
j=1

pij + wi = 1, i ∈ S. (1.2)

The recursive relation in equation (1.1) can be rewritten in matrix notation as

n(t+ 1) = n(t)P +R(t+ 1)r, (1.3)

where n(t) = [n1(t), n2(2), · · · , nk(t)] is the structure of the system at any given
time t, P = (pij) is the homogeneous transition matrix and r = [r1, r2, · · · , rk] is the

recruitment vector with
∑k

j=1 ri = 1. Let w = [w1, w2, · · · , wk] denote the wastage
vector for the system. Since a fixed size manpower system is considered, where wastage
is replaced by new recruits, the expected number of recruits to the system at time
t+ 1 is

R(t+ 1) = n(t)w′. (1.4)

Thus, equation (1.3) can be expressed as

n(t+ 1) = n(t) (P + w′r) , (1.5)

where (P + w′r) is a stochastic matrix. Equation (1.5) is suitable to predict what
the manpower structure will become one-step ahead year after year. If the manpower
structure is to be maintained, then n(t+ 1) = n(t) = n in equation (1.5), cf. [13].

Suppose for motivational reasons, that the manpower structure is to be projected
for a semester beyond one-step (that is, one year and six months) or a quarter beyond
one-step (that is, one year and three months). Then representation becomes an issue

when we have the fractional indicial stochastic matrix, (P + w′r)
1+1/n

, for n = 2 or
4. This problem is an embeddability problem. Singer and Spilerman [11] considered
the embeddability problem by verifying whether an observed transition matrix could
have arisen from the evolution of a stationary continuous-time Markov process. The
approach does not give a unique solution. Osagiede and Ekhosuehi [10] solved the
embeddability problem for a manpower system with sparse stochastic matrices within
the context of determining the nearest Markov generator arising from the continuous-
time Markov chain to the higher order observable Markov chain. The resulting Markov
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chain was an approximation to the higher order observable Markov chain. In [6], the
problem was solved by finding the diagonalizable form of the observable Markov chain.

This study considers a three-grade manpower system, that is, k = 3. Markovian
manpower systems with three grades arise in many practical situations [1, 3, 4, 7, 8,
13]. Following [12], the study assumes a fixed size manpower system that operates
a policy that allows wastage to be replaced by new recruits. In this case, the con-
sequential outflow from state i which goes back to state j as recruitment would be
wirj , i, j ∈ S. The study is aimed at finding the fractional indicial stochastic ma-

trix, (P + w′r)
1+1/n

, arising from a hierarchical manpower system with three grades
using the generating function technique (the so called z-transform). This approach
that is based on z-transform has been used to model population dynamics within the
Leslie matrices framework [2]. The study develops an additive representation for the
stochastic matrix describing the evolution of the personnel structure of a Markov man-
power system with fixed total size. The assumption of a fixed total size for manpower
system is appropriate in practice when an organization is faced with limited personnel
availability on the external labour market, facility and budget restrictions [8]. The
usefulness of the additive representation is justified when there is a lack of observa-
tions regarding the time unit of the Markov chain (that was earlier estimated using
historical data in discrete time) owing to a policy change in the short-term on the
effective date of promotion. For instance, extending the effective date of promotion
from October 1 of the current year to January 1 of the following year for budgetary
reasons. This kind of policy change is dealt with in the additive representation.

2. The generating function standpoint

In this section, we prove the following using the z-transform: If Q = (P + w′r) ∈ R3×3

is a stochastic matrix that satisfies the axioms that: (i) Q is irreducible, (ii) the
determinant of Q is non-singular, and (iii) the characteristic polynomial arising from
the determinant det(I−Qz) has linear factors, then the fractional indicial stochastic

matrix, Γ = Q1+1/n, n > 0, can be expressed in the form

Γ =

{
X = (xij) ∈ R3×3 | X = Am + Tm(1 + 1/n),

3∑
j=1

xij = 1, xij ≥ 0,∀i, j ∈ S,m = 1, 2

}
, (2.1)

where Am is the 3× 3 matrix of limiting-state probabilities for case m and

Tm(1+1/n)=

 α
−(2+1/n)
1 B1 + α

−(2+1/n)
2 C, m = 1 if (tr(Q)−1)2>4 det(Q)

(2+1/n)α−(3+1/n)B2+α−(2+1/n)D, m = 2 if (tr(Q)−1)2 =4 det(Q)

provided that α, α1, α2 ∈ Ψ = {v |v > 1, v ∈ R} with α, α1, α2 being the zeros of the

characteristic function det(I − Qz) = 1 − tr(Q)z +
(∑3

i=1Qii

)
z2 − det(Q)z3 with
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Qii being the cofactor of the diagonal entries in Q, and Bm, C, D are matrices of
constant values for each respective case m.

Consider the recurrence relation in equation (1.5): Using the z-transform, the
generation function vector g(z) that is associated with the manpower structure n(t)
is defined by

g(z) =

∞∑
t=0

n(t)zt. (2.2)

Thus,

g(z)Q =

∞∑
t=0

n(t)Qzt =

∞∑
t=0

n(t+ 1)zt =
1

z

∞∑
t=0

n(t+ 1)zt+1 =
1

z
(g(z)− n(0)),

where n(0) is the initial manpower structure. Further simplifications lead to

g(z) = n(0) [I−Qz]
−1
.

Let

G(z) = [I−Qz]
−1

=

∞∑
t=0

Qtzt, Q0 = I, (2.3)

where G(z) is the 3 × 3 Green function matrix and I is the 3 × 3 identity matrix.
Since

Q =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

+

 w1

w2

w3

 [ r1 r2 r3
]

= (qij) ,

where qij = pij + wirj , i, j ∈ S, then

I−Qz =

 1− q11z −q12z −q13z
−q21z 1− q22z −q23z
−q31z −q32z 1− q33z

 .
The inverse of I−Qz is defined as

[I−Qz]
−1

=
adj (I−Qz)

det (I−Qz)
. (2.4)

The determinant, det (I−Qz), is obtained as follows: Factorizing (1 − q11z), q12z,
q13z from column 1, 2, 3 respectively of det (I−Qz) yields

det (I−Qz) = (1− q11z)q12q13z2

∣∣∣∣∣∣∣
1 −1 −1

− q21z
(1−q11z)

1−q22z
q12z

− q23
q13

− q31z
(1−q11z) − q32

q12

1−q33z
q13z

∣∣∣∣∣∣∣ .
Subtracting column 2 from column 3, we have

det (I−Qz) = (1− q11z)q12q13z2

∣∣∣∣∣∣∣
1 −1 0

− q21z
(1−q11z)

1−q22z
q12z

− q23
q13
− 1−q22z

q12z

− q31z
(1−q11z) − q32

q12

1−q33z
q13z

+ q32
q12

∣∣∣∣∣∣∣ .
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Adding column 1 to column 2,

det (I−Qz) = (1− q11z)q12q13z2

∣∣∣∣∣∣∣
1 0 0

− q21z
(1−q11z)

1−q22z
q12z

− q21z
(1−q11z) − q23

q13
− 1−q22z

q12z

− q31z
(1−q11z) − q32

q12
− q31z

(1−q11z)
1−q33z
q13z

+ q32
q12

∣∣∣∣∣∣∣ .
Taking the determinant

det (I−Qz) = (1− q11z)q12q13z2
((

1− q22z
q12z

− q21z

(1− q11z)

)(
1− q33z
q13z

+
q32
q12

)
−

(
q23
q13
− 1− q22z

q12z

)(
q32
q12
− q31z

(1− q11z)

))
.

This simplifies to

det (I−Qz) = 1−(q11+q22+q33)z+(q11q22+q11q33+q22q33−q21q12−q23q32−q31q13)z2

−(q11q22q33 − q21q12q33 + q21q32q13 − q23q11q32 + q23q12q31 − q13q22q31)z3.

Thus

det(I−Qz) = 1− tr(Q)z +

(
3∑

i=1

Qii

)
z2 − det(Q)z3. (2.5)

Now (1− z) is a factor of the cubic characteristic function (2.5) since at z = 1,

1− tr(Q) +

(
3∑

i=1

Qii

)
− det(Q) =

∣∣∣∣∣∣
1− q11 −q12 −q13
−q21 1− q22 −q23
−q31 −q32 1− q33

∣∣∣∣∣∣ . (2.6)

Equation (2.6) simplifies to∣∣∣∣∣∣
q12 + q13 −q12 −q13
−q21 q21 + q23 −q23
−q31 −q32 q31 + q32

∣∣∣∣∣∣ =

∣∣∣∣∣∣
q13 −q12 −q13
q23 q21 + q23 −q23

−(q31 + q32) −q32 q31 + q32

∣∣∣∣∣∣ = 0,

as column 1 and column 3 are identical. It follows that

det(I−Qz) = (1− z)
(
1− (tr(Q)− 1)z + det(Q)z2

)
. (2.7)

Using the fundamental theorem of algebra, equation (2.7) is expressed as

det(I−Qz) = det(Q)(1− z)(α1 − z)(α2 − z), (2.8)

where

α1 =
tr(Q− 1)

2 det(Q)

(
1−

(
1− 4 det(Q)

(tr(Q)− 1)2

)1/2
)



10 V.A. Amenaghawon, V.U. Ekhosuehi and A.A. Osagiede

and

α2 =
tr(Q− 1)

2 det(Q)

(
1 +

(
1− 4 det(Q)

(tr(Q)− 1)2

)1/2
)
,

provided that det(Q) 6= 0. The roots α1 and α2 are real if (tr(Q) − 1)2 ≥ 4 det(Q).
If (tr(Q)− 1)2 < 4 det(Q), α1 and α2 would produce complex entries and these have
no meaning within the context of Markov chains. Thus, the case where the quadratic
form

(
1− (tr(Q)− 1)z + det(Q)z2

)
does not have linear factors is not considered.

Moreover, it is difficult to simplify the reciprocal of
(
1− (tr(Q)− 1)z + det(Q)z2

)
as

a series in the form
∑∞

r=0 θ
rzr, where θ is independent of z. More specifically,

1

(1− (tr(Q)− 1)z + det(Q)z2)
=
∞∑
r=0

 r∑
s=0

(−1)s

r
s

(det(Q))
s

(tr(Q)−1)r−szs

zr.
However, the reciprocal of each of the factors in equation (2.8) when α1 and α2 are
real can be expressed in the following series

1

1− z
=

∞∑
t=0

zt. (2.9)

1

α− z
=

∞∑
t=0

α−(1+t)zt. (2.10)

1

(α− z)2
=

∞∑
t=0

(1 + t)α−(2+t)zt. (2.11)

To obtain the adj (I−Qz), we first find the cofactors of each entry in (I−Qz).
The cofactor of 1− q11z is Λ11(z) = 1− (q22 + q33)z+ (q22q33− q23q32)z2, the cofactor
of −q12z is Λ12(z) = q21z − (q21q33 − q23q31)z2 and so on. Proceeding in this way,
the entries in the adj (I−Qz) are found to be a polynomial in z of degree two. More
precisely,

adj (I−Qz) =

 Λ11(z) Λ21(z) Λ31(z)
Λ12(z) Λ22(z) Λ32(z)
Λ13(z) Λ23(z) Λ33(z)

 ,
where Λ13(z) = q31z+(q21q32−q22q31)z2, Λ21(z) = q12z+(q13q32−q12q33)z2, Λ22(z) =
1 − (q11 + q33)z + (q11q33 − q13q31)z2, Λ23(z) = q32z − (q11q32 − q12q31)z2, Λ31(z) =
q13z+ (q12q23− q13q22)z2, Λ32(z) = q23z− (q11q23− q13q21)z2 and Λ33(z) = 1− (q11 +
q22)z + (q11q22 − q12q21)z2.

Resolving the quotient (2.4) into the sum of partial fractions and using the ex-
pressions (2.9) to (2.11), we obtain the following results for each case m according to
whether (tr(Q)− 1)2 > 4 det(Q) or (tr(Q)− 1)2 = 4 det(Q).
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Case 1

If (tr(Q)− 1)2 > 4 det(Q), then

[I−Qz]
−1

=

∞∑
t=0

1

det(Q)

 1

(α1 − 1)(α2 − 1)

 a11 a12 a13
a21 a22 a23
a31 a32 a33

+
α
−(1+t)
1

(α1 − 1)(α1 − α2)
×

 b11 b12 b13
b21 b22 b23
b31 b32 b33

+
α
−(1+t)
2

(α2 − 1)(α2 − α1)

 c11 c12 c13
c21 c22 c23
c31 c32 c33

zt, (2.12)

where a11 = 1−(q22+q33)+(q22q33−q23q32), a12 = q12+(q13q32−q12q33), a13 = q13+
(q12q23−q13q22), a21 = q21− (q21q33−q23q31), a22 = 1− (q11 +q33)+(q11q33−q13q31),
a23 = q23−(q11q23−q13q21), a31 = q31+(q21q32−q22q31), a32 = q32−(q11q32−q12q31),
a33 = 1− (q11 + q22) + (q11q22− q12q21), b11 = 1− (q22 + q33)α1 + (q22q33− q23q32)α2

1,
b21 = q12α1 + (q13q32 − q12q33)α2

1, b31 = q13α1 + (q12q23 − q13q22)α2
1, b12 = q21α1 −

(q21q33 − q23q31)α2
1, b22 = 1 − (q11 + q33)α1 + (q11q33 − q13q31)α2

1, b32 = q23α1 −
(q11q23−q13q21)α2

1, b13 = q31α1+(q21q32−q22q31)α2
1, b23 = q32α1−(q11q32−q12q31)α2

1,
b33 = 1−(q11+q22)α1+(q11q22−q12q21)α2

1, c11 = 1−(q22+q33)α2+(q22q33−q23q32)α2
2,

c21 = q12α2 + (q13q32 − q12q33)α2
2, c31 = q13α2 + (q12q23 − q13q22)α2

2, c12 = q21α2 −
(q21q33 − q23q31)α2

2, c22 = 1 − (q11 + q33)α2 + (q11q33 − q13q31)α2
2, c32 = q23α2 −

(q11q23−q13q21)α2
2, c13 = q31α2+(q21q32−q22q31)α2

2, c23 = q32α2−(q11q32−q12q31)α2
2,

c33 = 1− (q11 + q22)α2 + (q11q22 − q12q21)α2
2.

Case 2

If (tr(Q)− 1)2 = 4 det(Q), then α1 = α2 = α and

[I−Qz]
−1

=

∞∑
t=0

 1

(α− 1)2 det(Q)

 a11 a12 a13
a21 a22 a23
a31 a32 a33

+
(1 + t)α−(2+t)

(α− 1) det(Q)
×

 b11 b12 b13
b21 b22 b23
b31 b32 b33

+
α−(1+t)

α

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 zt, (2.13)

where d11 =
(
1/det(Q)− α2a11 − b11

)
, d12 = −

(
α2a12 + b12

)
, d13 = −

(
α2a13 + b13

)
,

d21 = −
(
α2a21 + b21

)
, d22 =

(
1/ det(Q)− α2a22 − b22

)
, d23 = −

(
α2a23 + b23

)
,

d31 = −
(
α2a31 + b31

)
, d32 = −

(
α2a32 + b32

)
, d33 =

(
1/ det(Q)− α2a33 − b33

)
.

In the expression for Case 1, let

A1 =
1

(α1 − 1)(α2 − 1) det(Q)

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,



12 V.A. Amenaghawon, V.U. Ekhosuehi and A.A. Osagiede

B1 =
1

(α1 − 1)(α1 − α2) det(Q)

 b11 b12 b13
b21 b22 b23
b31 b32 b33


and

C =
1

(α2 − 1)(α2 − α1) det(Q)

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 ,
and for Case 2, let

A2 =
1

(α− 1)2 det(Q)

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

B2 =
1

(α− 1) det(Q)

 b11 b12 b13
b21 b22 b23
b31 b32 b33


and

D =
1

α

 d11 d12 d13
d21 d22 d23
d31 d32 d33

 .
Making the appropriate substitution for [I−Qz]

−1
, it follows from equation (2.1) for

any given t = 1 + 1/n, n > 0, that

Q(1+1/n) = Am + Tm(1 + 1/n), m = 1, 2,

where

Tm(1+1/n)=

 α
−(2+1/n)
1 B1 + α

−(2+1/n)
2 C, m = 1 if (tr(Q)−1)2>4 det(Q)

(2 + 1/n)α−(3+1/n)B2+α−(2+1/n)D, m = 2 if (tr(Q)−1)2 =4 det(Q).

As Q is irreducible, it follows for large t that

lim
t→∞

Qt = Am + lim
t→∞

Tm(t)

exists. This would hold only if α1, α2 > 1. With α1, α2 > 1, limt→∞Tm(t) = 0. In
either case m, Am is a matrix of limiting-state probabilities.

To show that the matrix Qt is meaningful for any given t = 1 + 1/n, n > 0, if
α1, α2 > 1, consider the doubly stochastic matrix in [5]:

P + w′r =

 0.5 0.5 0
0.5 0.25 0.25
0 0.25 0.75

 ,
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which has the real roots α1 = 1.4641 and α2 = −5.4641. The additive representation
is

Q1+1/n =

 0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333

+(1.4641)−(2+1/n)

 0.4880 0.1786 −0.6667
0.1786 0.0654 −0.2440
−0.6667 −0.2440 0.9107



+(−5.4641)−(2+1/n)

−1.8214 2.4880 −0.6667
2.4880 −3.3987 0.9107
−0.6667 0.9107 −0.2440

.
For any n > 0, the third term is a matrix of complex entries because the nth root,
(−5.4641)1/n, arising from the scalar (−5.4641)−(2+1/n), does not exist. Thus the
fractional indicial matrix (P+w′r)(1+1/n) cannot be represented as a sum of constant
matrices that is meaningful within the Markov chain framework.

3. Illustration

The applicability of the new representation for the irreducible stochastic matrix Q is
demonstrated in this section. We consider two test problems. The first problem is
contained in [11] and the second one is in [12].

Example 1. Singer and Spilerman [11] expressed the following transition matrix

P̃ =

 0.16 0.53 0.31
0.0525 0.49 0.4575
0.11 0.14 0.75

 ,
in terms of the intensity matrix as

P̂ = exp

 −2.046 1.993 0.053
0.024 −0.818 0.794
0.315 0.043 −0.358

 ,

where P̂ is an embeddable matrix of P̃. Clearly, P̂ is an approximation of P̃ as

P̂ = exp

 −2.046 1.993 0.053
0.024 −0.818 0.794
0.315 0.043 −0.358

 =

 0.1601 0.5296 0.3103
0.0525 0.4894 0.4581
0.1105 0.1405 0.7489

 .
The additive representation is possible as det(P̃) = 0.0399 is non-singular, the differ-
ence (tr(P̃) − 1)2 − 4 det(P̃) = 0.16 − 0.1597 > 0, and the roots of the determinant
det(I− P̃z) are real and greater than one, viz.

α1 =
0.4

2(0.0399)

(
1−

(
1− 4(0.0399)

(0.4)2

)1/2
)

= 4.7925
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and

α2 =
0.4

2(0.0399)

(
1 +

(
1− 4(0.0399)

(0.4)2

)1/2
)

= 5.2263.

Using the additive representation, the (1+1/n)−step transition matrix, Q(1+1/n), for
n > 0, is represented as:

Q1+1/n =

 0.0992 0.2749 0.6260
0.0992 0.2749 0.6260
0.0992 0.2749 0.6260


+ (4.7925)−(2+1/n)

 −30.8570 85.1439 −54.2869
−7.6590 21.1336 −13.4746
8.2509 −22.7667 14.5158


+ (5.2263)−(2+1/n)

 38.3583 −94.2879 55.9296
7.8341 −19.2569 11.4228
−9.5160 23.3910 −13.8751

 .
This representation does not require any form of perturbation as Q is equal to P̃.

Example 2. Tsaklidis [12] considered a continuous time homogeneous Markov system
with fixed size, where the matrix of the transition intensities of the memberships is
given as

Φ =

 −1/2 0 1/2
1/8 −1/2 3/8
0 1/2 −1/2


In this example, the determinant det(I − z exp(Φ)) has equal roots, that is, α1 =
α2 = 2.1170. We obtain a meaningful (1 + 1/n)−step transition matrix for any given
n > 0, using the additive representation as:

Q1+1/n =

 0.1111 0.4444 0.4444
0.1111 0.4444 0.4444
0.1111 0.4444 0.4444


+ (2 + 1/n) (2.117)−(3+1/n)

 0.7469 −1.4939 0.7469
0.1867 −0.3735 0.1867
−0.3735 0.7469 −0.3735


+ (2.117)−(2+1/n)

 1.5289 −0.2352 −1.2937
−0.3234 1.3525 −1.0291
−0.0588 −1.2937 1.3525

 .
The matrix Q1+1/n is a stochastic matrix and is compatible with the continuous-time
representation, exp ((1 + 1/n)Φ), for any given n > 0.

Suppose that there exist an initial structure n(0) = [55, 40, 5]. Then the results of
using the additive representation for a shift in the unit interval of the Markov chain by
3 months, 6 months and 9 months are n(1+1/4) = [33, 33, 34], n(1+1/2) = [30, 33, 37]
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and n(1 + 3/4) = [28, 33, 39], respectively1. These results are consistent with the
continuous time process for t = 5/4, 3/2, 7/4.

4. Conclusion

This paper has provided the additive representation of stochastic matrices as a means
for obtaining fractional indicial matrices for the manpower system where the personnel
structure is to be projected for a few months beyond one year (for instance, one
year and six months, one year and three months, etc.). As an alternative to the
assertion that supports the continuous-time formulation in place of the discrete-time
Markov framework [11], this study gives instances where certain discrete-time Markov
framework for forecasting manpower structure could have a meaningful fractional
indicial stochastic matrix without recourse to the continuous-time representation via
the transition intensities. The approach in this paper circumvents the problem of non-
uniqueness that exists in the earlier formulations [6, 11]. Even so three conditions
should be satisfied: (i) the transition matrix Q is irreducible, (ii) the determinant of
Q is non-singular, and (iii) the characteristic polynomial arising from the determinant
det(I−Qz) has linear factors with real roots, which exceeds one. For instances where
these conditions are violated, no substantive meaning can be attached in the additive
context. In that case, the appropriate mathematical structure is a continuous-time
formulation.
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Let C be the set of all finite complex numbers. For any entire function f (z) =
∞∑
n=0

anz
n defined in C, the maximum modulus function Mf (r) on |z| = r is defined

by Mf (r) = max
|z|=r

|f (z)|. If f (z) is non-constant then Mf (r) is strictly increasing

and continuous. Also its inverse Mf
−1 : (|f (0)| ,∞)→ (0,∞) exists and is such that

lim
s→∞

Mf
−1 (s) = ∞. Naturally, Mf

−1 (r) is also an increasing function of r. Also a

non-constant entire function f (z) is said to have the Property (A) if for any δ > 1

and for all sufficiently large r, [Mf (r)]
2 ≤ Mf

(
rδ
)

holds (see [3]). For examples of
functions with or without the Property (A), one may see [3]. In this connection Lahiri
et al. (see [6]) prove that every entire function f (z) satisfying the property (A) is
transcendental. Moreover for any transcendental entire function f (z), it is well known

that lim
r→∞

logMf (r)
log r = ∞ and for its application in growth measurement, one may see

[8]. For another entire function g (z) , the ratio
Mf (r)
Mg(r)

as r →∞ is called the growth

of f (z) with respect to g (z) in terms of their maximum moduli. The notion of order
and lower order which are the main tools to study the comparative growth properties
of entire functions are very classical in complex analysis and their definitions are as
follows:
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Definition 1. The order and the lower order of an entire function f (z) denoted by
ρ (f) and λ (f) respectively are defined as

ρ (f)
λ (f)

= lim
r→∞

sup
inf

log logMf (r)

log logMexp z (r)
= lim
r→∞

sup
inf

log logMf (r)

log r
.

The rate of growth of an entire function generally depends upon order (respec-
tively, lower order) of it. The entire function with higher order is of faster growth
than that of lesser order. But if orders of two entire functions are same, then it is
impossible to detect the function with faster growth. In that case, it is necessary
to compute another class of growth indicators of entire functions called their types.
Thus the type σ (f) and lower type σ (f) of an entire function f (z) are defined as:

Definition 2. Let f (z) be an entire function with non zero finite order. Then the
type σ (f) and lower type σ (f) of an entire function f (z) are defined as

σ (f)
σ (f)

= lim
r→∞

sup
inf

logMf (r)

(logMexp z (r))
ρ(f)

= lim
r→∞

sup
inf

logMf (r)

rρ(f)
.

In order to calculate the order, it is seen that we have compared the maximum
modulus of entire function f (z) with that of exp z but here a question may arise
why should we compare the maximum modulus of any entire function with that of
only exp z whose growth rate is too high. From this view point, the relative order of
entire functions may be thought of by Bernal (see [2, 3]) who introduced the concept
of relative order between two entire functions to avoid comparing growth just with
exp z. Thus the relative order of an entire function f (z) with respect to an entire
function g (z), denoted by ρg (f) is define as:

ρg (f) = inf {µ > 0 : Mf (r) < Mg (rµ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1g (Mf (r))

log r
.

Similarly, one can define the relative lower order of f (z) with respect to g (z)
denoted by λg (f) as follows :

λg (f) = lim inf
r→∞

logM−1g (Mf (r))

log r
.

In the definition of relative order and relative lower order we generally compare
the maximum modulus of any entire function f (z) with that of any entire function
g (z) and it is quite natural that when g(z) = exp z, both the definitions of relative
order and relative lower order coincide with Definition 1.

In order to compare the relative growth of two entire functions having same non
zero finite relative order with respect to another entire function, Roy [7] introduced
the notion of relative type of two entire functions in the following way:
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Definition 3. [7] Let f (z) and g (z) be any two entire functions such that
0 < ρg (f) <∞. Then the relative type σg (f) of f (z) with respect to g (z) is de-
fined as:

σg (f) = inf
{
k > 0 : Mf (r) < Mg

(
krρg(f)

)
for all sufficiently large values of r

}
= lim sup

r→∞

M−1g (Mf (r))

rρg(f)
.

Similarly, one can define the relative lower type of an entire function f (z) with
respect to another entire function g (z) denoted by σg (f) when 0 < ρg (f) <∞ which
is as follows:

σg (f) = lim inf
r→∞

M−1g (Mf (r))

rρg(f)
.

It is obvious that 0 ≤ σg (f) ≤ σg (f) ≤ ∞.
If we consider g (z) = exp z, then one can easily verify that Definition 3 coincides

with the classical definitions of type and lower type respectively.

Like wise, to determine the relative growth of two entire functions having same
non zero finite relative lower order with respect to another entire function, one may
introduce the definition of relative weak type of an entire function f (z) with respect
to another entire function g (z) of finite positive relative lower order λg (f) in the
following way:

Definition 4. Let f (z) and g(z) be any two entire functions such that 0<λg (f)<∞.
The relative -weak type τg (f) and the growth indicator τg (f) of an entire function
f (z) with respect to another entire function g (z) are defined as:

τg (f)
τg (f)

= lim
r→∞

inf
sup

M−1g (Mf (r))

rλg(f)
.

For any two entire functions f (z), g (z) defined in C and for any real number
α ∈ (0, 1], Banerjee et al. [1] introduced the concept of generalized iteration of f (z)
with respect to g (z) in the following manner:

f1,g (z) = (1− α) z + αf (z)
f2,g (z) = (1− α) g1,f (z) + αf (g1,f (z))
f3,g (z) = (1− α) g2,f (z) + αf (g2,f (z))
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
fn,g (z) = (1− α) gn−1,f (z) + αf (gn−1,f (z))

and so

g1,f (z) = (1− α) z + αg (z)
g2,f (z) = (1− α) f1,g (z) + αg (f1,g (z))
g3,f (z) = (1− α) f2,g (z) + αg (f2,g (z))
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
gn,f (z) = (1− α) fn−1,g (z) + αg (fn−1,g (z)) .
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Clearly all fn,g (z) and gn,f (z) are entire functions.
Further for another two non constant entire functions h (z) and k (z), one may

define the iteration of Mh
−1 (r) with respect to M−1k (r) in the following manner:

M−1h (r) = M−1h1
(r) ;

M−1k
(
M−1h (r)

)
= M−1k

(
M−1h1

(r)
)

= M−1h2
(r) ;

M−1h
(
M−1k

(
M−1h (r)

))
= M−1h

(
M−1h2

(r)
)

= M−1h3
(r) ;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
M−1h

(
.........

(
M−1h

(
M−1k

(
M−1h (r)

))))
= M−1hn (r) when n is odd and

M−1k
(
.........

(
M−1h

(
M−1k

(
M−1h (r)

))))
= M−1hn (r) when n is even.

Obviously Mhn
−1 (r) is an increasing functions of r.

During the past decades, several researchers made close investigations on the
growth properties of composite entire functions in different directions using their
classical growth indicators such as order and type but the study of growth properties
of composite entire functions using the concepts of relative order and relative type was
mostly unknown to complex analysis which is and is the prime concern of the paper.
The main aim of this paper is to study the growth properties of generalized iterated
entire functions in almost a new direction in the light of their relative orders, relative
types and relative weak types. Also our notation is standard within the theory of
Nevanlinna’s value distribution of entire functions which are available in [5] and [10].
Hence we do not explain those in details.

1. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [4] If f (z) and g (z) are any two entire functions with g (0) = 0. Let β

satisfy 0 < β < 1 and c (β) = (1−β)2
4β . Then for all sufficiently large values of r,

Mf (c (β)Mg (βr)) ≤Mf◦g (r) ≤Mf (Mg (r)) .

In addition if β = 1
2 , then for all sufficiently large values of r,

Mf◦g (r) ≥Mf

(
1

8
Mg

(r
2

))
.

Lemma 2. [3] Let f (z) be an entire function which satisfies the Property (A). Then
for any positive integer n and for all large r,

[Mf (r)]
n ≤Mf

(
rδ
)

holds where δ > 1.
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Lemma 3. [3] Let f (z) be an entire function, α > 1 and 0 < β < α. Then

Mf (αr) > βMf (r) .

Lemma 4. Let f (z), g (z) are any two transcendental entire functions and h (z),
k (z) are any two entire functions such that 0 < ρh (f) < ∞, 0 < ρk (g) < ∞ and
h (z) , k (z) satisfy the Property (A). Then for all sufficiently large values of r,

(i)
(
M−1hn

(
Mfn,g (r)

)) 1
δ < M−1k (Mg (r)) when n is even

and

(ii)
(
M−1hn

(
Mfn,g (r)

)) 1
δ < M−1h (Mf (r)) when n is odd

where δ > 1.

Proof. Let β be any positive integer such that max {ρh (f) , ρk (g)} < β hold. Since

for any transcendental entire function f (z),
logMf (r)

log r → ∞ as r → ∞, in view of
Lemma 1, Lemma 2 and for any even integer n, we get for all sufficiently large values
of r that

Mfn,g (r) ≤ (1− α)Mgn−1,f
(r) + αMf(gn−1,f ) (r)

⇒ Mfn,g (r) < (1− α)Mf

(
Mgn−1,f

(r)
)

+ αMf

(
Mgn−1,f

(r)
)

⇒ M−1h
(
Mfn,g (r)

)
< M−1h

(
Mf

(
Mgn−1,f

(r)
))

⇒ M−1h
(
Mfn,g (r)

)
<
(
Mgn−1,f

(r)
)β

⇒
(
M−1h

(
Mfn,g (r)

)) 1
β < Mgn−1,f

(r)

⇒
(
M−1h

(
Mfn,g (r)

)) 1
β < (1− α)Mfn−2,g

(r) + αMg(fn−2,g) (r)

⇒
(
M−1h

(
Mfn,g (r)

)) 1
β < (1− α)Mg

(
Mfn−2,g (r)

)
+ αMg

(
Mfn−2,g (r)

)
⇒ M−1k

((
M−1h

(
Mfn,g (r)

)) 1
β

)
< M−1k

(
Mg

(
Mfn−2,g

(r)
))

⇒
(
M−1k

(
M−1h

(
Mfn,g (r)

))) 1
δ < M−1k

(
Mg

(
Mfn−2,g (r)

))
⇒

(
M−1k

(
M−1h

(
Mfn,g (r)

))) 1
δ <

(
Mfn−2,g

(r)
)β

⇒
(
M−1k

(
M−1h

(
Mfn,g (r)

))) 1
δ·β < Mfn−2,g (r)

⇒
(
M−1h2

(
Mfn,g (r)

)) 1
δ·β < Mfn−2,g

(r)

⇒ M−1h

((
M−1h2

(
Mfn,g (r)

)) 1
δ·β
)
<
(
Mgn−3,f

(r)
)β

⇒
(
M−1h

(
M−1h2

(
Mfn,g (r)

))) 1
δ <

(
Mgn−3,f

(r)
)β

⇒
(
M−1h3

(
Mfn,g (r)

)) 1
δ·β < Mgn−3,f

(r)
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⇒ M−1k

((
M−1h3

(
Mfn,g (r)

)) 1
δ·β
)
<
(
Mfn−4,g (r)

)β
⇒

(
M−1h4

(
Mfn,g (r)

)) 1
δ·β < Mfn−4,g

(r)

...... .......... ........... ........

...... .......... ........... ........

Therefore

(
M−1hn

(
Mfn,g (r)

)) 1
δ < M−1k (Mg (r)) when n is even.

Similarly, (
M−1hn

(
Mfn,g (r)

)) 1
δ < M−1h (Mf (r)) when n is odd .

Hence the lemma follows.

Remark 1. If we consider 0 < ρh (f) ≤ 1 and 0 < ρk (g) ≤ 1 in Lemma 4, then it is
not necessary for both h (z) and k (z) to satisfy Property (A) and in this case Lemma
4 holds with δ = 1.

Lemma 5. Let f (z), g (z) are any two transcendental entire functions and h (z),
k (z) are any two entire functions such that 0 < λh (f) < ∞, 0 < λk (g) < ∞ and
h (z) , k (z) satisfy the Property (A). Also let δ > 1, 0 < β < α < 1, ω is a positive

integer such that min {λh (f) , λk (g)} > 1
ω and γn >

γωn−1

(α−β) where γ0 = 1. Then for

all sufficiently large values of r,

(i) γn
(
M−1hn

(
Mfn,g (r)

))δ
> M−1k

(
Mg

( r

18n

))
when n is even

and

(ii) γn
(
M−1hn

(
Mfn,g (r)

))δ
> M−1h

(
Mf

( r

18n

))
when n is odd .

Proof. Since for any transcendental entire function f ,
logMf (r)

log r → ∞ as r → ∞,

therefore
log β

(1−α)
Mf (r)

log r →∞ as r →∞ where 0 < β < α. Hence in view of Lemma 1,
Lemma 2, Lemma 3 and for any even integer n, we get for all sufficiently large values
of r that

Mfn,g (r) ≥ αMf(gn−1,f ) (r)− (1− α)Mgn−1,f
(r)
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⇒ Mfn,g (r) > αMf

(
Mgn−1,f

( r
18

))
− βMf

(
Mgn−1,f

( r
18

))
⇒ Mfn,g (r) > (α− β)Mf

(
Mgn−1,f

( r
18

))
⇒ M−1h

(
1

(α− β)
Mfn,g (r)

)
> M−1h

(
Mf

(
Mgn−1,f

( r
18

)))
⇒ M−1h

(
1

(α− β)
Mfn,g (r)

)
>
(
Mgn−1,f

( r
18

)) 1
ω

⇒
(
γ1M

−1
h

(
Mfn,g (r)

))ω
> Mgn−1,f

( r
18

)
⇒ γω1

(
M−1h

(
Mfn,g (r)

))ω
> αMg

(
Mfn−2,g

( r

182

))
− βMg

(
Mfn−2,g

( r

182

))
⇒ γω1

(
M−1h

(
Mfn,g (r)

))ω
> (α− β)Mg

(
Mfn−2,g

( r

182

))
⇒ γω1

(α− β)

(
M−1h

(
Mfn,g (r)

))ω
> Mg

(
Mfn−2,g

( r

182

))
⇒ M−1k

(
γω1

(α− β)

(
M−1h

(
Mfn,g (r)

))ω)
> M−1k

(
Mg

(
Mfn−2,g

( r

182

)))
⇒ γ2

(
M−1k

(
M−1h

(
Mfn,g (r)

)))δ
>
(
Mfn−2,g

( r

182

)) 1
ω

⇒ γω2
(
M−1h2

(
Mfn,g (r)

))δω
> Mfn−2,g

( r

182

)
⇒ M−1h

(
γω2

(α− β)

(
M−1h2

(
Mfn,g (r)

))δω)
>
(
Mgn−3,f

( r

183

)) 1
ω

⇒ γω3
(
M−1h

(
M−1h2

(
Mfn,g (r)

)))δω
> Mgn−3,f

( r

183

)
⇒ γω3

(
M−1h3

(
Mfn,g (r)

))δω
> Mgn−3,f

( r

183

)
⇒ γω4

(
M−1k

(
M−1h3

(
Mfn,g (r)

)))δω
> Mfn−4,g

( r

184

)
⇒ γω4

(
M−1h4

(
Mfn,g (r)

))δω
> Mfn−4,g

( r

184

)
...... .......... ........... ........

...... .......... ........... ........

Therefore

γn
(
M−1hn

(
Mfn,g (r)

))δ
> M−1k

(
Mg

( r

18n

))
when n is even.

Similarly,

γn
(
M−1hn

(
Mfn,g (r)

))δ
> M−1h

(
Mf

( r

18n

))
when n is odd.

Hence the lemma follows.

Remark 2. If we consider 1 ≤ λh (f) <∞ and 1 ≤ λk (g) <∞ in Lemma 5, then it
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is not necessary for both h and k to satisfy Property (A) and in this case Lemma 5
holds with δ = 1.

2. Main Results

In this section we present the main results of the paper. Throughout the paper,
we consider the entire functions H (z), K (z), h (z), k (z) satisfy the Property (A) as
and when necessary. Also consider that F (z), G (z), f (z), g (z) are non constant
entire functions.

Theorem 1. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) < ∞ and 0 < µ < ρk (g) < ∞. Then for any
even number n ,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h Mf (exp rδµ)

=∞,

where δ < 1.

Proof. From the first part of Lemma 5, we get for a sequence of values of r tending
to infinity that

M−1hn
(
Mfn,g (r)

)
>

(
1

γn

)δ ( r

18n

)δ(ρk(g)−ε)
, (2.1)

where γn is defined in Lemma 5.

Again from the definition of ρh (f) , we obtain for all sufficiently large values of r
that

logM−1h
(
Mf

(
exp rδµ

))
≤ (ρh (f) + ε) rδµ . (2.2)

Now from (2.1) and (2.2) , it follows for a sequence of values of r tending to infinity
that

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

>

(
1
γn

)δ (
r

18n

)δ(ρk(g)−ε)
(ρh (f) + ε) rδµ

. (2.3)

As µ < ρk (g) , we can choose ε(> 0) in such a way that

µ < ρk (g)− ε . (2.4)

Thus from (2.3) and (2.4) we get that

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

=∞ . (2.5)

Hence the theorem follows from (2.5) .
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Theorem 2. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) < ∞ and 0 < µ < ρk (g) < ∞. Then for any
even number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

=∞,

where δ < 1.

Proof. Let 0 < µ < µ0 < ρk (g). Then from (2.5), we obtain for a sequence of values
of r tending to infinity and A > 1 that

M−1hn
(
Mfn,g (r)

)
> A logM−1h

(
Mf

(
exp rδµ0

))
i.e., M−1hn

(
Mfn,g (r)

)
> A (λh (f)− ε) rδµ0 . (2.6)

Again from the definition of ρk (g) , we obtain for all sufficiently large values of r that

logM−1k
(
Mg

(
exp rδµ

))
≤ (ρk (g) + ε) rδµ . (2.7)

So combining (2.6) and (2.7) , we obtain for a sequence of values of r tending to
infinity that

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

>
A (λh (f)− ε) rδµ0

(ρk (g) + ε) rδµ
. (2.8)

Since µ0 > µ, from (2.8) it follows that

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

=∞ .

Thus the theorem follows.

Now we state the following two theorems without their proofs as those can easily
be carried out in the line of Theorem 1 and Theorem 2 respectively and with the help
of the second part of Lemma 5.

Theorem 3. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λk (g) ≤ ρk (g) <∞, 0 < λh (f) <∞ and 0 < µ < ρh (f) <∞. Then for any odd
number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

=∞,

where δ < 1.

Theorem 4. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λk (g) ≤ ρk (g) <∞, 0 < λh (f) <∞ and 0 < µ < ρh (f) <∞. Then for any odd
number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

=∞,

where δ < 1.
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Theorem 5. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < ρk (g) < ∞ and λk (g) < µ < ∞. Then for any even
number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

= 0,

where δ > 1.

Proof. From the first part of Lemma 4, it follows for a sequence of values of r tending
to infinity that

M−1hn
(
Mfn,g (r)

)
< rδ(λk(g)+ε). (2.9)

Again for all sufficiently large values of r we get that

logM−1h
(
Mf

(
exp rδµ

))
≥ (λh (f)− ε) rδµ. (2.10)

Now from (2.9) and (2.10) , it follows for a sequence of values of r tending to infinity
that

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

<
rδ(λk(g)+ε)

(λh (f)− ε) rδµ
. (2.11)

As λk (g) < µ, we can choose ε (> 0) in such a way that

λk (g) + ε < µ . (2.12)

Thus the theorem follows from (2.11) and (2.12).

In the line of Theorem 5, we may state the following theorem without its proof:

Theorem 6. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and λk (g) < µ <∞. Then for any even number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

= 0,

where δ > 1.

Theorem 7. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λk (g) ≤ ρk (g) < ∞, 0 < ρh (f) < ∞ and λh (f) < µ < ∞. Then for any odd
number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k (Mg (exp rδµ))

= 0,

where δ > 1.

Theorem 8. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
Let f (z), g (z) , k (z) and h (z) be any four entire functions such that 0 < ρk (g) <∞,
0 < ρh (f) <∞ and λh (f) < µ <∞. Then for any odd number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h (Mf (exp rδµ))

= 0,

where δ > 1.
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We omit the proofs of Theorem 7 and Theorem 8 as those can be carried out in
the line of Theorem 5 and Theorem 6 respectively and with the help of the second
part of Lemma 4.

Theorem 9. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞ and 0 < λk (g) < ∞. Also let γ be a positive continuous
on [0,+∞) function increasing to +∞. Then for every real number κ and positive
integer n

lim
r→∞

M−1hn
(
Mfn,g (r)

){
logM−1h (Mf (exp γ (r)))

}1+κ =∞,

where

lim
r→∞

log γ (r)

log r
= 0.

Proof. First let us consider n to be an even integer. If κ be such that 1 +κ ≤ 0 then
the theorem is trivial. So we suppose that 1 + κ > 0. Now it follows from the first
part of Lemma 5, for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
>

(
1

γn

) 1
δ ( r

18n

)λk(g)−ε
δ

, (2.13)

where δ and γn are defined in Lemma 5.
Again from the definition of ρh (f) , it follows for all sufficiently large values of r

that {
logM−1h (Mf (exp γ (r))

}1+κ ≤ (ρh (f) + ε)
1+κ

(γ (r))
1+κ

. (2.14)

Now from (2.13) and (2.14) , it follows for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

){
logM−1h (Mf (exp γ (r)))

}1+κ >
(

1
γn

) 1
δ ·
(

1
18n

)λk(g)−ε
δ · r

λk(g)−ε
δ

(ρh (f) + ε)
1+κ

(γ (r))
1+κ .

Since lim
r→∞

log γ(r)
log r = 0, therefore r

λk(g)−ε
δ

(γ(r))1+κ
→ ∞ as r → ∞, then from above it

follows that

lim inf
r→∞

M−1hn
(
Mfn,g (r)

){
logM−1h (Mf (exp γ (r)))

}1+κ =∞ for any even number n.

Similarly, with the help of the second part of Lemma 5 one can easily derive the same
conclusion for any odd integer n.

Hence the theorem follows.

Remark 3. Theorem 9 is still valid with “limit superior” instead of “ limit ” if we
replace the condition “ 0 < λh (f) ≤ ρh (f) <∞” by “ 0 < λh (f) <∞”.

In the line of Theorem 9, one may state the following theorem without its proof:
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Theorem 10. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞ and 0 < λk (g) ≤ ρk (g) < ∞. Also let γ be a positive continuous
on [0,+∞) function increasing to +∞. Then for every real number κ and positive
integer n

lim
r→∞

M−1hn
(
Mfn,g (r)

){
logM−1k (Mg(exp γ (r)))

}1+κ =∞,

where

lim
r→∞

log γ (r)

log r
= 0.

Remark 4. In Theorem 10 if we take the condition 0 < λk (g) < ∞ instead of
0 < λk (g) ≤ ρk (g) <∞, then also Theorem 10 remains true with “limit superior” in
place of “ limit ”.

Theorem 11. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞ and 0 < ρk (g) < ∞. Also let γ be a positive continuous
on [0,+∞) function increasing to +∞. Then for each κ ∈ (−∞,∞) and positive
integer n

lim
r→∞

(
M−1hn

(
Mfn,g (r)

))1+κ
logM−1h (Mf (exp γ (r)))

= 0,

where

lim
r→∞

log γ (r)

log r
=∞.

Proof. If 1 + κ ≤ 0, then the theorem is obvious. We consider that 1 + κ > 0. Also
let us consider n to be an even integer. Now it follows from the first part of Lemma
4 for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
< rδ(ρk(g)+ε), (2.15)

where δ > 1.
Again for all sufficiently large values of r we get that

logM−1h (Mf (exp γ (r))) ≥ (λh (f)− ε) γ (r) . (2.16)

Hence for all sufficiently large values of r, we obtain from (2.15) and (2.16) that(
M−1hn

(
Mfn,g (r)

))1+κ
logM−1h (Mf (exp γ (r)))

<
rδ(ρk(g)+ε)(1+κ)

(λh (f)− ε) γ (r)
, (2.17)

where we choose 0 < ε < min {λh (f) , ρk (g)}.
Since lim

r→∞
log γ(r)
log r =∞, therefore rδ(ρk(g)+ε)(1+κ)

γ(r) →∞ as r →∞, then from (2.17)

we obtain that

lim inf
r→∞

(
M−1hn

(
Mfn,g (r)

))1+κ
logM−1h (Mf (exp γ (r)))

= 0 for any even number n.
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Similarly, with the help of the second part of Lemma 4 one can easily derive the same
conclusion for any odd integer n.

This proves the theorem.

Remark 5. In Theorem 11 if we take the condition 0 < ρh (f) < ∞ instead of
0 < λh (f) ≤ ρh (f) <∞, the theorem remains true with “ limit inferior” in place of
“limit ”.

In view of Theorem 11, the following theorem can be carried out :

Theorem 12. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Also let γ be a positive continuous on
[0,+∞) function increasing to +∞. Then for each κ ∈ (−∞,∞) and positive integer
n

lim
r→∞

(
M−1hn

(
Mfn,g (r)

))1+κ
logM−1k (Mg(exp γ (r)))

= 0,

where

lim
r→∞

log γ (r)

log r
=∞ .

The proof is omitted.

Remark 6. In Theorem 12 if we take the condition 0 < ρk (g) < ∞ instead of
0 < λk (g) ≤ ρk (g) <∞ then the theorem remains true with “ limit inferior” in place
of “limit ”.

Theorem 13. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
λk (g) < λh (f) ≤ ρh (f) <∞ and 0 < ρk (g) <∞. Then for any even number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
M−1h (Mf (rδ))

= 0,

where δ > 1.

Proof. From the first part of Lemma 4, we obtain for a sequence of values of r tending
to infinity that

M−1hn
(
Mfn,g (r)

)
< rδ(λk(g)+ε). (2.18)

Again from the definition of relative order, we obtain for all sufficiently large values
of r that

M−1h
(
Mf

(
rδ
))

> rδ(λh(f)−ε). (2.19)

Now in view of (2.18) and (2.19) , we get for a sequence of values of r tending to
infinity that

M−1hn
(
Mfn,g (r)

)
M−1h (Mf (rδ))

<
rδ(λk(g)+ε)

rδ(λh(f)−ε)
. (2.20)

Since λk (g) < λh (f) , we can choose ε (> 0) in such a way that λk (g)+ε < λh (f)−ε
and then the theorem follows from (2.20) .
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Remark 7. If we take 0 < ρk (g) < λh (f) ≤ ρh (f) < ∞ instead of “λk (g) <
λh (f) ≤ ρh (f) <∞ and ρk (g) <∞” and the other conditions remain the same, the
conclusion of Theorem 13 remains valid with “limit inferior” replaced by “limit”.

Theorem 14. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
λh (f) < λk (g) ≤ ρk (g) <∞ and 0 < ρh (f) <∞. Then for any odd number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
M−1k (Mg (rδ))

= 0,

where δ > 1.

The proof of Theorem 14 is omitted as it can be carried out in the line of Theorem
13 and with the help of the second part of Lemma 4.

Remark 8. If we consider 0 < ρh (f) < λk (g) ≤ ρk (g) < ∞ instead of “λh (f) <
λk (g) ≤ ρk (g) <∞ and ρh (f) <∞” and the other conditions remain the same, the
conclusion of Theorem 13 remains valid with “limit inferior” replaced by “limit”.

Theorem 15. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞ and 0 < ρk (g) <∞. Then

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ ρk (g)

λh (f)
when n is even,

and

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ ρh (f)

λh (f)
when n is any odd integer

where δ > 1.

Proof. From the first part of Lemma 4, it follows for all sufficiently large values of r
that

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

<
δ logM−1k (Mg (r))

logM−1h (Mf (rδ))

i.e.,
logM−1hn

(
Mfn,g (r)

)
logM−1h (Mf (rδ))

<
δ logM−1k (Mg (r))

δ log r
· log rδ

logM−1h (Mf (rδ))

i.e., lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ lim sup
r→∞

logM−1k (Mg (r))

log r
· lim sup
r→∞

log rδ

logM−1h (Mf (rδ))

i.e., lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ ρk (g) · 1

λh (f)
=
ρk (g)

λh (f)
.

Thus the first part of theorem follows from above.
Similarly, with the help of the second part of Lemma 4 one can easily derive

conclusion of the second part of theorem.
Hence the theorem follows.
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Theorem 16. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λk (g) ≤ ρk (g) <∞ and 0 < ρh (f) <∞.Then

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≤ ρk (g)

λk (g)
when n is even,

and

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≤ ρh (f)

λk (g)
when is any odd integer

where δ > 1.

The proof of Theorem 16 is omitted as it can be carried out in the line of Theo-
rem 15.

Now we state the following two theorems without their proofs as those can easily
be carried out in the line of Theorem 15 and Theorem 16 respectively and with the
help of Lemma 4.

Theorem 17. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Then

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ λk (g)

λh (f)
when n is even,

and

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≤ 1 when n is any odd integer

where δ > 1.

Theorem 18. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Then

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≤ 1 when n is even,

and

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≤ λh (f)

λk (g)
when n is any odd integer

where δ > 1.

Theorem 19. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) <∞ and 0 < λk (g) <∞. Then for any even number n,

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ λk (g)

ρh (f)
when 0 < ρh (f) <∞

and

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≥ λk (g)

ρk (g)
when 0 < ρk (g) <∞,

where δ < 1.
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Proof. From the first part of Lemma 5, we obtain for all sufficiently large values of
r that

logM−1hn
(
Mfn,g (r)

)
> δ (λk (g)− ε) log

( r

18n

)
+ log

(
1

γn

)
, (2.21)

where γn is defined in Lemma 5.
Also from the definition of ρh (f), we obtain for all sufficiently large values of r

that
logM−1h

(
Mf

(
rδ
))
≤ δ (ρh (f) + ε) log r. (2.22)

Analogously,from the definition of ρk (g), it follows for all sufficiently large values of
r that

logM−1k
(
Mg

(
rδ
))
≤ δ (ρk (g) + ε) log r. (2.23)

Now from (2.21) and (2.22), it follows for all sufficiently large values of r that

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

>
δ (λk (g)− ε) log

(
r

18n

)
+ log

(
1
γn

)
δ (ρh (f) + ε) log r

i.e., lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ λk (g)

ρh (f)
. (2.24)

Thus the first part of theorem follows from (2.24).
Similarly, the conclusion of the second part of theorem can easily be derived from

(2.21) and (2.23) .
Hence the theorem follows.

Theorem 20. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) <∞ and 0 < λk (g) <∞. Then for any odd number n,

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ λh (f)

ρh (f)
when 0 < ρh (f) <∞

and

lim inf
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≥ λh (f)

ρk (g)
when 0 < ρk (g) <∞,

where δ < 1.

The proof of Theorem 20 is omitted as it can be carried out in the line of Theorem
19 and with the help of the second part of Lemma 5.

Now we state the following two theorems without their proofs as those can easily
be carried out in the line of Theorem 19 and Theorem 20 respectively and with the
help of Lemma 5.

Theorem 21. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) <∞ and 0 < λk (g) ≤ ρk (g) <∞. Then for any even number n,

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ ρk (g)

ρh (f)
when 0 < ρh (f) <∞
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and

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≥ 1,when 0 < ρk (g) <∞,

where δ < 1.

Theorem 22. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞ and 0 < λk (g) <∞. Then for any odd number n ,

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1k (Mg (rδ))

≥ ρh (f)

ρk (g)
when 0 < ρk (g) <∞

and

lim sup
r→∞

logM−1hn
(
Mfn,g (r)

)
logM−1h (Mf (rδ))

≥ 1 when 0 < ρh (f) <∞,

where δ < 1.

Theorem 23. Let F (z), G (z), H (z), K (z), f (z), g (z), h (z) and k (z) are all
entire functions such that 0 < λH (F ) < ∞, 0 < λK (G) < ∞, 0 < ρh (f) < ∞ and
0 < ρk (g) <∞. Then for any two integers m and n

(i) lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞

and

(ii) lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1k (Mg (r))

=∞,

when for any δ > 1 be such that

δ2ρk (g) < λK (G) for m and n both even

δ2ρh (f) < λH (F ) for m and n both odd

δ2ρh (f) < λK (G) for m even and n odd

δ2ρk (g) < λH (F ) for m odd and n even .

(2.25)

Proof. We have from the definition of relative order and for all sufficiently large
values of r that

logM−1h (Mf (r)) ≤ (ρh (f) + ε) log r. (2.26)

Case I. Let m and n are any two even numbers.
Therefore in view of first part of Lemma 4, we get for all sufficiently large values

of r that
M−1hn

(
Mfn,g (r)

)
< (r)

δ(ρk(g)+ε) , (2.27)

where δ > 1.
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So from (2.26) and (2.27) it follows for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
· logM−1h (Mf (r)) < (r)

δ(ρk(g)+ε) · (ρh (f) + ε) log r. (2.28)

Also from first part of Lemma 5, we obtain for all sufficiently large values of r that

M−1Hm
(
MFm,G (r)

)
>

(
1

γm

) 1
δ ( r

18m

) (λK (G)−ε)
δ

, (2.29)

where δ > 1 and γm is defined in Lemma 5.
Hence combining (2.28) and (2.29) we get for all sufficiently large values of r that,

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

>

(
1
γm

) 1
δ ( r

18m

) (λK (G)−ε)
δ

(r)
δ(ρk(g)+ε) · (ρh (f) + ε) log r

. (2.30)

Since δ2ρk (g) < λK (G), we can choose ε(> 0) in such a manner that

δ2 (ρk (g) + ε) ≤ (λK (G)− ε) . (2.31)

Thus from (2.30) and (2.31) we obtain that

lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞. (2.32)

Case II. Let m and n are any two odd numbers .
Now in view of second part of Lemma 4, we get for all sufficiently large values of

r that
M−1hn

(
Mfn,g (r)

)
< (r)

δ(ρh(f)+ε) , (2.33)

where δ > 1.
So from (2.26) and (2.33) it follows for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
· logM−1h (Mf (r)) < (r)

δ(ρh(f)+ε) · (ρh (f) + ε) log r. (2.34)

Also from second part of Lemma 5, we obtain for all sufficiently large values of r
that

M−1Hm
(
MFm,G (r)

)
>

(
1

γm

) 1
δ ( r

18m

) (λH (F )−ε)
δ

. (2.35)

Hence combining (2.34) and (2.35) we get for all sufficiently large values of r that,

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

>

(
1
γm

) 1
δ ( r

18m

) (λH (F )−ε)
δ

(r)
δ(ρh(f)+ε) · (ρh (f) + ε) log r

. (2.36)

As δ2ρh (f) < λH (F ), we can choose ε(> 0) in such a manner that

δ2 (ρh (f) + ε) ≤ (λH (F )− ε) . (2.37)
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Therefore from (2.36) and (2.37) it follows that

lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞. (2.38)

Case III. Let m be any even number and n be any odd number.
Then combining (2.29) and (2.34) we get for all sufficiently large values of r that

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

>

(
1
γm

) 1
δ ( r

18m

) (λK (G)−ε)
δ

(r)
δ(ρh(f)+ε) · (ρh (f) + ε) log r

. (2.39)

Since δ2ρh (f) < λK (G), we can choose ε(> 0) in such a manner that

δ2 (ρh (f) + ε) ≤ (λK (G)− ε) . (2.40)

So from (2.39) and (2.40) we get that

lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞. (2.41)

Case IV. Let m be any odd number and n be any even number .
Therefore combining (2.28) and (2.35) we obtain for all sufficiently large values of

r that

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

>

(
1
γm

) 1
δ ( r

18m

) (λH (F )−ε)
δ

(r)
δ(ρk(g)+ε) · (ρh (f) + ε) log r

. (2.42)

As δ2ρk (g) < λH (F ), we can choose ε(> 0) in such a manner that

δ2 (ρk (g) + ε) ≤ (λH (F )− ε) . (2.43)

Hence from (2.42) and (2.43) we have

lim
r→∞

M−1Hm
(
MFm,G (r)

)
M−1hn

(
Mfn,g (r)

)
· logM−1h (Mf (r))

=∞. (2.44)

Thus the first part of the theorem follows from (2.32) , (2.38) , (2.41) and (2.44) .
Similarly, from the definition of ρk (g) one can easily derive the conclusion of the

second part of the theorem.
Hence the theorem follows.

Remark 9. If we consider ρK (G) , ρH (F ) , ρK (G) and ρH (F ) instead of λK (G) ,
λH (F ) , λK (G) and λH (F ) respectively in (2.25) and the other conditions remain
the same, the conclusion of Theorem 23 is remain valid with “limit superior” replaced
by “limit”.
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Theorem 24. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and σk (g) <∞. Then for any even number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≤ (σk (g))

δ

λh (f)
if λh (f) 6= 0

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρk(g)
)) ≤ (σk (g))

δ

λk (g)
if λk (g) 6= 0,

where δ > 1.

Proof. In view of the first part of Lemma 4 we have for all sufficiently large values
of r that

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) <

(
M−1k (Mg (r))

)δ
logM−1h

(
Mf

(
exp (r)

δρk(g)
))

i.e.,

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) <

(
M−1k (Mg (r))

rρk(g)

)δ
· log exp (r)

δρk(g)

logM−1h

(
Mf

(
exp (r)

δρk(g)
))

i.e., lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
))

≤
(

lim sup
r→∞

M−1k (Mg (r))

rρk(g)

)δ
· lim sup
r→∞

log exp (r)
δρk(g)

logM−1h

(
Mf

(
exp (r)

δρk(g)
))

i.e., lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≤ (σk (g))

δ · 1

λh (f)
=

(σk (g))
δ

λh (f)
.

Thus the first part of theorem is established.
Similarly, with the help of the first part of Lemma 4 one can easily derive conclusion

of the second part of theorem.
Hence the theorem follows.

Theorem 25. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and σk (g) < ∞. Then for any
even number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≤ min

{
(σk (g))

δ

λh (f)
,

(σk (g))
δ

ρh (f)

}
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and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρk(g)
)) ≤ min

{
(σk (g))

δ

λk (g)
,

(σk (g))
δ

ρk (g)

}
,

where δ > 1.

Proof of Theorem 25 is omitted as it can be carried out in the line of Theorem 24
and with help of the first part of Lemma 4.

Now we state the following two theorems without their proofs as those can easily
be carried out with the help of second part of Lemma 4 and in the line of Theorem
24 and Theorem 25 respectively.

Theorem 26. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and σh (f) <∞. Then for any odd number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρh(f)
)) ≤ (σh (f))

δ

λh (f)
if λh (f) 6= 0

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρh(f)
)) ≤ (σh (f))

δ

λk (g)
if λk (g) 6= 0,

where δ > 1.

Theorem 27. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and σh (f) < ∞. Then for any
odd number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρh(f)
)) ≤ min

{
(σh (f))

δ

λh (f)
,

(σh (f))
δ

ρh (f)

}

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρh(f)
)) ≤ min

{
(σh (f))

δ

λk (g)
,

(σh (f))
δ

ρk (g)

}
,

where δ > 1.

Analogously, one may state the following four theorems without their proofs
on the basis of relative weak type of entire function with respect to another entire
function :

Theorem 28. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and τk (g) <∞. Then for any even number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλk(g)
)) ≤ (τk (g))

δ

λh (f)
if λh (f) 6= 0



40 T. Biswas

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλk(g)
)) ≤ (τk (g))

δ

λk (g)
if λk (g) 6= 0,

where δ > 1.

Theorem 29. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and τk (g) < ∞. Then for any
even number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλk(g)
)) ≤ min

{
(τk (g))

δ

λh (f)
,

(τk (g))
δ

ρh (f)

}

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλk(g)
)) ≤ min

{
(τk (g))

δ

λk (g)
,

(τk (g))
δ

ρk (g)

}
,

where δ > 1.

Theorem 30. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < ρh (f) <∞, 0 < ρk (g) <∞ and τh (f) <∞. Then for any odd number n,

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλh(f)
)) ≤ (τh (f))

δ

λh (f)
if λh (f) 6= 0

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλh(f)
)) ≤ (τh (f))

δ

λk (g)
if λk (g) 6= 0,

where δ > 1.

Theorem 31. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and τh (f) < ∞. Then for any
odd number n,

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλh(f)
)) ≤ min

{
(τh (f))

δ

λh (f)
,

(τh (f))
δ

ρh (f)

}

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλh(f)
)) ≤ min

{
(τh (f))

δ

λk (g)
,

(τh (f))
δ

ρk (g)

}
,

where δ > 1.
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Theorem 32. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞, 0 < λk (g) < ∞ and σk (g) > 0. Then for any even number n and
δ < 1

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≥ Aσk (g)

ρh (f)
if ρh (f) <∞

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρk(g)
)) ≥ Aσk (g)

ρk (g)
if ρk (g) <∞,

where A = 1

[18nρk(g)·γn]
δ and γn is defined in Lemma 5.

Proof. From the first part of Lemma 5, we obtain for all sufficiently large values of
r that

M−1hn
(
Mfn,g (r)

)
>

1[
18nρk(g) · γn

]δ (σk (g)− ε) rδρk(g)

i.e., M−1hn
(
Mfn,g (r)

)
> A (σk (g)− ε) rδρk(g). (2.45)

Also from the definition of ρh (f) , we obtain for all sufficiently large values of r
that

logM−1h

(
Mf

(
exp (r)

δρk(g)
))
≤ (ρh (f) + ε) rδρk(g). (2.46)

Analogously,from the definition of ρk (g) , it follows for all sufficiently large values
of r that

logM−1k

(
Mg

(
exp (r)

δρk(g)
))
≤ (ρk (g) + ε) rδρk(g). (2.47)

Now from (2.45) and (2.46) , it follows for all sufficiently large values of r that

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) > A

(σk (g)− ε) rδρk(g)

(ρh (f) + ε) rδρk(g)

i.e., lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≥ A

σk (g)

ρh (f)
. (2.48)

Thus the first part of theorem follows from (2.48).
Like wise, the conclusion of the second part of theorem can easily be derived from

(2.45) and (2.47) .
Hence the theorem follows.

Theorem 33. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) < ∞, 0 < λk (g) ≤ ρk (g) < ∞ and σk (g) > 0. Then for any
even number n and δ < 1

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρk(g)
)) ≥ A ·max

{
σk (g)

ρh (f)
,
σk (g)

λh (f)

}
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and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρk(g)
)) ≥ A ·max

{
σk (g)

ρk (g)
,
σk (g)

λk (g)

}
,

where A = 1

[18nρk(g)·γn]
δ and γn is defined in Lemma 5.

Proof of Theorem 33 is omitted as it can be carried out in the line of Theorem 32
and with help of the first part of Lemma 5.

Similarly, we state the following two theorems without their proofs as those can
easily be carried out with the help of second part of Lemma 5 and in the line of
Theorem 32 and Theorem 33 respectively.

Theorem 34. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞, 0 < λk (g) < ∞ and σh (f) > 0. Then for any odd number n and
δ < 1

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρh(f)
)) ≥ Aσh (f)

ρh (f)
if ρh (f) <∞

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρh(f)
)) ≥ Aσh (f)

ρk (g)
if ρk (g) <∞ ,

where A = 1

[18nρh(f)·γn]
δ and γn is defined in Lemma 5.

Theorem 35. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and σh (f) > 0. Then for any odd
number n and δ < 1

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δρh(f)
)) ≥ A ·max

{
σh (f)

ρh (f)
,
σh (f)

λh (f)

}

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δρh(f)
)) ≥ A ·max

{
σh (f)

ρk (g)
,
σh (f)

λk (g)

}
,

where A = 1

[18nρh(f)·γn]
δ and γn is defined in Lemma 5.

Similarly, one may state the following four theorems without their proofs on the
basis of relative weak type of entire function with respect to another entire function:

Theorem 36. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞, 0 < λk (g) < ∞ and τk (g) > 0. Then for any even number n and
δ < 1

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλk(g)
)) ≥ A τk (g)

ρh (f)
if ρh (f) <∞
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and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλk(g)
)) ≥ Aτk (g)

ρk (g)
if ρk (g) <∞,

where A = 1

[18nλk(g)·γn]
δ and γn is defined in Lemma 5.

Theorem 37. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and τk (g) > 0. Then for any even
number n and δ < 1

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλk(g)
)) ≥ A ·max

{
τk (g)

ρh (f)
,
τk (g)

λh (f)

}

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλk(g)
)) ≥ A ·max

{
τk (g)

ρk (g)
,
τk (g)

λk (g)

}
,

where A = 1

[18nλk(g)·γn]
δ and γn is defined in Lemma 5.

Theorem 38. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) < ∞, 0 < λk (g) < ∞ and τh (f) > 0. Then for any odd number n and
δ < 1

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλh(f)
)) ≥ Aτh (f)

ρh (f)
if ρh (f) <∞

and

lim inf
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλh(f)
)) ≥ Aτh (f)

ρk (g)
if ρk (g) <∞,

where A = 1

[18nλh(f)·γn]
δ and γn is defined in Lemma 5.

Theorem 39. Let f (z), g (z) , k (z) and h (z) be any four entire functions such that
0 < λh (f) ≤ ρh (f) <∞, 0 < λk (g) ≤ ρk (g) <∞ and τh (f) > 0. Then for any odd
number n and δ < 1

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1h

(
Mf

(
exp (r)

δλh(f)
)) ≥ A ·max

{
τh (f)

ρh (f)
,
τh (f)

λh (f)

}

and

lim sup
r→∞

M−1hn
(
Mfn,g (r)

)
logM−1k

(
Mg

(
exp (r)

δλh(f)
)) ≥ A ·max

{
τh (f)

ρk (g)
,
τh (f)

λk (g)

}
,

where A = 1

[18nλh(f)·γn]
δ and γn is defined in Lemma 5.
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Abstract: This article concerns with the existence of solutions of the
a quadratic integral equation of Fredholm type with a modified argument,

x(t) = p(t) + (Fx) (t)

∫ 1

0

k(t, τ)x(q (τ))dτ,

where p, k are functions and F is an operator satisfying the given condi-
tions. Using the properties of the Hölder spaces and the classical Schauder
fixed point theorem, we obtain the existence of solutions of the equation
under certain assumptions. Also, we present two concrete examples in
which our result can be applied.

AMS Subject Classification: 45G10, 45M99, 47H10.
Keywords and Phrases: Fredholm equation; Hölder condition; Schauder fixed point
theorem.

1. Introduction

Integral equations arise from naturally in many applications in describing numer-
ous real world problems (see, for instance, the books [2, 3] and references therein).
Quadratic integral equations arise naturally in applications of real world problems.
For example, problems in the theory of radiative transfer in the theory of neutron
transport and in the kinetic theory of gases lead to the quadratic equation [12, 20].
There are many interesting existence results for all kinds of quadratic integral equa-
tions, one can refer to [6, 1].
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The study of differential equations with a modified arguments arise in a wide
variety of scientific and technical application, including the modelling of problems
from the natural and social sciences such as physics, biological and economics sci-
ences. A special class of these differential equations have linear modifications of their
arguments, and have been studied by several authors, [7] - [23].

Recently, Banaś and Nalepa [7] have studied the space of real functions defined on
a given bounded metric space and having the growths tempered by a given modulus
of continuity, and derive the existence theorem in the space of functions satisfying the
Hölder condition for some quadratic integral equations of Fredholm type

x(t) = p(t) + x(t)

∫ b

a

k(t, τ) x(τ)dτ. (1.1)

Further, Caballero et al. [9] have studied the solvability of the following quadratic
integral equation of Fredholm type

x(t) = p(t) + x(t)

∫ 1

0

k(t, τ) x(q (τ))dτ (1.2)

in Hölder spaces. The purpose of this paper is to investigate the existence of solutions
of the following integral equation of Fredholm type with a modified argument in Hölder
spaces

x(t) = p(t) + (Fx) (t)

∫ 1

0

k(t, τ) x(q (τ))dτ, t ∈ I = [0, 1] (1.3)

where p, k, q and F are functions satisfying the given conditions. To do this, we will
use a recent result about the relative compactness in Hölder spaces and the classical
Schauder fixed point theorem.

Notice that equation (1.1) in [9] is a particular case of (1.3), for (Fx)(τ) = x(τ).
The obtained result in this paper is more general than the result in [9].

2. Preliminaries

Let we introduce notations, definitions and theorems which are used throughout this
paper.

By C[a, b], we denote the space of continuous functions on [a, b] equipped with
usually the supremum norm

‖x‖∞ = sup{|x(t)| : t ∈ [a, b]}

for x ∈ C[a, b]. For a fixed α with 0 < α 6 1, we write Hα[a, b] to denote the set of all
the real valued functions x defined on [a, b] and satisfying the Hölder condition with
α, that is, there exists a constant H such that the inequality

|x(t)− x(s)| 6 H|t− s|α (2.1)
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holds for all t, s ∈ [a, b]. One can easily seen that Hα[a, b] is a linear subspaces of
C[a, b]. In the sequel, for x ∈ Hα[a, b], by Hα

x we will denote the least possible
constant for which inequality (2.1) is satisfied. Rather, we put

Hα
x = sup

{
|x(t)− x(s)|
|t− s|α

: t, s ∈ [a, b], t 6= s

}
. (2.2)

The space Hα[a, b] with 0 < α 6 1 can be equipped with the norm:

‖x‖α = |x(a)|+ sup

{
|x(t)− x(s)|
|t− s|α

: t, s ∈ [a, b], t 6= s

}
(2.3)

for x ∈ Hα[a, b]. In [7], the authors proved that (Hα[a, b], ‖ · ‖α) with 0 < α 6 1 is a
Banach space. The following lemmas in [7] present some results related to the Hölder
spaces and norm.

Lemma 2.1. For 0 < α 6 1 and x ∈ Hα[a, b], the following inequality is satisfied

‖x‖∞ 6 max {1, (b− a)α} ‖x‖α.

In particular, the inequality ‖x‖∞ 6 ‖x‖α holds, for a = 0 and b = 1.

Lemma 2.2. For 0 < α < γ 6 1, we have

Hγ [a, b] ⊂ Hα[a, b] ⊂ C[a, b].

Moreover, for x ∈ Hγ [a, b] the following inequality holds

‖x‖α 6 max
{

1, (b− a)γ−α
}
‖x‖γ .

In particular, the inequality ‖x‖∞ 6 ‖x‖α 6 ‖x‖γ is satisfied for a = 0 and b = 1.

Now we present the important theorem which is the sufficient condition for rela-
tive compactness in the spaces Hα[a, b] with 0 < α 6 1.

Theorem 2.3. [9] Suppose that 0 < α < β 6 1 and that A is a bounded subset of
Hβ [a, b] (this means that ‖x‖β 6 M for certain constant M > 0, for all x ∈ A) then
A is a relatively compact subset of Hα[a, b].

Lemma 2.4. [9] Suppose that 0 < α < β 6 1 and by Bβr we denote the closed ball
centered at θ with radius r in the space Hβ [a, b], i.e., Bβr = {x ∈ Hβ [a, b] : ‖x‖β 6 r}.
Then Bβr is a closed subset of Hα[a, b].

Corollary 2.5. Suppose that 0 < α < β 6 1 then Bβr is a compact subset of the space
Hα[a, b], [9].

Theorem 2.6 (Schauder’s fixed point theorem). Let L be a nonempty, convex, and
compact subset of a Banach space (X, ‖·‖) and let T : L→ L be a continuity mapping.
Then T has at least one fixed point in L, [24].
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3. Main Result

In this section, we will study the solvability of the equation (1.3) in the space Hα[0, 1]
(0 < α 6 1). We will use the following assumptions:

(i) p ∈ Hβ [0, 1], 0 < β 6 1.

(ii) k : [0, 1] × [0, 1] → R is a continuous function such that it satisfies the Hölder
condition with exponent β with respect to the first variable, that is, there exists
a constant kβ > 0 such that:

|k(t, τ)− k(s, τ)| 6 kβ |t− s|β ,

for any t, s, τ ∈ [0, 1].

(iii) q : [0, 1]→ [0, 1] is a measurable function.

(iv) The operator F : Hβ [0, 1] → Hβ [0, 1] is continuous with respect to the norm

‖ · ‖α for 0 < α < β 6 1 and there exists a function f : R+ → R+

= [0,∞)
which is non-decreasing such that it holds the inequality

‖Fx‖β 6 f(‖x‖β),

for any x ∈ Hβ [0, 1].

(v) There exists a positive solution r0 of the inequality

‖p‖β + (2K + kβ)rf(r) 6 r,

where K is a constant is satisfying the following inequality,

K = sup

{∫ 1

0

|k(t, τ)|dτ : t ∈ [0, 1]

}
.

Theorem 3.1. Under the assumptions (i)-(v), Equation (1.3) has at least one solu-
tion belonging to the space Hα[0, 1].

Proof. Consider the operator T below that defined on the space Hβ [0, 1] by

(Tx)(t) = p(t) + (Fx) (t)

∫ 1

0

k(t, τ)x(q (τ))dτ, t ∈ [0, 1].

We will firstly prove that T transforms the space Hβ [0, 1] into itself. For arbitrar-
ily fixed x ∈ Hβ [0, 1] and t, s ∈ [0, 1] with (t 6= s), taking into account assumptions
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(i), (ii) and (iii), we obtain

|(Tx)(t)− (Tx)(s)|
|t− s|β

=

∣∣∣p(t) + (Fx) (t)
∫ 1

0
k(t, τ)x (q(τ)) dτ − p(s)− (Fx) (s)

∫ 1

0
k(s, τ)x (q(τ)) dτ

∣∣∣
|t− s|β

6
1

|t− s|β

[
|p(t)− p(s)|+

∣∣∣∣(Fx) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ

− (Fx) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ

∣∣∣∣
]

6
|p(t)− p(s)|
|t− s|β

+
1

|t− s|β

∣∣∣∣(Fx) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ − (Fx) (s)

∫ 1

0

k(t, τ)x (q(τ)) dτ

∣∣∣∣
+

1

|t− s|β

∣∣∣∣(Fx) (s)

∫ 1

0

k(t, τ)x (q(τ)) dτ − (Fx) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ

∣∣∣∣
6
|p(t)− p(s)|
|t− s|β

+
|(Fx) (t)− (Fx) (s)|

|t− s|β

∫ 1

0

|k(t, τ)| |x (q(τ))| dτ

+
|(Fx) (s)|

∫ 1

0
|k(t, τ)− k(s, τ)| |x (q(τ))| dτ
|t− s|β

6
|p(t)− p(s)|
|t− s|β

+
|(Fx) (t)− (Fx) (s)|

|t− s|β
‖x‖∞

∫ 1

0

|k(t, τ)| dτ

+
‖Fx‖∞ ‖x‖∞

∫ 1

0
|k(t, τ)− k(s, τ)| dτ
|t− s|β

6
|p(t)− p(s)|
|t− s|β

+
|(Fx) (t)− (Fx) (s)|

|t− s|β
‖x‖∞K +

‖Fx‖∞ ‖x‖∞
∫ 1

0
kβ |t− s|β dτ

|t− s|β

6 Hβ
p +Hβ

Fx ‖x‖∞K + ‖Fx‖∞ ‖x‖∞ kβ .

By using the facts that ‖x‖∞ 6 ‖x‖β and Hβ
x 6 ‖x‖β concluded Lemma 2.1 and the

definition ‖x‖β , respectively we infer that

|(Tx)(t)− (Tx)(s)|
|t− s|β

6 Hβ
p + (K + kβ)‖x‖β ‖Fx‖β .

From this inequality, we have Tx ∈ Hβ [0, 1] . This proves that the operator T
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maps the space Hβ [0, 1] into itself. On the other hand we can write

‖Tx‖β = |(Tx) (0)|+ sup

{
|(Tx)(t)− (Tx)(s)|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}
6 |(Tx) (0)|+Hβ

p + (K + kβ)‖x‖β ‖Fx‖β

6 |p(0)|+ |(Fx) (0)|
∫ 1

0

|k(0, τ)| |x (q(τ))| dτ +Hβ
p + (K + kβ)‖x‖β ‖Fx‖β

6 ‖p‖β + ‖Fx‖∞ ‖x‖∞
∫ 1

0

|k(0, τ)| dτ + (K + kβ)‖x‖β ‖Fx‖β

6 ‖p‖β +K ‖Fx‖β ‖x‖β + (K + kβ)‖x‖β ‖Fx‖β

= ‖p‖β + (2K + kβ)‖x‖β ‖Fx‖β

6 ‖p‖β + (2K + kβ)‖x‖βf
(
‖x‖β

)
, (3.1)

for any x ∈ Hβ [0, 1]. So, if we take x in Bβr0 then by assumption (v) we get Tx ∈ Bβr0 .
As a result, it follows that T transforms the ball

Bβr0 = {x ∈ Hβ [0, 1] : ‖x‖β 6 r0}

into itself. That is,

T : Bβr0 → Bβr0 .

Next, we will prove that the operator T is continuous on Bβr0 , according to the induced
norm by ‖ · ‖α, where 0 < α < β 6 1. To do this, let us take any fixed y ∈ Bβr0 and
arbitrary ε > 0. Since the operator F : Hβ [0, 1] → Hβ [0, 1] is continuous on Hβ [0, 1]
with respect to the norm ‖ · ‖α, there exists δ > 0 such that the inequality

‖Fx− Fy‖α <
ε

4 (K + kβ) r0

is satisfied for all x ∈ Bβr0 , such that ‖x− y‖α 6 δ and

0 < δ <
ε

2 (2K + kβ) f (r0)
.

Then, for any x ∈ Bβr0 and t, s ∈ [0, 1] with t 6= s and 0 < α 6 1 we have
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|[(Tx)(t)− (Ty)(t)]− [(Tx)(s)− (Ty)(s)]|
|t− s|α

=

∣∣∣∣∣∣
[
(Fx) (t)

∫ 1

0
k(t, τ)x (q(τ)) dτ − (Fy) (t)

∫ 1

0
k(t, τ)y(q(τ))dτ

]
|t− s|α

−

[
(Fx) (s)

∫ 1

0
k(s, τ)x (q(τ)) dτ − (Fy) (s)

∫ 1

0
k(s, τ)y(q(τ))dτ

]
|t− s|α

∣∣∣∣∣∣
=

1

|t− s|α
∣∣∣∣[(Fx) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ − (Fy) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ

]

+

[
(Fy) (t)

∫ 1

0

k(t, τ)x (q(τ)) dτ − (Fy) (t)

∫ 1

0

k(t, τ)y(q(τ))dτ

]

−
[
(Fx) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ − (Fy) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ

]

−
[
(Fy) (s)

∫ 1

0

k(s, τ)x (q(τ)) dτ − (Fy) (s)

∫ 1

0

k(s, τ)y(q(τ))dτ

]∣∣∣∣
=

1

|t− s|α
∣∣∣∣[[(Fx) (t)− (Fy) (t)]

∫ 1

0

k(t, τ)x (q(τ)) dτ

]

+

[
(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

]

−
[
[(Fx) (s)− (Fy) (s)]

∫ 1

0

k(s, τ)x (q(τ)) dτ

]

−
[
(Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

]∣∣∣∣
=

1

|t− s|α
∣∣∣∣{[(Fx) (t)− (Fy) (t)]− [(Fx) (s)− (Fy) (s)]}

∫ 1

0

k(t, τ)x (q(τ)) dτ

+

[
[(Fx) (s)− (Fy) (s)]

∫ 1

0

k(t, τ)x (q(τ)) dτ

]

−
[
[(Fx) (s)− (Fy) (s)]

∫ 1

0

k(s, τ)x (q(τ)) dτ

]

+

[
(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

]

−
[
(Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

]∣∣∣∣
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=
1

|t− s|α
∣∣∣∣{[(Fx) (t)− (Fy) (t)]− [(Fx) (s)− (Fy) (s)]}

∫ 1

0

k(t, τ)x (q(τ)) dτ

+

[
[(Fx) (s)− (Fy) (s)]

∫ 1

0

(k(t, τ)− k(s, τ))x (q(τ)) dτ

]

+

[
(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

]

−
[
(Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

]∣∣∣∣ .
From the last inequality it follows that

|[(Tx)(t)− (Ty)(t)]− [(Tx)(s)− (Ty)(s)]|
|t− s|α

6
1

|t− s|α
|[(Fx) (t)− (Fy) (t)]− [(Fx) (s)− (Fy) (s)]|

∣∣∣∣∫ 1

0

k(t, τ)x (q(τ)) dτ

∣∣∣∣
+

1

|t− s|α
|(Fx) (s)− (Fy) (s)|

∣∣∣∣∫ 1

0

(k(t, τ)− k(s, τ))x (q(τ)) dτ

∣∣∣∣
+

1

|t− s|α
∣∣∣∣(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

− (Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

∣∣∣∣
6
|[(Fx) (t)− (Fy) (t)]− [(Fx) (s)− (Fy) (s)]|

|t− s|α
‖x‖∞

∫ 1

0

|k(t, τ)| dτ

+ |[(Fx) (s)− (Fy) (s)]− [(Fx) (0)− (Fy) (0)]| ‖x‖∞
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

dτ

+ |(Fx) (0)− (Fy) (0)| ‖x‖∞
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

dτ

+
1

|t− s|α
∣∣∣∣(Fy) (t)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

− (Fy) (s)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

∣∣∣∣
+

1

|t− s|α
∣∣∣∣(Fy) (s)

∫ 1

0

k(t, τ) [x (q(τ))− y (q(τ))] dτ

− (Fy) (s)

∫ 1

0

k(s, τ) [x (q(τ))− y (q(τ))] dτ

∣∣∣∣
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6 Hα
Fx−Fy ‖x‖∞K

+ sup
u,v∈[0,1]

|[(Fx) (u)− (Fy) (u)]− [(Fx) (v)− (Fy) (v)]| ‖x‖∞
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

dτ

+ |(Fx) (0)− (Fy) (0)| ‖x‖∞
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

dτ

+
|(Fy) (t)− (Fy) (s)|

|t− s|α
∫ 1

0

|k(t, τ)| |x (q(τ))− y (q(τ))| dτ

+ |(Fy) (s)|
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|α

|x (q(τ))− y (q(τ))| dτ

6 K ‖x‖∞ ‖Fx− Fy‖α

+ sup
u,v∈[0,1]

|[(Fx) (u)− (Fy) (u)]− [(Fx) (v)− (Fy) (v)]| ‖x‖∞
∫ 1

0

kβ |t− s|β

|t− s|α
dτ

+ |(Fx) (0)− (Fy) (0)| ‖x‖∞
∫ 1

0

kβ |t− s|β

|t− s|α
dτ

+
|(Fy) (t)− (Fy) (s)|

|t− s|α
∫ 1

0

|k(t, τ)| |x (q(τ))− y (q(τ))| dτ

+ |(Fy) (s)|
∫ 1

0

kβ |t− s|β

|t− s|α
|x (q(τ))− y (q(τ))| dτ.

In view of the inequalities ‖x‖∞ 6 ‖x‖α, Hβ
x 6 ‖x‖α ,we derive the following inequli-

ties

|[(Tx)(t)− (Ty)(t)]− [(Tx)(s)− (Ty)(s)]|
|t− s|α

6 K ‖x‖∞ ‖Fx− Fy‖α + kβ ‖x‖∞ |t− s|
β−α ·

sup
u,v∈[0,1],u 6=v

{
|[(Fx) (u)− (Fy) (u)]− [(Fx) (v)− (Fy) (v)]|

|u− v|α
|u− v|α

}
+ kβ ‖x‖∞ |t− s|

β−α |(Fx) (0)− (Fy) (0)|+KHα
Fy ‖x− y‖∞

+ kβ ‖Fy‖∞ ‖x− y‖∞ |t− s|
β−α

6 K ‖x‖β ‖Fx− Fy‖α + 2kβ ‖x‖β ‖Fx− Fy‖α

+K ‖Fy‖α ‖x− y‖α + kβ ‖Fy‖α ‖x− y‖α
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= (K + 2kβ) ‖x‖β ‖Fx− Fy‖α

+ (K + kβ) ‖Fy‖α ‖x− y‖α . (3.2)

Since ‖y‖α 6 ‖y‖β 6 r0 (see Lemma 2.2 ) and from the assumption (iv) and (3.2) we
deduce the following inequality

|[(Tx)(t)− (Ty)(t)]− [(Tx)(s)− (Ty)(s)]|
|t− s|α

6 (K + 2kβ) ‖x‖β ‖Fx− Fy‖α + (K + kβ) ‖Fy‖β ‖x− y‖α

6 (K + 2kβ) ‖x‖β ‖Fx− Fy‖α + (K + kβ) f
(
‖y‖β

)
‖x− y‖α

6 (K + 2kβ) r0 ‖Fx− Fy‖α + (K + kβ) f (r0) δ. (3.3)

On the other hand,

|(Tx) (0)− (Ty) (0)| =
∣∣∣∣(Fx) (0)

∫ 1

0

k(0, τ)x (q(τ)) dτ − (Fy) (0)

∫ 1

0

k(0, τ)y (q(τ)) dτ

∣∣∣∣
6

∣∣∣∣(Fx) (0)

∫ 1

0

k(0, τ)x (q(τ)) dτ − (Fx) (0)

∫ 1

0

k(0, τ)y (q(τ)) dτ

∣∣∣∣
+

∣∣∣∣(Fx) (0)

∫ 1

0

k(0, τ)y (q(τ)) dτ − (Fy) (0)

∫ 1

0

k(0, τ)y (q(τ)) dτ

∣∣∣∣
6 |(Fx) (0)|

∫ 1

0

|k(0, τ)| |x (q(τ))− y (q(τ))| dτ

+ |(Fx) (0)− (Fy) (0)|
∫ 1

0

|k(0, τ)| |y (q(τ))| dτ

From the last inequality it follows that

|(Tx) (0)− (Ty) (0)| 6 K ‖Fx‖∞ ‖x− y‖∞ +K ‖y‖∞ ‖Fx− Fy‖∞
6 K ‖Fx‖β ‖x− y‖α +K ‖y‖β ‖Fx− Fy‖α

6 Kf
(
‖x‖β

)
‖x− y‖α +K ‖y‖β ‖Fx− Fy‖α

6 Kf (r0) δ +Kr0 ‖Fx− Fy‖α . (3.4)

From (3.3) and (3.4), it follows that

‖Tx− Ty‖α
= |(Tx) (0)− (Ty) (0)|+Hα

Tx−Ty

= |(Tx) (0)− (Ty) (0)|+ sup
t,s∈[0,1],t6=s

{
|[(Tx) (t)− (Ty) (t)]− [(Tx) (s)− (Ty) (s)]|

|t− s|α
}
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6 Kf (r0) δ +Kr0 ‖Fx− Fy‖α + (K + 2kβ) r0 ‖Fx− Fy‖α + (K + kβ) f (r0) δ

= 2 (K + kβ) r0 ‖Fx− Fy‖α + (2K + kβ) f (r0) δ

<
ε

2
+
ε

2
= ε.

This show that the operator T is continuous at the point y ∈ Bβr0 . We conclude that T
is continuous on Bβr0 with respect to the norm ‖·‖α. In addition the set Bβr0 is compact
subset of the space Hα[0, 1] from [9] (see [9; the appendix at the p. 9]). Therefore,
applying the classical Schauder fixed point theorem, we complete the proof.

4. Examples

In this section, we provide an example illustrating the main results in the above.

Example 1. Let us consider the quadratic integral equation:

x(t) = ln
(

4
√
n sin t+ n̂+ 1

)
+ x2 (t)

∫ 1

0

3
√
mt3 + τx

(
1

τ + 1

)
dτ (4.1)

where t ∈ [0, 1] and n, n̂,m are the suitable non-negative constants.

Observe that (4.1) is a particular case of (1.3) if we put p(t) = ln
(

4
√
n sin t+ n̂+ 1

)
,

k(t, τ) = 3
√
mt3 + τ and q (τ) = 1

τ+1 . The operator F defined by (Fx) (t) = x2 (t) for
all t ∈ [0, 1].

Since functions s, h : R+ → R+ defined by s (t) = ln (t+ 1), h (t) = 4
√
t are

concav and s (0) = 0, h (0) = 0, then from Lemma 4.4 in [9] these functions are
subadditive. If we consider the result of subadditivity and the inequalities lnx < x
for x > 0 and |sinx− sin y| 6 |x− y| for x, y ∈ R, we can write

|p(t)− p(s)| =
∣∣∣ln( 4
√
n sin t+ n̂+ 1

)
− ln

(
4
√
n sin s+ n̂+ 1

)∣∣∣
6 ln

∣∣∣ 4
√
n sin t+ n̂− 4

√
n sin s+ n̂

∣∣∣
<
∣∣∣ 4
√
n sin t+ n̂− 4

√
n sin s+ n̂

∣∣∣
6
∣∣∣ 4
√
n |sin t− sin s|

∣∣∣
6 4
√
n |t− s|

1
4 .

It means that p ∈ H 1
4
[0, 1] and, moreover, H

1
4
p = 4

√
n. We can take the constants

α and β as 0 < α < 1
4 and β = 1

4 . Therefore, assumption (i) of Theorem (3.1) is
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satisfied. Note that

‖p‖ 1
4

= |p(0)|+ sup

{
|p(t)− p(s)|
|t− s| 14

: t, s ∈ [0, 1], t 6= s

}
= |p(0)|+H

1
4
p = ln

(
4
√
n̂+ 1

)
+ 4
√
n.

Further, we have

|k(t, τ)− k(s, τ)| =
∣∣∣ 3
√
mt3 + τ − 3

√
ms3 + τ

∣∣∣
6 3
√
|mt3 −ms3|

= 3
√
m 3
√
|t3 − s3|

= 3
√
m 3
√
|t− s| 3

√
|t2 + ts+ s2|

6 3
√

3m|t− s| 13

=
3
√

3m|t− s| 14 |t− s| 1
12

6 3
√

3m|t− s| 14

for all t, s ∈ [0, 1]. Assumption (ii) of Theorem (3.1) is satisfied with kβ = k 1
4

= 3
√

3m.

It is clear that q (τ) = 1
τ+1 satisfies assumption (iii). The constant K is given by

K = sup

{∫ 1

0

|k(t, τ)|dτ : t ∈ [0, 1]

}

= sup

{∫ 1

0

∣∣∣ 3
√
mt3 + τ

∣∣∣ dτ : t ∈ [0, 1]

}

=

∫ 1

0

3
√
m+ τdτ

=
3

4

(
3
√

(m+ 1)4 − 3
√
m4
)
.

For all x ∈ Hβ [0, 1] ,

‖Fx‖β = |(Fx) (0)|+ sup

{
|(Fx) (t)− (Fx) (s)|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}

=
∣∣x2 (0)

∣∣+ sup

{∣∣x2 (t)− x2 (s)
∣∣

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}
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=
∣∣x2 (0)

∣∣+ sup

{
|x (t)− x (s)| |x (t) + x (s)|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}

6
∣∣x2 (0)

∣∣+ 2 ‖x‖∞ sup

{
|x (t)− x (s)|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

}

6
∣∣x2 (0)

∣∣+ 2 ‖x‖β sup

{
|x (t)− x (s)|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

}

6 ‖x‖2β + 2 ‖x‖2β = 3 ‖x‖2β .

Therefore, F is an operator from Hβ [0, 1] into Hβ [0, 1] and we can chose the function
f : R+ → R+ as f (x) = 3x2. This function is non-decreasing and satisfies the
inequality in assumption (iv).

Now, we will show that the operator F is continuous on the Hβ [0, 1] with respect
to the norm ‖.‖α . To this end, fix arbitrarily y ∈ Hβ [0, 1] and ε > 0. Assume that
x ∈ Hβ [0, 1] is an arbitrary function and ‖x− y‖α < δ, where δ is a positive number

such that 0 < δ <
√
‖y‖2α + ε

3 − ‖y‖α.

Then, for arbitrary t, s ∈ [0, 1] we obtain

(Fx− Fy) (t)− (Fx− Fy) (s)

= x2 (t)− y2 (t)−
(
x2 (s)− y2 (s)

)
= (x (t)− y (t)) (x (t) + y (t))− (x (s)− y (s)) (x (s) + y (s))

= [x (t)− y (t)− (x (s)− y (s))] (x (t) + y (t)) + (x (s)− y (s)) (x (t) + y (t))

− (x (s)− y (s)) (x (s) + y (s))

= [x (t)− y (t)− (x (s)− y (s))] (x (t) + y (t))

+ (x (s)− y (s)) [x (t) + y (t)− (x (s) + y (s))] . (4.2)

By (4.2), we have

|(Fx− Fy) (t)− (Fx− Fy) (s)|

6 |x (t)− y (t)− (x (s)− y (s))| |x (t) + y (t)|+ |x (s)− y (s)| |x (t) + y (t)− (x (s) + y (s))|

6 ‖x+ y‖∞ |x (t)− y (t)− (x (s)− y (s))|+ ‖x− y‖∞ |x (t) + y (t)− (x (s) + y (s))|

6 ‖x+ y‖α |x (t)− y (t)− (x (s)− y (s))|+ ‖x− y‖α |x (t) + y (t)− (x (s) + y (s))| .
(4.3)

By (4.3), we observe
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sup

{
|(Fx− Fy) (t)− (Fx− Fy) (s)|

|t− s|α
: t, s ∈ [0, 1] , t 6= s

}

6 ‖x+ y‖α sup
t,s∈[0,1], t 6=s

|x (t)− y (t)− (x (s)− y (s))|
|t− s|α

+ ‖x− y‖α sup
t,s∈[0,1], t 6=s

|x (t) + y (t)− (x (s) + y (s))|
|t− s|α

6 ‖x+ y‖α ‖x− y‖α + ‖x− y‖α ‖x+ y‖α
= 2 ‖x+ y‖α ‖x− y‖α . (4.4)

From (4.4), it follows

‖Fx− Fy‖α = |(Fx− Fy) (0)|+ sup
t6=s

{
|(Fx− Fy) (t)− (Fx− Fy) (s)|

|t− s|α
: t, s ∈ [0, 1]

}
6
∣∣x2 (0)− y2 (0)

∣∣+ 2 ‖x+ y‖α ‖x− y‖α
= |x (0)− y (0)| |x (0) + y (0)|+ 2 ‖x+ y‖α ‖x− y‖α
6 ‖x− y‖∞ ‖x+ y‖∞ + 2 ‖x+ y‖α ‖x− y‖α
6 3 ‖x+ y‖α ‖x− y‖α
6 3 ‖x− y‖α (‖x− y‖α + 2 ‖y‖α)

6 3δ (δ + 2 ‖y‖α)

< ε. (4.5)

So that, the inequality

‖Fx− Fy‖α 6 3δ (δ + 2 ‖y‖α) < ε

is satisfied for all x ∈ Hβ [0, 1], where 0 < δ <
√
‖y‖2α + ε− ‖y‖α . Therefore, we can

chose the positive number δ as δ = 1
2

√
‖y‖2α + ε−‖y‖α . This shows that the operator

F is continuous at the point y ∈ Hβ [0, 1] . Since y is chosen arbitrarily, we deduce
that F is continuous on Hβ [0, 1] with respect to the norm ‖.‖α .

In this case, the inequality appearing in assumption (v) of Theorem (3.1) takes
the following form

‖p‖ 1
4

+ (2K + k 1
4
)rf(r) 6 r

which is equivalent to

ln
(

4
√
n̂+ 1

)
+ 4
√
n+

[
3

2

(
3
√

(m+ 1)4 − 3
√
m4
)

+
3
√

3m

]
3r3 6 r. (4.6)
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Obviously, there exists a positive number r0 satisfying (4.6) provided that the con-
stants n, n̂ and m can chosen as suitable. For example, if one chose n = 1

216 , n̂ = 0
and m = 1, r0 = 1

4 , then the inequality

‖p‖ 1
4

+ (2K + k 1
4
)rf(r)

= ln
(

4
√
n̂+ 1

)
+ 4
√
n+

[
3

2

(
3
√

(m+ 1)4 − 3
√
m4
)

+
3
√

3m

]
3r3

≈ 0, 23696 <
1

4
.

Finally, applying Theorem (3.1) we conclude that equation (4.1) has at least one
solution in the space Hα[0, 1] with 0 < α < 1

4 .

Example 2. Let us consider the quadratic integral equation

x(t) = ln

(
t

7
+ 1

)
+ (ax (t) + b)

∫ 1

0

√
mt2 + τx (eτ ) dτ, t ∈ [0, 1]. (4.7)

Set p(t) = ln
(
t
7 + 1

)
, k(t, τ) =

√
mt2 + τ , q (τ) = eτ for t, τ ∈ [0, 1] and m are

non-negative constant. The operator F defined by (Fx) (t) = ax (t) + b, where a and
b are any real number.

In what follows, we will prove that assumption (i)-(v) of Threom (3.1) are sat-
isfied. Since function p : R+ → R+ defined by p(t) = ln

(
t
7 + 1

)
, is concav and

p (0) = 0, then from Lemma 4.4 in [9] these functions are subadditive. By the result
of subadditive

|p(t)− p(s)| =
∣∣∣∣ln( t7 + 1

)
− ln

(s
7

+ 1
)∣∣∣∣

6 ln

∣∣∣∣ t− s7

∣∣∣∣
<
|t− s|

7

6
1

7
|t− s|

1
2

where we have used that lnx < x for x > 0 . This says that p ∈ H 1
2
[0, 1] (i.e. β = 1

2 )

and, moreover, H
1
2
p = 1

7 . Therefore, assumption (i) of Theorem (3.1) is satisfied. Note
that

‖p‖ 1
2

= |p(0)|+ sup

{
|p(t)− p(s)|
|t− s| 12

: t, s ∈ [0, 1], t 6= s

}
= |p(0)|+H

1
2
p = H

1
2
p =

1

7
.
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Further, we have

|k(t, τ)− k(s, τ)| =
∣∣∣√mt2 + τ −

√
ms2 + τ

∣∣∣
6
√
|mt2 −ms2|

=
√
m
√
|t2 − s2|

=
√
m
√
|t− s|

√
|t+ s|

6
√
m
√

2|t− s| 12

6
√

2m|t− s| 12

for all t, s ∈ [0, 1]. Assumption (ii) of Theorem (3.1) is satisfied with kβ = k 1
2

=
√

2m.

It is clear that q (τ) = eτ satisfies assumption (iii). In our case, the constant K is
given by

K = sup

{∫ 1

0

|k(t, τ)|dτ : t ∈ [0, 1]

}
= sup

{∫ 1

0

∣∣∣√mt2 + τ
∣∣∣ dτ : t ∈ [0, 1]

}
=

∫ 1

0

√
m+ τdτ

=
2

3

(√
(m+ 1)3 −

√
m3
)
.

For all x ∈ Hβ [0, 1]

‖Fx‖β = |(Fx) (0)|+ sup

{
|(Fx) (t)− (Fx) (s)|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}

= |ax (0) + b|+ sup

{
|ax (t) + b− ax (s)− b|

|t− s|β
: t, s ∈ [0, 1] , t 6= s

}

= |a| |x (0)|+ |b|+ sup

{
|x (t)− x (s)| |a|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

}

6 |a| |x (0)|+ |b|+ |a| sup

{
|x (t)− x (s)|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

}

6 |a|

(
|x (0)|+ sup

{
|x (t)− x (s)|
|t− s|β

: t, s ∈ [0, 1] , t 6= s

})
+ |b|

6 |a| ‖x‖β + |b| .

Therefore, F is an operator from Hβ [0, 1] into Hβ [0, 1] and we can chose the function
f : R+ → R+ as f (x) = |a|x + |b| . This function is non-decreasing and satisfies the
inequality in Assumption (iv).
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Now, we will show that the operator F is continuous on the Hβ [0, 1] with respect
to the norm ‖.‖α . To this end, fix arbitrarily y ∈ Hβ [0, 1] and ε > 0. Assume that
x ∈ Hβ [0, 1] is an arbitrary function and ‖x− y‖α < δ, where δ is a positive number
such that 0 < δ < ε

|a| (in this place a 6= 0. It is obvious that if a is zero, the operator

F is continuous).
Then, for arbitrary t, s ∈ [0, 1] we obtain

‖Fx− Fy‖α = |(Fx− Fy) (0)|+ sup
t 6=s

{
|(Fx− Fy) (t)− (Fx− Fy) (s)|

|t− s|α
}

= |ax (0)− ay (0)|+ sup
t 6=s

{
|(ax (t)− ay (t))− (ax (s)− ay (s))|

|t− s|α
}

= |a| |x (0)− y (0)|+ |a| sup
t 6=s

{
|(x (t)− y (t))− (x (s)− y (s))|

|t− s|α
}

= |a|

(
|x (0)− y (0)|+ sup

t 6=s

{
|(x (t)− y (t))− (x (s)− y (s))|

|t− s|α
})

= |a| ‖x− y‖α
6 |a| δ
< ε.

This shows that the operator F is continuous at the point y ∈ Hβ [0, 1] . Since
y was chosen arbitrarily, we deduce that F is continuous on Hβ [0, 1] with respect to
the norm ‖.‖α .

In this case, the inequality appearing in assumption (v) of Theorem (3.1) takes
the following form

‖p‖ 1
2

+ (2K + k 1
2
)rf(r) 6 r

which is equivalent to

1

7
+

[
4

3

(√
(m+ 1)3 −

√
m3
)

+
√

2m

]
r (|a| r + |b|) 6 r. (4.8)

Obviously, there exists a number positive r0 satisfying (4.8) provided that the con-
stants a, b and m can chosen as suitable. For example, if one chose a = 1

10 , b = 1
60

and m = 1
2 , r0 = 1

6 , then the inequality

‖p‖ 1
2

+ (2K + k 1
2
)r0f(r0)

=
1

7
+

[
4

3

(√
(m+ 1)3 −

√
m3
)

+
√

2m

]
r0 (|a| r0 + |b|)

≈ 0, 15939 <
1

6
.

Therefore, using Theorem (3.1), we conclude that equation (4.7) has at least one
solution in the space Hα[0, 1] with 0 < α < 1

2 = β.
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[5] J. Banaś, J. Caballero, J. Rocha, K. Sadarangani, Monotonic solutions of a class
of quadratic integral equations of Volterra type, Comput. Math. Appl. 49 (2005)
943–952.
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44280-Malatya
TURKEY

Received 19.08.2019 Accepted 03.03.2020



J o u r n a l of
Mathematics
and Applications

JMA No 43, pp 67-80 (2020)

COPYRIGHT c© by Publishing House of Rzeszów University of Technology
P.O. Box 85, 35-959 Rzeszów, Poland

On the Existence of Continuous Positive

Monotonic Solutions of a Self-Reference

Quadratic Integral Equation

Ahmed M.A. EL-Sayed and Hanaa R. Ebead
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1. Introduction

Most papers of differential and integral equations with deviating arguments introduce
the deviation of the arguments only on the time itself, however, the case of the
deviating arguments depend on both the state variable x and the time t is important
in theory and practice. These kinds of equations play an important role in nonlinear
analysis and have many applications (see [1], [7]-[11] and [13]- [16]).
Buică [8] studied the existence, uniqueness and continuous dependence of the solution
of the integral equation

x(t) = x0 +

∫ t

a

f(s, x(x(s)))ds

corresponding to the initial value problem

d

dt
x(t) = f(t, x

(
x(t)

)
), t ∈ (a, b], x(a) = x0
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where f ∈ C([a, b]× [a, b]) and Lipschitz continuous in the second argument.
Here we relax the assumptions and generalize the results of [8] for the self-reference
quadratic integral equation

x(t) = a(t) +

∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds

∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds, t ∈ [0, T ]. (1)

Quadratic integral equations have been studied by some authors, see for examples
[2]-[6] and [9] and references therein.
Let C[0, T ] be the Banach space consisting of all functions which are defined and
continuous on the interval [0, T ]. Our aim in this paper is to study the existence of
continuous positive monotonic solutions x ∈ C[0, T ] of the self-reference quadratic
integral equation (1). The uniqueness of the solution will be studied also. Moreover
we prove that the unique solution of (1) depends continuously on the the functions
a, f1 and f2.

2. Existence of solution

Consider the quadratic integral equation (1) under the following assumptions:

(i) a:[0, T ]→ R+ and there exists a positive constant a such that

|a(t2)− a(t1)| ≤ a|t2 − t1|, t1, t2 ∈ [0, T ].

(ii) fi : [0, T ]× [0, T ]→ R+ satisfies Carathéodory condition, i.e. fi are measurable
in t for all x ∈ C[0, T ] and continuous in x for almost all t ∈ [0, T ], i = 1, 2.

(iii) There exist two constants b1, b2 ≥ 0 and two bounded measurable functions
mi : [0, T ]→ R, |mi(t)| ≤ ci such that

|fi(t, x)| ≤ |mi(t)|+ bi|x|, i = 1, 2.

(iv) φi : [0, T ]→ [0, T ] such that φi(0) = 0 and

|φi(t)− φi(s)| ≤ |t− s|, i = 1, 2.

This assumption implies that φi(t) ≤ t, i = 1, 2 and x(0) = a(0).

(v) LT + |a(0)| ≤ T and L = a+ 2M1M2T < 1 where

M1 = c1 + b1T, M2 = c2 + b2T.

Define the set SL by

SL =
{
x ∈ C[0, T ] : |x(t)− x(s)| ≤ L|t− s|

}
⊂ C[0, T ].

It clear that SL is nonempty, closed, bounded and convex subset of C[0, T ].

Now we can prove the following existence theorem
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Theorem 1. Let the assumptions (i) − (v) be satisfied, then the self-reference
quadratic integral equation (1) has at least one positive solution x ∈ SL ⊂ C[0, T ].

Proof. Define the operator F associated with equation (1) by

Fx(t) = a(t) +

∫ φ1(t)

0

f1(s, x(x(s)))ds

∫ φ2(t)

0

f2(s, x(x(s)))ds, t ∈ [0, T ].

Let x ∈ SL ⊂ C[0, T ], t ∈ [0, T ]. Then, from our assumptions we have

|Fx(t)| = |a(t) +

∫ φ1(t)

0

f1(s, x(x(s)))ds

∫ φ2(t)

0

f2(s, x(x(s)))ds|

≤ |a(t)|+
∫ φ1(t)

0

|f1(s, x(x(s)))|ds
∫ φ2(t)

0

|f2(s, x(x(s)))|ds

≤ |a(t)|+
∫ φ1(t)

0

{|m1(s)|+ b1|x(x(s))|}ds
∫ φ2(t)

0

{|m2(s)|+ b2|x(x(s))|}ds

≤ |a(t)|+
[
c1φ1(t) + b1

∫ φ1(t)

0

{L|x(s)|+ |x(0)|}ds
]

[
c2φ2(t) + b2

∫ φ2(t)

0

{L|x(s)|+ |x(0)|}ds
]

≤ |a(t)|+
[
c1T + b1(LT + |a(0)|)φ1(t)

][
c2T + b2(LT + |a(0)|)φ2(t)

]
≤ |a(t)|+

[
c1 + b1T

][
c2 + b2T

]
T 2

≤ |a(t)|+M1M2T
2 ≤ a T + |a(0)|+M1M2T

2

< L T + |a(0)| ≤ T.

This proves that the class {Fx} is uniformly bounded.

Now let x ∈ SL and t1, t2 ∈ [0, T ] such that t1 < t2 and |t2 − t1| < δ, then

|Fx(t2)− Fx(t1)| =
∣∣a(t2) +

∫ φ1(t2)

0

f1(s, x(x(s)))ds

∫ φ2(t2)

0

f2(s, x(x(s)))ds

− a(t1)−
∫ φ1(t1)

0

f1(s, x(x(s)))ds

∫ φ2(t1)

0

f2(s, x(x(s)))ds
∣∣

=
∣∣a(t2)− a(t1)

+

∫ φ1(t2)

0

f1(s, x(x(s)))ds

∫ φ2(t2)

0

f2(s, x(x(s)))ds

−
∫ φ1(t2)

0

f1(s, x(x(s)))ds

∫ φ2(t1)

0

f2(s, x(x(s)))ds

+

∫ φ1(t2)

0

f1(s, x(x(s)))ds

∫ φ2(t1)

0

f2(s, x(x(s)))ds

−
∫ φ1(t1)

0

f1(s, x(x(s)))ds

∫ φ2(t1)

0

f2(s, x(x(s)))ds
∣∣
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≤ |a(t2)− a(t1)|

+
∣∣ ∫ φ1(t2)

0

f1(s, x(x(s)))ds
[ ∫ φ2(t2)

0

f2(s, x(x(s)))ds−
∫ φ2(t1)

0

f2(s, x(x(s)))ds
]∣∣

+
∣∣ ∫ φ2(t1)

0

f2(s, x(x(s)))ds
[ ∫ φ1(t2)

0

f1(s, x(x(s)))ds−
∫ φ1(t1)

0

f1(s, x(x(s)))ds
]∣∣

≤ |a(t2)− a(t1)|

+

∫ φ1(t2)

0

|f1(s, x(x(s)))|ds |
∫ φ2(t2)

φ2(t1)

f2(s, x(x(s)))ds|

+

∫ φ2(t1)

0

|f2(s, x(x(s)))|ds |
∫ φ1(t2)

φ1(t1)

f1(s, x(x(s)))ds|

≤ a |t2 − t1|

+

∫ φ1(t2)

0

{|m1(s)|+ b1|x(x(s))|}ds
)(∣∣ ∫ φ2(t2)

φ2(t1)

{|m2(s)|+ b2|x(x(s))|}ds
∣∣)

+
( ∫ φ2(t1)

0

{|m2(s)|+ b2|x(x(s))|}ds
)(∣∣ ∫ φ1(t2)

φ1(t1)

{|m1(s)|+ b1|x(x(s))|}ds
∣∣)

≤ a |t2 − t1|

+
[
c1φ1(t2) + b1

∫ φ1(t2)

0

{L|x(s)|+ |x(0)|}ds
]

[
c2
∣∣φ2(t2)− φ2(t1)

∣∣+ b2
∣∣ ∫ φ2(t2)

φ2(t1)

{L|x(s)|+ |x(0)|}ds
∣∣]

+
[
c2φ2(t1) + b2

∫ φ2(t1)

0

{L|x(s)|+ |x(0)|}ds
∣∣]

[
c1
∣∣φ1(t2)− φ1(t1)

∣∣+ b1
∣∣ ∫ φ1(t2)

φ1(t1)

{L|x(s)|+ |x(0)|}ds
∣∣]

≤ a |t2 − t1|
+

[
c1 + b1{L T + |a(0)|}

] [
c2 + b2{L T + |a(0)|}

]
φ1(t2)

∣∣φ2(t2)− φ2(t1)
∣∣

+
[
c2 + b2{L T + |a(0)|}

] [
c1 + b1{L T + |a(0)|}

]
φ2(t1)

∣∣φ1(t2)− φ1(t1)
∣∣

≤ a |t2 − t1|
+

[
c1 + b1{L T + |a(0)|}

] [
c2 + b2{L T + |a(0)|}

]
T |t2 − t1|

+
[
c2 + b2{L T + |a(0)|}

][
c1 + b1{L T + |a(0)|}

]
T |t2 − t1|

≤ a |t2 − t1|+ 2T
(
c1 + b1 T

)(
c2 + b2 T

)
|t2 − t1|

= a |t2 − t1|+ 2TM1M2|t2 − t1| = L|t2 − t1|.

This proves that F : SL → SL and the class {Fx} is equicontinuous.
Now the class of continuous functions {Fx} ⊂ SL ⊂ C[0, T ] is uniformly bounded and
equicontinuous on SL. Hence, applying Arzela-Ascoli Theorem [12] we deduce that
the operator F is compact.
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Finally we show that F is continuous. Let {xn} ⊂ SL such that xn → x0 on [0, T ],
then

|fi(t, xn(xn(t))))| ≤ |mi(t)|+ bi|xn(xn(t))|
≤ |mi(t)|+ biT, i = 1, 2

and

|xn(xn(t))− x0(x0(t))| = |xn(xn(t))− xn(x0(t)) + xn(x0(t))− x0(x0(t))|
≤ |xn(xn(t))− xn(x0(t))|+ |xn(x0(t))− x0(x0(t))|
≤ L|xn(t)− x0(t)|+ |xn(x0(t))− x0(x0(t))|.

This implies that

xn(xn(t)))→ (x0(x0(t)).

From the continuity of fi, i = 1, 2 in the second argument we have

f
(
t, xn(xn(t))

)
→ f

(
t, x0(x0(t))

)
.

Now by Lebesgue’s dominated convergence Theorem [12] we obtain

lim
n→∞

(
Fxn

)
(t) = lim

n→∞
a(t)+ lim

n→∞

∫ φ1(t)

0

f1
(
s, xn(xn(s))

)
ds

∫ φ2(t)

0

f2
(
s, xn(xn(s))

)
ds

= a(t) +

∫ φ1(t)

0

f1
(
s, x0(x0(s))

)
ds

∫ φ2(t)

0

f2
(
s, x0(x0(s))

)
ds

=
(
Fx0

)
(t).

Then F is continuous. Using Schauder fixed point Theorem ([12]), then the operator
F has at least one fixed point x ∈ SL. Consequently there exist at leat one solution
x ∈ C[0, T ] of equation (1).
Finally, from our assumptions we have

x(t) = a(t) +

∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds

∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds > 0, t ∈ [0, T ].

and the solution of the quadratic integral equation (1) is positive.

Now the following two corollaries can be easily proved.

Corollary 1. Let the assumptions of Theorem 1 be satisfied. If the functions a, φ1
and φ2 are nondecreasing, then the solution of the quadratic integral equation (1) is
positive and nondecreasing.
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Corollary 2. Let the assumptions of Corollary 1 be satisfied. If, in addition
φi(t) = t, i = 1, 2, then the quadratic integral equation

x(t) = a(t) +

∫ t

0

f1
(
s, x(x(s))

)
ds

∫ t

0

f2
(
s, x(x(s))

)
ds, t ∈ [0, T ] (2)

has at least one positive and nondecreasing solution x ∈ C[0, T ].

Example 1. Consider the following quadratic integral equation

x(t) =

(
1

4
+

1

8
t

)
+

∫ β1t

0

(
1

3
s3e−s

2

+
ln(1 + |x(x(s)))|

4 + s2

)
ds∫ β2t

ζ

0

(
1

12
| cos(3(s+ 1))|+ 3

24
|x(x(s))|

)
ds, (3)

where t ∈ [0, 1], β1 ∈ (0, 1], ζ > 1 and β2ζ < 1.
Here we have

f1
(
t, x(x(t))

)
=

1

3
t3e−t

2

+
ln(1 + |x(x(t))|)

4 + t2
,

|f1
(
t, x(x(t))

)
| ≤ 1

3
t3e−t

2

+
1

4
|x(x(t))| and m1(t) =

1

3
t3e−t

2

,

f2
(
t, x(x(t))

)
=

1

12
cos(3(t+ 1)) +

3

24
|x(x(t))|,

|f2
(
t, x(x(t))

)
| = 1

12
| cos(3(t+ 1))|+ 3

24
|x(x(t))| and m2(t) =

1

12
| cos(3(t+ 1))|.

Also we have φ1(t) = β1t, φ2(t) = β2t
ζ , a(t) = 1

4 + 1
8 t, a = 1

8 , b1 = 1
4 , b2 = 3

24 ,
c1 = 1

3 , c2 = 1
12 , and M1 = 7

12 , M2 = 5
24 .

Hence L ' 0.368 < 1 and L T + |a(0)| = 0.618 ≤ T = 1.
Now it is clear that all assumptions of Theorem 1 are satisfied, then equation (3) has
at least one solution.

3. Uniqueness of the solution

In this section we study the uniqueness of the solution x ∈ C[0, T ] of the quadratic
integral equation (1).
Consider the following assumption

(ii∗) fi : [0, T ] × [0, T ] → R+ are measurable in t for all x ∈ C[0, T ], satisfy the
Lipschitz condition

|fi(t, x)− fi(t, y)| ≤ bi |x− y| i = 1, 2

|fi(t, 0)| 6 ci, ∀t∈[0.T ].
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Theorem 2. Let the assumptions (i), (iv), (v) and (ii∗) be satisfied, if

(γ1 b2 + γ2 b1) T (L+ 1) < 1,

where γi = (ci + biT )T, i = 1, 2, then equation (1) has a unique solution x ∈ C[0, T ].

Proof. From assumption (ii∗) we can deduced that

|fi(t, x)| ≤ bi |x|+ |fi(t, 0)| ≤ bi |x|+ ci, i = 1, 2,

then all assumptions of Theorem 1 are satisfied and the integral equation (1) has at
least one solution. Let x, y be two solutions of (1), then obtain

|x(t)− y(t)| =
∣∣a(t) +

∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds

∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds

− a(t)−
∫ φ1(t)

0

f1
(
s, y(y(s))

)
ds

∫ φ2(t)

0

f2
(
s, y(y(s))

)
ds
∣∣

=
∣∣ ∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds
[ ∫ φ2(t)

0

{
f2
(
s, x(x(s))

)
− f2

(
s, y(y(s))

)}
ds
]

+

∫ φ2(t)

0

f2
(
s, y(y(s))

)
ds
[ ∫ φ1(t)

0

{
f1
(
s, x(x(s))

)
− f1

(
s, y(y(s))

)}
ds
]∣∣

≤
∫ φ1(t)

0

|f1
(
s, x(x(s))

)
| ds

∫ φ2(t)

0

|f2
(
s, x(x(s))

)
− f2

(
s, y(y(s))

)
|ds

+

∫ φ2(t)

0

|f2
(
s, y(y(s))

)
| ds

∫ φ1(t)

0

|f1
(
s, x(x(s))

)
− f1

(
s, y(y(s))

)
|ds

≤
∫ φ1(t)

0

|f1
(
s, x(x(s))

)
| ds b2

∫ φ2(t)

0

|x(x(s))− y(y(s))|ds

+

∫ φ2(t)

0

|f2
(
s, y(y(s))

)
| ds b1

∫ φ1(t)

0

|x(x(s))− y(y(s))|ds, (4)

∫ φi(t)

0

|fi
(
s, x(x(s))

)
|ds ≤ bi

∫ φi(t)

0

|x(x(s))|ds+

∫ φi(t)

0

|fi(t, 0)|ds

≤ bi

∫ φi(t)

0

{
L T + |x(0)|

}
ds+ ciφi(t)

≤ biφi(t) T + ciφi(t)

≤ (biT + ci)T = γi, i = 1, 2 (5)

and

|x(x(s))− y(y(s))| = |x(x(s))− y(y(s)) + x(y(s))− x(y(s))|
≤ |x(x(s))− x(y(s))|+ |x(y(s))− y(y(s))|
≤ L|x(s))− y(s)|+ |x(y(s))− y(y(s))|. (6)
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Substituting (5) and (6) in (4) we can get

|x(t)− y(t)| ≤ γ1 b2

∫ φ2(t)

0

{
L|x(s)− y(s)|+ |x(y(s))− y(y(s))|

}
ds

+ γ2 b1

∫ φ1(t)

0

{
L|x(s)− y(s)|+ |x(y(s))− y(y(s))|

}
ds

≤ γ1 b2 ‖x− y‖ (L+ 1) φ2(t) + γ2 b1 ‖x− y‖ (L+ 1) φ1(t)

≤ (γ1 b2 + γ2 b1) T (L+ 1) ‖x− y‖

and [
1− (γ1 b2 + γ2 b1) T (L+ 1)

]
‖x− y‖ ≤ 0,

then x(t) = y(t), t ∈ [0, T ] and equation (1) has a unique solution x ∈ C[0, T ].

Example 2. Let T = 1, t ∈ [0, 1] and α, β, µ, ρ ∈ (0, 1] are parameters. Consider
the following quadratic integral equation

x(t) =

(
2

7
+

1

7
t

)
+

∫ αt

0

(
µ

8− s
+

1

14
|x(x(s))|

)
ds

∫ βt

0

(
ρ

6
ln(1 + |s|) +

1

2
|x(x(s))|

)
ds.

(7)
Here we have

f1
(
t, x(x(t))

)
=

µ

8− t
+

1

14
|x(x(t))|,

|f1
(
t, x)− f1

(
t, y)| ≤ 1

14
|x− y|,

f2
(
t, x(x(t))

)
=
ρ

6
ln(1 + |t|) +

1

2
|x(x(t))|,

and

|f2
(
t, x)− f2

(
t, y)| ≤ 1

2
|x− y|.

Also, m1(t) = µ
8−t , c1 = 1

7 , m2(t) = ρ
6 ln(1 + |t|), c2 = 1

6 , φ1(t) = αt, φ2(t) = βt and

a(t) = 2
7 + 1

7 t, then we obtain a = 1
7 , b1 = 1

14 , b2 = 1
2 , M1 = 3

14 and M2 = 2
3 .

Hence L = 3
7 < 1 and L T + |a(0)| = 5

7 ≤ T = 1.
Moreover we have γ1 = 3

14 , γ2 = 2
3 and

(γ1 b2 + γ2 b1) T (L+ 1) ' 0.2210 < 1.

Now all assumptions of Theorem 2 are satisfied, then equation (7) has a unique
solution.

4. Continuous dependence

In this section we prove that the solution of equation (1) depends continuously on the
functions a, f1, f2.
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4.1. Continuous dependence on the function a

Definition 1. The solution of the integral equation (1) depends continuously on the
function a if ∀ ε > 0 ∃ δ(ε) > 0 such that

|a(t)− a∗(t)| ≤ δ ⇒ ‖x− x∗‖ ≤ ε (8)

where x∗ is the unique solution of equation

x∗(t) = a∗(t) +

∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds, t ∈ [0, T ]. (9)

Theorem 3. Let the assumptions of Theorem 2 be satisfied, assume that |a(t) −
a∗(t)| ≤ δ, then the solution of (1) depends continuously on the function a.

Proof. Let |a(t)− a∗(t)| ≤ δ, then we can get

|x(t)− x∗(t)| =
∣∣a(t) +

∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds

∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds

− a∗(t) −
∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds
∣∣

=
∣∣a(t)− a∗(t) +

∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds

×
[ ∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds−

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds
]

+

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds

×
[ ∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds−

∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds
]∣∣

≤ |a(t)− a∗(t)|

+

∫ φ1(t)

0

|f1
(
s, x(x(s))

)
|ds
∫ φ2(t)

0

|f2
(
s, x(x(s))

)
− f2

(
s, x∗(x∗(s))

)
|ds

+

∫ φ2(t)

0

|f2
(
s, x∗(x∗(s))

)
|ds
∫ φ1(t)

0

|f1
(
s, x(x(s))

)
−f1

(
s, x∗(x∗(s))

)
|ds

≤ δ +

∫ φ1(t)

0

(c1 + b1|x(x(s))|)ds b2
∫ φ2(t)

0

|x(x(s))− x∗(x∗(s))|ds

+

∫ φ2(t)

0

(c2 + b2|x∗(x∗(s))|)ds b1
∫ φ1(t)

0

|x(x(s))− x∗(x∗(s))|ds
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≤ δ +M1 φ1(t) b2

∫ φ2(t)

0

|x(x(s))− x∗(x∗(s))|ds

+ M2 φ2(t) b1

∫ φ1(t)

0

|x(x(s))− x∗(x∗(s))|ds

≤ δ +M1 T b2 (L+ 1)‖x− x∗‖ φ2(t)

+ M2 T b1 (L+ 1)‖x− x∗‖ φ1(t)

≤ δ + (γ1b2 + γ2b1)(L+ 1) T ‖x− x∗‖,

‖x− x∗‖
(
1− (γ1b2 + γ2b1)(L+ 1) T

)
≤ δ

and

‖x− x∗‖ ≤ δ

1− (γ1b2 + γ2b1)(L+ 1)T
= ε.

4.2. Continuous dependence on the functions f1

Here we prove that the solution of the equation (1) depends continuously on the func-
tion f1.

Definition 2. The solution of the integral equation (1) depends continuously on the
function f1 if ∀ ε > 0 ∃ δ(ε) > 0 such that

|f1
(
t, x(x(t))

)
− f∗1

(
t, x(x(t))

)
| ≤ δ ⇒ ‖x− x∗‖ ≤ ε (10)

where x∗ is the unique solution of equation

x∗(t) = a(t) +

∫ φ1(t)

0

f∗1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds, t ∈ [0, T ].

Theorem 4. Let the assumptions of Theorem 2 be satisfied, assume that

|f1
(
t, x(x(t))

)
− f∗1

(
t, x(x(t))

)
| ≤ δ,

then the solution of (1) depends continuously on the functions f1.

Proof. Let |f1
(
t, x(x(t))

)
− f∗1

(
t, x(x(t))

)
| ≤ δ, then we obtain

|x(t)− x∗(t)| =
∣∣a(t) +

∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds

∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds

− a(t) −
∫ φ1(t)

0

f∗1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds
∣∣
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=
∣∣ ∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds

∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds

−
∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds

+

∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds

−
∫ φ1(t)

0

f∗1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds
∣∣

=
∣∣ ∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds

×
[ ∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds−

∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds
]

+

∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds

−
∫ φ1(t)

0

f∗1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds

+

∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds

−
∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds
∣∣

=
∣∣ ∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds
[ ∫ φ1(t)

0

f1
(
s, x(x(s))

)
ds−

∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds
]

+

∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds
[ ∫ φ2(t)

0

f2
(
s, x(x(s))

)
ds−

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds
]

+

∫ φ2(t)

0

f2
(
s, x∗(x∗(s))

)
ds
[ ∫ φ1(t)

0

f1
(
s, x∗(x∗(s))

)
ds−

∫ φ1(t)

0

f∗1
(
s, x∗(x∗(s))

)
ds
]∣∣

≤
∫ φ2(t)

0

|f2
(
s, x(x(s))

)
|ds
∫ φ1(t)

0

|f1
(
s, x(x(s))

)
− f1

(
s, x∗(x∗(s))

)
|ds

+

∫ φ1(t)

0

|f1
(
s, x∗(x∗(s))

)
|ds
∫ φ2(t)

0

|f2
(
s, x(x(s))

)
− f2

(
s, x∗(x∗(s))

)
|ds

+

∫ φ2(t)

0

|f2
(
s, x∗(x∗(s))

)
|ds
∫ φ1(t)

0

|f1
(
s, x∗(x∗(s))

)
− f∗1

(
s, x∗(x∗(s))

)
|ds

≤
∫ φ2(t)

0

|f2
(
s, x(x(s))

)
|ds
∫ φ1(t)

0

b1|x
(
x(s)

)
− x∗

(
x∗(s)

)
|ds

+

∫ φ1(t)

0

|f1
(
s, x∗(x∗(s))

)
|ds
∫ φ2(t)

0

b2|x
(
x(s)

)
− x∗

(
x∗(s)

)
|ds

+

∫ φ2(t)

0

|f2
(
s, x∗(x∗(s))

)
|ds
∫ φ1(t)

0

|f1
(
s, x∗(x∗(s))

)
− f∗1

(
s, x∗(x∗(s))

)
|ds.
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Using (5) and (6) we obtain

|x(t)− x∗(t)| ≤ γ2b1(L+ 1)T‖x− x∗‖+ γ1b2(L+ 1)T‖x− x∗‖+ γ2Tδ,

‖x− x∗‖
[
1− (γ2b1 + γ1b2)(L+ 1)T

]
≤ γ2Tδ

and

‖x− x∗‖ ≤ γ2Tδ

1− (γ2b1 + γ1b2)(L+ 1)T
= ε.

Corollary 3. Let the assumptions of Theorem 4 be satisfied. In Example 2 if µ
changed to µ∗, then the solution of equation (7) depends continuously on µ (the func-
tion f1).

4.3. Continuous dependence on the functions f2

By the same way, as in Theorem 4 we can prove that the solution of equation (1)
dependence continuously on the function f2.

Theorem 5. Let the assumptions of Theorem 2 be satisfied, assume that

|f2
(
t, x(x(t))

)
− f∗2

(
t, x(x(t))

)
| ≤ δ,

then the solution of (1) depends continuously on the functions f2.

Corollary 4. Let the assumptions of Theorem 5 be satisfied. In Example 2 if ρ
changed to ρ∗, then the solution of equation (7) depends continuously on ρ (the func-
tion f2).
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Inequality for Polynomials with Prescribed

Zeros

Vinay Kumar Jain

Abstract: For a polynomial p(z) of degree n with a zero at β, of
order at least k(≥ 1), it is known that

∫ 2π

0

∣∣∣∣ p(eiθ)

(eiθ − β)k

∣∣∣∣2dθ ≤


k∏
j=1

(
1 + |β|2 − 2|β| cos π

n+ 2− j

)
−1∫ 2π

0

|p(eiθ)|2dθ.

By considering polynomial p(z) of degree n in the form

p(z) = (z−β1)(z−β2) . . . (z−βk)q(z), k ≥ 1 and q(z), a polynomial of degree

n− k, with

S = { γl1γl2 . . . γlk : γl1γl2 . . . γlk is a permutation of k objects

β1, β2, . . . , βk taken all at a time} ,

we have obtained∫ 2π

0

∣∣∣∣ p(eiθ)

(eiθ − β1)(eiθ − β2) . . . (eiθ − βk)

∣∣∣∣2 dθ
≤

 min
γl1γl2 ...γlk∈S


k∏
j=1

(
1 + |γlj |2 − 2|γlj | cos

π

n+ 2− j

)
−1
∫ 2π

0

|p(eiθ)|2dθ,

a generalization of the known result.

AMS Subject Classi�cation: 30C10, 30A10.
Keywords and Phrases: Inequality; Polynomial with prescribed zeros; Generalization.
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1. Introduction and statement of result

While thinking of polynomials vanishing at β, Donaldson and Rahman [1] had
considered the problem:

How large can
(

1
2π

∫ 2π

0
| p(e

iθ)
eiθ−β |

2dθ
)1/2

be, for a polynomial p(z) of degree n with( 1

2π

∫ 2π

0

|p(eiθ)|2dθ
)1/2

= 1?

and they had obtained

Theorem A. If p(z) is a polynomial of degree n such that p(β) = 0, where β is an

arbitrary non-negative number then∫ 2π

0

∣∣∣∣ p(eiθ)eiθ − β

∣∣∣∣2 dθ ≤ (1 + β2 − 2β cos
( π

n+ 1

))−1 ∫ 2π

0

|p(eiθ)|2dθ.

In [2] Jain had considered the zero of polynomial p(z) at β to be of order at least
k(≥ 1), with β being an arbitrary complex number and had obtained the following
generalization of Theorem A.

Theorem B. If p(z) is a polynomial of degree n such that p(z) has a zero at β, of
order at least k(≥ 1), with β being an arbitrary complex number then

∫ 2π

0

∣∣∣∣ p(eiθ)

(eiθ − β)k

∣∣∣∣2 dθ ≤


k∏
j=1

(
1 + |β|2 − 2|β| cos π

n+ 2− j

)
−1 ∫ 2π

0

|p(eiθ)|2dθ.

In this paper we have obtained a generalization of Theorem B by considering
polynomial p(z) of degree n in the form

p(z) = (z − β1)(z − β2) . . . (z − βk)q(z), k ≥ 1.

More precisely we have proved

Theorem. Let p(z) be a polynomial of degree n such that

p(z) = (z − β1)(z − β2) . . . (z − βk)q(z), k ≥ 1. (1.1)

Further let

S = {γl1γl2 . . . γlk : γl1γl2 . . . γlk is a permutation of k objects

β1, β2, . . . , βk taken all at a time} .

Then ∫ 2π

0

∣∣∣∣ p(eiθ)

(eiθ − β1)(eiθ − β2) . . . (eiθ − βk)

∣∣∣∣2 dθ
≤

 min
γl1γl2 ...γlk∈S


k∏
j=1

(
1 + |γlj |2 − 2|γlj | cos

π

n+ 2− j

)
−1
∫ 2π

0

|p(eiθ)|2dθ.
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2. Lemma

For the proof of Theorem we require the following lemma.

Lemma 1. If p(z) is a polynomial of degree n such that

p(β) = 0,

where β is an arbitray complex number then∫ 2π

0

∣∣∣∣ p(eiθ)eiθ − β

∣∣∣∣2 dθ ≤ (1 + |β|2 − 2|β| cos π

n+ 1

)−1 ∫ 2π

0

|p(eiθ)|2dθ.

This lemma is due to Jain [2].

3. Proof of Theorem

Theorem is trivially true for k = 1, by Lemma 1. Accordingly we assume that
k > 1. The polynomial

T1(z) = (z − β1)q(z) (3.1)

is of degree n− k + 1 and therefore by Lemma 1 we have

∫ 2π

0

|q(eiθ)|2dθ =
∫ 2π

0

∣∣∣∣ T1(eiθ)eiθ − β1

∣∣∣∣2dθ≤(1+|β1|2−2|β1| cos π

n− k + 2

)−1∫ 2π

0

|T1(eiθ)|2dθ.

(3.2)
Further the polynomial

T2(z) = (z − β2)T1(z),= (z − β1)(z − β2)q(z), (by(3.1)), (3.3)

is of degree n− k + 2 and by Lemma 1 we have∫ 2π

0

|T1(eiθ)|2dθ =
∫ 2π

0

∣∣∣∣ T2(eiθ)eiθ − β2

∣∣∣∣2dθ≤(1+|β2|2−2|β2| cos π

n− k + 3

)−1∫ 2π

0

|T2(eiθ)|2dθ.

(3.4)
On combining (3.2) and (3.4) we get∫ 2π

0

|q(eiθ)|2dθ

≤
{(

1 + |β1|2− 2|β1| cos
π

n− k + 2

)(
1 + |β2|2− 2|β2| cos

π

n− k + 3

)}−1∫ 2π

0

|T2(eiθ)|2dθ.

We can now continue and obtain similarly
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∫ 2π

0

|q(eiθ)|2 ≤
{(

1 + |β1|2 − 2|β1| cos
π

n− k + 2

)(
1 + |β2|2 − 2|β2| cos

π

n− k + 3

)
×
(
1 + |β3|2 − 2|β3| cos

π

n− k + 4

)}−1 ∫ 2π

0

|T3(eiθ)|2dθ,

(with

T3(z) = (z − β3)T2(z),= (z − β1)(z − β2)(z − β3)q(z), (by (3.3))), (3.5)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

∫ 2π

0

|q(eiθ)|2dθ ≤
{(

1+|β1|2−2|β1| cos
π

n− k + 2

)(
1+|β2|2−2|β2| cos

π

n− k + 3

)
. . .

. . .
(
1 + |βk|2 − 2|βk| cos

π

n− k + k + 1

)}−1∫ 2π

0

|Tk(eiθ)|2dθ, (3.6)

(with

Tk(z) = (z − βk)Tk−1(z),
= (z − β1)(z − β2) . . . (z − βk)q(z), (similar to (3.3) and (3.5))). (3.7)

On using (1.1) and (3.7) in (3.6) we get∫ 2π

0

∣∣∣∣ p(eiθ)

(eiθ − β1)(eiθ − β2) . . . (eiθ − βk)

∣∣∣∣2 dθ ≤ {(1 + |β1|2 − 2|β1| cos
π

n− k + 2

)
(
1 + |β2|2 − 2|β2| cos

π

n− k + 3

)
. . .

. . . . . .
(
1 + |βk|2 − 2|βk| cos

π

n+ 1

)}−1
×
∫ 2π

0

|p(eiθ)|2dθ

and as the order of β1, β2, . . . , βk is immaterial, Theorem follows.
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1. Preliminaries

The multivariate calculus presents a natural extension of the concepts of the one-
dimensional calculus to real spaces of n dimensions. In itself the multi- variate cal-
culus is a particular expression of the most beautiful results of the analysis of several
variables that have their climax in surface integration and that flaunt elegant coher-
ence of the treatment of the theory of differential forms that summarize the simplicity
and power of its physical applications. That’s why from the point of view purely theo-
retical the multivariate calculus is the introduction to the analysis of several variables
from a context particular; from the application point of view, his appearances are
innumerable as a powerful tool resolutive in problems in applied sciences. Thus, the
calculus in several variables provides pure and applied researchers with the necessary
knowledge to operate and apply mathematical functions with real variables in the
approach and solution of practical situations. The partial derivative, is considered
a fundamental axis for the approach and development of concepts that allow us to
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understand and assimilate knowledge from almost all areas of applied science. Re-
garding the concept of multiple integration, reaches an interrelation with other areas
of knowledge, especially physics, to finally to address general research topics, whether
pure or applied. If we add to all the above the fact that the local fractional calculus
has a very short development (conformable since 2014, [6], and non-conformable since
last year, see [5] and [8]) we realize that a work where the fundamental foundations
of the local fractional calculus can be established of several variables is necessary.
Some results to the conformable case can be consulted in [3]. In this work we estab-
lish the first results to formalize the theoretical “corpus” necessary to develop this
new mathematical branch and we extend the Second Method of Lyapunov to the
non-conformable local fractional case of several variables.

2. Non-conformable partial derivative

Definition 1. Given a real valued function f : Rn → R and −→a = (a1, . . . , an) ∈ Rn a
point whose ith component is positive. Then the non conformable partial N -derivative
of f of order α in the point −→a = (a1, . . . , an) is defined by

Nα
xif(−→a ) = lim

ε→0

f(a1, .., ai + εea
−α
i , . . . , an)− f(a1, . . . , an))

ε
(1)

if it exists, is denoted Nα
xif(−→a ), and called the ith non-conformable partial derivative

of f of the order α ∈ (0, 1] at −→a .

Remark 2. If a real valued function f with n variables has all non-conformable
partial derivatives of the order α ∈ (0, 1] at −→a , each ai > 0, then the non-conformable
α-gradient of f of the order α ∈ (0, 1] at −→a is

∇αNf(−→a ) = (Nα
x1
f(−→a ), . . . , Nα

xnf(−→a )). (2)

3. Applications of the Non-conformable Mean Value
Theorem to the Multivariable Fractional Calculus

In this section, we will introduce the conformable version of two important properties
of the classical partial derivative of the functions of several variables, [2]. Using the
Non-conformable Mean Value Theorem, these results will be proven.

Theorem 3. (Function with a nonconformable partial zero derivative). Let α ∈ (0, 1],
f : X → R be a real valued function defined in an open and convex set X ⊂ Rn, such
that for all −→x = (x1, . . . , xn) ∈ X, each xi > 0. If the non-conformable partial

derivative of f with respect to xi, exist and is null on X, then f(−→x ) = f(
−→
x′ ) for any

points −→x = (x1, . . . , xi, . . . , xn),
−→
x′ = (x′1, . . . , x

′
i, . . . , x

′
n) ∈ X, i.e., the function f

does not depend on the variable xi.
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Proof. Since X is a convex set and

−→x = (x1, . . . , xi, . . . , xn),
−→
x′ = (x′1, . . . , x

′
i, . . . , x

′
n) ∈ X,

all points of the line segment [−→x ,
−→
x′ ] are also in X, so the function g is defined

in the interval of endpoints xi and x′i by g(t) = f(x1, . . . , xi−1, t, xi+1, . . . ., xn). This
function is N -differentiable on above interval and its derivative at a point t, is given
by Nα

3 g(t) = Nα
xif(x1, . . . , t, . . . , xn) Therefore, applying Theorem 2.7, [6], there is

a point ci between xi and x′i, such that g(x′i) − g(xi) =
(x′i−xi)

ec
−α
i

Nα
3 g(ci), since point

c = (x1, . . . , ci, . . . , xn) ∈ X and therefore Nα
xif(−→c ) = 0, the above equality leads to

f(
−→
x′ )− f(−→x ) =

(x′i−xi)

ec
−α
i

Nα
xif(−→c ) = 0 then f(−→x ) = f(

−→
x′ ), as we wanted to prove.

Now, we establish a first formula of finite increments for real valued functions of
several variables, involving non-conformable partial derivatives.

Theorem 4. Let −→a = (a1, a2, . . . , an),
−→
b = (b1, b2, . . . , bn) ∈ Rn, x0, x1, . . . , xn be

points −→xi = (b1, . . . , bi, ai+1, . . . ., an) (note that −→x0 = −→a and −→xn =
−→
b ) and line

segment Si = [−−→xi−1,−→xi ], for i = 1, 2, . . . , n. Let α ∈ (0, 1] and f : X → R be a real
valued function defined in an open set X ⊂ Rn containing line segments S1, S2, . . . , Sn,
such that for all −→x = (x1, . . . , xn) ∈ X, each xi > 0. If the non-conformable partial
derivative of f with respect to xi, exist on X, then there is a point ci between ai and
bi, for i = 1, 2, . . . , n, such that

f(b1, b2, . . . bn)− f(a1, a2, . . . , an) =
=
∑n
i=1 ((bi − ai) 1

ec
−α
i

)Nα
xif(b1, . . . , bi−1, ci, ai+1. . . , an).

}
(3)

Proof. First, we will express the difference f(
−→
b )− f(−→a ) as follows

f(
−→
b )− f(−→a ) = f(−→xn)− f(−−−→xn−1) =

n∑
i=1

[f(−→xi)− f(−−→xi−1)] (4)

Consider now, for i = 1, 2, . . . , n, the real function gi of the real variable t, defined
on the closed interval of endpoints ai and bi, by

g(t) = f(x1, . . . , xi−1, t, xi+1, . . . , xn).

Since the non-conformable partial derivative of f with respect to xi, exist on X and
Si ⊂ X, then gi is N -differentiable on above interval and its derivative at a point
t, is given by Nα

3 g(t) = Nα
xif(x1, . . . , t, . . . , xn). Therefore, applying Theorem 2.7,

[6], there is a point ci between ai and bi, such that gi(bi)− gi(ai) = (bi−ai)

ec
−α
i

Nα
3 gi(ci).

Then it is verified

f(−→xi)− f(−−→xi−1) =
(bi − ai)
ec
−α
i

Nα
xif(b1, . . . , bi−1, ci, ai+1, . . . ., an).

Taking the above expression to equation (4), our result is followed.
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4. The Chain Rule

In [5] a version non-conformable of the classical chain rules is introduced as follows.

Theorem 5. Let α ∈ (0, 1], g N -differentiable at t > 0 and f differentiable at g(t)
then

Nα
3 (f ◦ g)(t) = f ′(g(t))Nα

3 g(t). (5)

Remark 6. Using the fact that differentiability implies N -differentiability and as-

suming g(t) > 0, equation (5) can be written Nα
3 (f ◦ g)(t) =

Nα3 f(g(t))

eg(t)−α
Nα

3 g(t).

Remark 7. Let f be a real valued function with n variables defined on an open set
D, such that for all (x1, . . . , xn) ∈ D, each xi > 0. The function f is said to be
Cα(D,R) if all its non-conformable partial derivatives exist and are continuous on D.

We now show the chain rule for the functions of several variables, in two parti-
cular cases that are important in themselves. In the proof we will use the additional
hypothesis of the continuity of non-conformable partial derivatives.

Theorem 8. (Chain Rule). Let α ∈ (0, 1], t ∈ R and −→x = (x1, . . . , xn) ∈ Rn. If
−→
f (t) = (f1(t), . . . , fn(t)) is N -differentiable at a > 0 and a real valued function g
with n variables x1, . . . , xn, has all non-conformable partial derivatives of the order α

at
−→
f (a) ∈ Rn, each fi(a) > 0. Then the composition (g ◦ f) is N -differentiable at a

and

Nα
3 (g ◦ f)(t) =

n∑
i=1

Nα
xig(
−→
f (a))

efi(a)−α
Nα

3 fi(a). (6)

Proof. Assume g ∈ Cα(U(
−→
f (a)),R), where U(

−→
f (a)) is a neighborhood of the point

−→
f (a). Let h(t) = (g ◦

−→
f )(t) = g(

−→
f (t)). From Definition 2.1, [5], we have that

Nα
3 h(a) = lim

ε→0

(h(a+ εea
−α

)− h(a))

ε
= lim
ε→0

(g(f(a+ εea
−α

))− g(f(a)))

ε
. (7)

Without loss of generality we shall assume that U(
−→
f (a)) is an open ball,

B(
−→
f (a), r). Since

−→
f is a continuous function, then together with the points

(f1(a), . . . , fn(a)) and (f1(a + εea
−α

), . . . , fn(a + εea
−α

)), the points (f1(a), f2(a +

εea
−α

), . . . , fn(a+ εea
−α

), . . . , (f1(a), f2(a), . . . , fn(a+ εea
−α

)) and the lines connect-

ing them must also to the ball B(
−→
f (a), r). We shall use this fact, applying Theorem

2.7, [6]:
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(h(a+ εea
−α

)− h(a))

ε
=
g(
−→
f (a+ εea

−α
))− g(

−→
f (a))

ε
=

g(f1(a+ εea
−α

), .., fn(a+ εea
−α

))− g(f1(a), f2(a+ εea
−α

), .., fn(a+ εea
−α

))

ε
+

+ ...+
(g(f1(a), f2(a), .., fn(a+ εea

−α
))− g(f1(a), f2(a), .., fn(a+ εea

−α
))

ε
=

= Nα
x1
g(c1, f2(a+ εea

−α
). . . , fn(a+ εea

−α
))

1

ec
−α
1

f1(a+ εea
−α

)− f1(a)

ε
+ ...+

+Nα
xng(c1, c2. . . , fn(a+ εea

−α
))

1

ec
−α
n

fn(a+ εea
−α

)− fn(a)

ε

where ci is between fi(a) and fi(a+ εea
−α

) for all i = 1, 2, . . . , n. By taking limits as
ε → 0, using the continuity of non-conformable partial derivatives of g, and the fact
that ci → fi(a) for all i = 1, 2, . . . , n, formula (7) can be written

Nα
3 h(a) = lim

ε→0

(h(a+ εea
−α

)− h(a))

ε
= lim
ε→0

(g(
−→
f (a+ εea

−α
))− g(

−→
f (a)))

ε
=

= lim
ε→0

(Nα
x1
g(c1, f2(a+ εea

−α
), . . . , fn(a+ εea

−α
))
f1(a+ εea

−α
)− f1(a)

εec
−α
1

+

+Nα
x2
g(f1(a), c2, . . . , fn(a+ εea

−α
))
f2(a+ εea

−α
)− f2(a)

εec
−α
2

+ ...+

+Nα
xng(f1(a), f2(a), . . . , cn))

fn(a+ εea
−α

)− fn(a)

εec
−α
n

=

= Nα
x1
g(
−→
f (a))

1

ef1(a)−α
Nα

3 f1(a) +Nα
x2
g(
−→
f (a))

1

ef2(a)−α
Nα

3 f2(a) + ...+

+Nα
xng(
−→
f (a))

1

efn(a)−α
Nα

3 fn(a)

which completes the proof.

Remark 9. Also matrix form of equation (7) is given by the following

Nα
3 (g ◦

−→
f )(a) = (Nα

x1
g(
−→
f (a)), . . . , Nα

xng(
−→
f (a)))M(f, α)

Nα
3 f1(a)
...

Nα
3 fn(a)

 (8)

where M(f, α) =

 1

e(f1(a))−α ... 0

... ... ...
0 ... 1

e(fn(a))−α

 is the matrix corresponding to the

linear transformation from Rn to Rn defined by

Lαa (x1, . . . , xn) =

 1

e(f1(a))−α ... 0

... ... ...
0 ... 1

e(fn(a))−α


x1...
xn

 .
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Theorem 10. (Chain Rule). Let α ∈ (0, 1], −→x = (x1, . . . , xn) ∈ Rn and −→y =

(y1, . . . , ym) ∈ Rm. If
−→
f (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) is a vec-

tor valued function such that each fi has all non-conformable partial derivatives of
the order α at −→a = (a1, . . . , an) ∈ Rn, each ai > 0, and a real valued function g
with variables y1, . . . , ym has all non-conformable partial derivatives of the order α

at
−→
f (a) ∈ Rn, all fi(a) > 0. Then the composition g ◦

−→
f has all non-conformable

partial derivatives of the order α at −→a , which are given by

Nα
xi(g ◦

−→
f )(−→a ) =

m∑
j=1

Nα
yjg(
−→
f (−→a ))

1

e(fj(
−→
f ))−α

Nα
xifj(

−→a ) (9)

for all i = 1, 2, . . . , n.

Proof. From definition of non-conformable partial derivative and the Theorem above,
the result follows.

Remark 11. Also matrix form of equation (9) is given by the following

Nα
3 (g ◦

−→
f )(a) =

= (Nα
y1g(
−→
f (a)), . . . , Nα

ymg(
−→
f (a)))N(f, α)

Nα
3 f1(a) ... 0
... ... ...
0 ... Nα

3 fm(a)


 (10)

Nα
3 (g ◦

−→
f )(a) =

= (Nα
y1g(
−→
f (a)), . . . , Nα

ymg(
−→
f (a)))N(f, α)

Nα
3 f1(a) ... 0
... ... ...
0 ... Nα

3 fm(a)


 (11)

where N(f, α) =

 1

e(f1(a))−α ... 0

... ... ...
0 ... 1

e(fm(a))−α

 is the matrix corresponding to the

linear transformation from Rm to Rm defined by

Lαa (y1, . . . , ym) =

 1

e(f1(a))−α ... 0

... ... ...
0 ... 1

e(fm(a))−α


 y1

...
ym



and

Nα
3 f1(a) ... 0
... ... ...
0 ... Nα

3 fm(a)

 is the non-conformable Jacobian of
−→
f of order α

at −→a .
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5. Non-Conformable Implicit Function Theorem

In this section, a non-conformable version of classical Implicit Function Theorem
is obtained. The non-conformable implicit function result we prove concerns one
equation and several variables.

Theorem 12. Let α ∈ (0, 1], F : X → R be a real valued function defined in an open
set X ⊂ Rn+1, such that for all (x1, . . . , xn, y) ∈ X, each xi, y > 0, and the point
(a1, . . . , an, b) ∈ X. Suppose that

i) F (a1, . . . , an, b) = 0.

ii) F ∈ Cα(X,R).

iii) Nα
y F (a1, . . . , an, b) 6= 0.

Then there is a neighborhood, U ⊂ Rn, of (a1, . . . , an) such that there is a unique
function y = g(x1, . . . , xn) that satisfies

g(a1, . . . , an) = b, F (x1, . . . , xn, g(x1, . . . , xn)) = 0,∀(x1, . . . , xn) ∈ U.

Finally, y = g(x1, . . . , xn) is Cα in U, and for every i = 1, 2, . . . , n, we have

Nα
xig(x1, . . . , xn) = −

Nα
xiF (x1, . . . , xn, g(x1, . . . , xn))e(g(x1,. . . ,xn))

−α

Nα
y F (x1, . . . , xn, g(x1, . . . , xn))

. (12)

Proof. Without loss of generality we shall assume that X is an open ball,
B((a1, . . . , an, b), ε0). Let ρ ∈ (0, ε0). If we call δ =

√
(ε20 − ρ2) it is verified that

[‖(x1, . . . , xn)− (a1, . . . , an)‖ < δ and |y − b| < ρ] implies

(x1, . . . , xn, y)((a1, . . . , an, b), ε0).

Note that in particular if |y − b| < ρ then (a1, . . . , an, y) ∈ B((a1, . . . , an, b), ε0).
Since the function y = F (a1, . . . , an, y) is strictly monotone on (b − ε0, b + ε0) and
F (a1, . . . , an, b) = 0, it follows that F (a1, . . . , an, b−ρ) and F (a1, . . . , an, b+ρ) have a
different sign, [6] . Suppose that F (a1, . . . , an, b− ρ) < 0 and F (a1, . . . , an, b+ ρ) > 0
(the same would be reasoned in the opposite case). By the continuity of F at
(a1, . . . , an, b− ρ) and (a1, . . . , an, b+ ρ), there exists δ′ ∈ (0, δ) (that depends of ρ),
such that [‖(x1, . . . , xn)− (a1, . . . , an)‖ < δ′ implies [F (x1, . . . , xn, b − ρ) < 0 and
F (x1, . . . , xn, b + ρ) > 0]. Since, the function F (x1, . . . , xn, y) is continuous on the
interval [b − ρ, b + ρ], for all (x1, . . . , xn) ∈ B((a1, . . . , an), δ′), and using the clas-
sical Bolzano’s Theorem it follows that there exist some yx ∈ (b − ρ, b + ρ) such
that F (x1, . . . , xn, yx) = 0, for each x = (x1, . . . , xn). Furthermore, this value of
yx is unique, due to strict monotony of function F (x1, . . . , xn, y). In other words,
if we take U = B((a1, . . . , an), δ′), for each (x1, . . . , xn) ∈ U , there exists a unique
y = g(x1, . . . , xn) such that F (x1, . . . , xn, y) = 0. Now let’s prove that g we can write
y = g(x1, . . . , xn) is a continuous function on B((a1, . . . , an), δ′). The continuity of
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the function g at the point (a1, . . . , an) is obvious, since for each ρ > 0 there ex-
ists a value δ′ > 0 such that ‖(x1, . . . , xn)− (a1, . . . , an)‖ < δ′ implies |b− yx| < ρ
iff |b− g(x1, . . . , xn)| < ρ. To prove the continuity of the function g at any point
(x1, . . . , xn) ∈ B((a1, . . . , an), δ′), simply substitute B((a1, . . . , an), δ′) for an open
ball B((x1, . . . , x)) contained in B((a1, . . . , an), δ′). Finally, let’s show formula (11).
Applying Non-conformable Chain Rule, to the equation F (x1, . . . , xn, y) = 0, we have

Nα
xiF (−→x , g(−→x )) +Nα

y F (−→x , g(−→x ))
1

e(g(
−→x ))−α

)Nα
xig(−→x ) = 0 (13)

for all i = 1, 2, . . . , n, where −→x = (x1, . . . , xn). Solving from this equation Nα
xig(−→x ),

we obtain (11). Also the right side of formula (11) is continuous, the continuity of
the non-conformable partial derivatives Nα

xig(−→x ) for all i = 1, 2, . . . , n, follows.

We will now see how Theorem 5.1 can be used to compute the non-conformable
partial derivatives of implicit function of several variables.

Example 13. Consider the equation F (x, y, z) = x3+3y2+4xz2−3yz2−5 = 0 one so-
lution of this equation is (1, 1, 1). Clearly, F is Cα in an open ball, B((1, 1, 1), ε0), with

x, y, z > 0, for some α ∈ (0, 1]. Since Nα
z F (1, 1, 1) =

[
8xzez

−α − 6yzez
−α

)
]
(1,1,1)

=

2e 6= 0.
Tells us that there is a neighbourhood, U ⊂ R2, of (1, 1) such that there is a unique

function z = g(x, y) that satisfies g(1, 1) = 1 and F (x, y, g(x, y)) = 0,∀(x, y) ∈ U .
Moreover, z = g(x, y) is Cα in U and

Nα
x g(x, y) = − ((3x2 + 4z2)ex

−α
)

2(4x− 3y)z
, Nα

y g(x, y) = − (3(2y − z2)ey
−α

)

2(4x− 3y)z
.

Finally, we have Nα
x g(1, 1) = −7e/2 and Nα

y g(1, 1) = −3e/2.

6. An extension of the Second Method of Lyapunov

In the analysis of the stability of non-linear systems, the Second Method of Lyapunov
has demonstrated its strength for more than 125 years. The technique is also called
direct method because this method allows us to determine the stability and asymptotic
stability of a system without explicitly integrating the nonlinear differential equation
or system. Asymptotic stability is one of the stone areas of the qualitative theory
of dynamical systems and is of fundamental importance in many applications of the
theory in almost all fields where dynamical effects play a great role.
This method relies on the observation that asymptotic stability is very well linked
to the existence of some functions, called Lyapunov’s function, that is, a positive
definite function, vanishing only on an invariant region and decreasing along those
trajectories of the system not evolving in the invariant region. Lyapunov proved that
the existence of a Lyapunov’s function guarantees asymptotic stability and, for linear
time-invariant systems, also showed the converse statement that asymptotic stability
implies the existence of a Lyapunov’s function in the region of stability.
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In the case of non-linear autonomous systems, there are innumerable results and
refinements. If we consider non-autonomous systems, the results are more complex
and we must add additional conditions. It is therefore natural to ask whether the
Second Method of Lyapunov can be extended to the case of non-integer derivatives.
In the case of the global fractional derivatives (the classical ones) these extensions
are far from being obtained, additional conditions must be imposed since the non-
existence of a Chain Rule, makes it impossible to obtain the derivative of the Lyapunov
Function along the solutions of the system considered, reason why different variants
must be handled (in particular inequalities) that make possible the obtaining of similar
results (see [4] for example).
In [7] we studied the stability of the Fractional Liénard Equation with derivative
Caputo and, as we said, since the Chain Rule was not valid, the difficulties that we
had to overcome were several.
In [1] the results obtained with Caputo fractional derivatives and Caputo fractional
Dini derivatives of Lyapunov functions, are illustrated in examples. It is emphasized
that in some cases these techniques cannot be used. In this regard, it can also be
consulted [9].
We will show that if we consider local fractional derivatives, non-conformable in this
case, similar results to those obtained in the Second Method of Lyapunov can be
formulated in this framework. For this we consider the following equation:

Nα
3 (Nα

3 x) + a(t)g(x) = 0 (14)

a natural generalization of the known equation:

x′′ + a(t)g(x) = 0. (15)

The prototype of the above equation is the so-called Emden-Fowler equation,
which is used in mathematical physics, theoretical physics, and chemical physics.
This equation has interesting mathematical and physical properties, and it has been
investigated from various points of view, in particular, the solutions of this equation
represent the Newton-Poisson gravitational potential of stars, such as the Sun, con-
sidered as spheres filled with polytropic gas.
The coefficient a(t) is allowed to be negative for arbitrarily large values of t. Under
this premise, in general not every solution to the second order nonlinear differential
equation (14) is continuable throughout the entire half real axis. For this reason, and
being the prolongability a property of paramount importance, we show that under
natural conditions on the functions a(t) and g(x) of the equation (13), all the equa-
tions are continuables to the future.
Next to equation (13), we will consider the following equivalent system:

Nα
3 x(t) = y(t), Nα

3 y(t) = −a(t)g(x), (16)

with a ∈ C([0,+∞)), g ∈ C(R), xg(x) > 0 if x 6= 0 and G(x) =N3
Jα0 g(s).

Later the following functions will be used

b(t) = exp
{
−N3

Jα0

[
Nα3 a(s)+
a(s)

]
(t)
}
,

c(t) = exp
{
−N3

Jα0

[
Nα3 a(s)−
a(s)

]
(t)
}
.

 (17)
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So

a(t) = b(t)c(t), (18)

where b(t) is non-increasing and c(t) is non-decreasing function with Nα
3 a(t)+ =

max(Nα
3 a(t), 0) and Nα

3 a(t)− = max(−Nα
3 a(t), 0), so that Nα

3 a(t) = (Nα
3 a(t)+) −

(Nα
3 a(t)−). Thus we can enunciate our result.

Theorem 14. Under assumptions a ∈ C([0,+∞)), g ∈ C(R), xg(x) > 0 if x 6= 0,
let a a continuous and positive function on [0,+∞) satisfying

a(t)→∞, t→ +∞. (19)

Then all solutions of (15) can be defined fot all t ≥ t0 > 0.

Proof. We will develop an extension of Liapunov’s Second Method in this proof. For
this, we define the following functions.

W (t, x(t), y(t)) = b(t)V (t, x(t), y(t)) (20)

where b(t) is defined by (16) and V is given by

V (t, x(t), y(t)) =
y2

2a(t)
+G(x) (21)

where G is as before. Then along solutions of system (15), we have

Nα
3 W (t, x(t), y(t)) = V (t, x(t), y(t))Nα

3 b(t) + b(t)Nα
3 V (t, x(t), y(t))

and

Nα
3 V (t, x(t), y(t)) = −y

2

2

Nα
3 a(t)

a2(t)

Using (16), (17) and (18) we obtain

Nα
3 W (t, x(t), y(t)) ≤ 0 (22)

so W is non-increasing function. Suppose there is a non continuable solution of the
system (15), i.e., suppose there is a time T for some solution of system (15), satisfying
limt→T− |x(t)| = +∞. Now

b(T )

[
G(x) +

y2

2M

]
≤W (t, x(t), y(t)) ≤W (t0, x0, y0)

being M = maxt∈[t0,T ] a(t). From this we have |y(t)| is uniformly bounded, say
|y(t)| ≤ K for t0 ≤ t ≤ T . But Nα

3 x(t) = y(t) so |x(t)| ≤ x0 + K(T − t0). This
completes the proof.
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7. Epilogue

In this paper we have presented the first results related to the local non-conformable
Fractional Calculus of several variables, as a necessary tool to expand the applica-
tions of this new mathematical area. We want to highlight the importance of the
fundamentals presented here for the future development of this subject, both pure
and applied. In particular, the Rule of the Chain and the Implicit Function Theo-
rem, ensures that known results of the one-dimensional case can be extended in the
immediate future (Taylor series, analysis of differentiability and its relation to the
N -derivative, tangent plane, among others).
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1. Introduction

Fractional calculus is strong tool of mathematical analysis that studies derivatives and
integrals of fractional order. Fractional differential equations (FDE’s, for short) are
used in many fields of engineering and sciences such as dynamical of biological systems
[12], economy [33], theory of control [7], automatic systems [36], signal processing [11],
hydro-mechanics and non-linear elasticity [14, 32].

Various real life problems can be modeled as differential equation. The study of
existence of solution of these differential equation is interest object of mathematical
analysis. The fixed point theorems are powerful technique to obtain the existence of
solution of these problem. There are many of fixed point theorems can be applied
to obtain the solution of mathematical models [24, 25]. Krasnoselskii’s and Banach
fixed point theorems play an important role to obtain the existence of solution of a
lot of mathematical problems [35].
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In 1940, Ulam purposed new role of the stability analysis of the solutions for
functional equations [34]. In the next year, Hyer [15] considered another type of
stability in the Banach space which was more generalized than the kind of Ulam
stability and applied this stability approach to obtain the stability certain conditions
of some functional equations. After that, Rassias [27] considered another approach
of stability, this approach is more improved than Hyers stabitity. Rassias used this
approach to study stability of FDE’s [16, 28].

Recently, many research articles study the Ulam stabilities, see [21, 20, 13, 10, 8,
2, 22, 3, 19, 17, 18, 30]. In 2011, Ardjouni and Djoudi [6] studied the stability for
neutral ordinary differential equations via fixed points. In 2019, Akbulut and Tunc
[1], established the stability of solutions of neutral ordinary differential equations
with multiple time delay. In the same year, Niazi [26], discussed Ulam stabilities for
nonlinear fractional neutral differential equations in Caputo sense via Picard operator.

There are many definitions are used to define the fractional derivative such
as Riemann-Liouville, Caputo, Erdélyi-Kober and Hadamard [23]. More recently,
Almeida [4] considers new investigation of the fractional operator and called it
ψ−Caputo derivative. This new approach is more generalized than Riemann-
Liouville, Caputo, Erdélyi-Kober and Hadamard derivative operator approaches. Af-
ter one year, Almeida et al.[5] investigated the uniqueness of solution of initial value
problem (I.V.P, for short) of FDE in ψ−Caputo sense.

In this paper, we discuss the existence and uniqueness of the following FDE with
delay 

∗Dα,ψ
0+ [x(t)−H(t, x(t− ϑ(t)))] = F (x(t), x(t− ϑ(t)));

α ∈ (0, 1], t ∈ I = [0, 1];
subject to I.V.
x(t) = σ(t), t ∈ [ρ, 0];

(1)

where ∗Dα,ψ is ψ−Caputo derivative operator , the delay ρ = inf{t − ϑ(t) : t ∈
[0, 1]} ≤ 0, ϑ : R+ → R+ and σ : [ρ, 0]→ R.

2. Preliminaries

In this section, we consider some facts and basic results. We recall the following
definition [3].

Definition 2.1. Let C([ρ, 1],R) be the vectorial space of all continuous functions
u : [ρ, 1] → R. Clearly, C([ρ, 1],R) is a complete normed space with the norm,
‖u‖ = max

t∈[ρ,1]
|u(t)|. Therefore, Cn([ρ, 1],R), n ∈ N, be the vectorial space of all

n−times continuous and differentiable functions from [ρ, 1] to R.

Next, we recall the definitions of ψ−fractional integral and derivative operators
[4, 5].

Definition 2.2. Let I = [0, 1] and ψ ∈ Cn(I,R), be an increasing functions such
that ψ′(t) 6= 0 for all t ∈ I. Consider an integrable function u : I → R. The
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ψ−Riemann-Liouville fractional integral of order α > 0, α ∈ R of the function u is
defined as

Jα,ψ0+ u(t) =
1

Γ(α)

∫ t

0

ψ′(ζ)(ψ(t)− ψ(ζ))α−1 u(ζ) dζ ,

and the ψ−Riemann-Liouville fractional derivative of order α > 0, α ∈ R of the
function u is defined as

Dα,ψ
0+ u(t) =

1

Γ(n− α)
(

1

ψ′(t)

d

dt
)n

∫ t

0

ψ′(ζ)(ψ(t)− ψ(ζ))n−α−1 u(ζ) dζ ,

where n = [α] + 1 and [α] denotes the integral part of α.

Definition 2.3. Let ψ ∈ Cn(I,R), be an increasing function such that ψ′(t) 6= 0
for all t ∈ I. Consider an integrable function u : I → R. The ψ−Caputo fractional
derivative of order α > 0, α ∈ R of the function u is defined as

∗Dα,ψ
0+ u(t) = Dα,ψ

0+ [u(t)−
n−1∑
k=0

u
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k],

where n = [α] + 1, [α] denotes the integral part of α and u
[k]
ψ (t) = ( 1

ψ′(t)
d
dt )

k u(t).

We recall the following Lemma which was given in [5].

Lemma 2.4. Suppose that u : I → R, then
(1) If u ∈ C(I,R), then ∗Dα,ψ

0+ Jα,ψ0+ u(t) = u(t).
(2) If u ∈ Cn(I,R), then

Jα,ψ0+
∗Dα,ψ

0+ u(t) = u(t)−
n−1∑
k=0

u
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k.

Now we recall Krasnoselskii’s fixed point theorem which was given in [31].

Theorem 2.5. (Krasnoselskii’s fixed point theorem) Let Υ be a Banach space.
Suppose that Ω (Ω 6= ∅) be a convex, bounded and closed subset of Υ. Consider
T1 : Υ→ Υ and T2 : Ω→ Υ are such that

(1) T1 be a contraction.
(2) T2 is completely continuous.
(3) x = T1x+ T2y ⇒ x ∈ Ω for all y ∈ Ω.
Then, there exists x∗ ∈ Ω such that x∗ = T1x

∗ + T2x
∗ .

Now, we recall the definitions of these types of Ulam stability. For more details,
see [29].

Definition 2.6. The Eq.(1) is said to be Ulam-Hyers stable (UHS for short) if, there
exists λ ∈ R+ such that for every ε > 0 and each u ∈ C([ρ, 1],R) solution of the
inequality

|∗Dα,ψ
0+ [u(t)−H(t, u(t− ϑ(t)))]− F (u(t), u(t− ϑ(t)))| ≤ ε , t ∈ I,
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there exists a unique solution x ∈ C([ρ, 1],R) of Eq.(1) such that

|u(t)− x(t)| ≤ λ ε , ∀ t ∈ [ρ, 1].

Definition 2.7. The Eq.(1) is said to be generalized Ulam-Hyers stable (GUHS for
short) if, there exists ϕ ∈ C([ρ, 1],R), ϕ(0) = 0, such that for every ε > 0 and each
u ∈ C([ρ, 1],R) solution of the inequality

|∗Dα,ψ
0+ [u(t)−H(t, u(t− ϑ(t)))]− F (u(t), u(t− ϑ(t)))| ≤ ε , t ∈ I,

there exists a unique solution x ∈ C([ρ, 1],R) of Eq.(1) such that

|u(t)− x(t)| ≤ ϕ(ε) ,∀ t ∈ [ρ, 1].

Definition 2.8. The Eq.(1) is called Ulam-Hyers-Rassias stable (UHRS for short)
w.r.t ϕ ∈ C([ρ, 1],R), if there exists κϕ ∈ R+ such that for every ε > 0 and each
u ∈ C([ρ, 1],R) solution of the inequality

|∗Dα,ψ
0+ [u(t)−H(t, u(t− ϑ(t)))]− F (u(t), u(t− ϑ(t)))| ≤ ε ϕ(t) , t ∈ I , (2)

there exists a unique solution x ∈ C([ρ, 1],R) of Eq.(1) such that

|u(t)− x(t)| ≤ κϕ ε ϕ(t) ,∀ t ∈ [ρ, 1].

Definition 2.9. The Eq.(1) is said to be generalized Ulam-Hyers-Rassias stable
(GUHRS for short) w.r.t ϕ ∈ C([ρ, 1],R), if there exists κϕ ∈ R+ such that for
each u ∈ C([ρ, 1],R) solution of the inequalities

|∗Dα,ψ
0+ [u(t)−H(t, u(t− ϑ(t)))]− F (u(t), u(t− ϑ(t)))| ≤ ϕ(t) , t ∈ I ,

there exists a unique solution u ∈ C([ρ, 1],R) of the Eq.(1) such that

|u(t)− x(t)| ≤ κϕ ϕ(t) ,∀ t ∈ [ρ, t].

Let H : I × R → R and F : R × R → R. Then we study the Ulam stabilities of
the following proposed problem

∗Dα,ψ
0+ [x(t)−H(t, x(t− ϑ(t)))] = F (x(t), x(t− ϑ(t)));

α ∈ (0, 1], t ∈ I = [0, 1];
subject to initial value
x(t) = σ(t), t ∈ [ρ, 0];

where ∗Dα,ψ is ψ−Caputo derivative operator, ρ = inf{t − ϑ(t) : t ∈ [0, 1]} ≤ 0,
ϑ : R+ → R+ , σ : [ρ, 0] → R are continues and ψ ∈ C1(I,R) be an increasing
function such that ψ′(t) 6= 0 for all t ∈ I. Then, we have the following lemma [9].

Lemma 2.10. The solution of Eq.(1) is equivalent to the following nonlinear integral
equation

x(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, x(t− ϑ(t)))

+
1

Γ(α)

∫ t

0

ψ
′
(s)(ψ(t)− ψ(s))α−1 F (x(s), x(s− ϑ(s))) ds .
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3. Existence and Uniqueness

In this section we will obtain the existence of solution and uniqueness of the proposed
neutral FDE (1). suppose that r0 ∈ R+ and Ω = {x ∈ C([ρ, 1],R) : ‖x‖ ≤ r0}. The
Eq.(1) can be written as

(T x)(t) = (T1x)(t) + (T2x)(t),

where
T1 : Ω→ (CB([ρ, 1],R) , T2 : Ω→ (CB([ρ, 1],R),

such that

(T1x)(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, x(t− ϑ(t))) ,

(T2x)(t) = 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (x(s), x(s− ϑ(s))) ds,

where t ∈ [ρ, 1] and x ∈ C([ρ, 1],R) .
We will study Eq.(1) under the following conditions:
(C1) the functions H : I × R → R and F : R × R → R are continuous and there

exist p ∈ (0, 1), q ∈ R+ such that

|H(t, x1)−H(t, x2)| < L|x1 − x2|,

|F (x1, x1)− F (y1, y2)| < K

2∑
i=1

|xi − yi|,

for all x1, x2, y1, y2 ∈ R, and t ∈ [0, 1];
(C2) let A∗ =| F (0, 0) | and B∗ = max

t∈I
| H(t, 0) | then

|σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ +
K r0 +A∗

Γ(α+ 1)
(ψ(1)− ψ(0))α ≤ r0.

Theorem 3.1. Let the conditions (C1) and (C2) hold. Then Eq.(1) has at leat one
solution in Ω.

Proof. The proof is done in the following 3 steps.
Step 1. T1 is contraction.

Let x, y ∈ C([ρ, 1],R) are arbitrary and t ∈ I

|(T1x)(t)− (T1y)(t)| ≤ L|x(t)− y(t)|,

which implies that
‖T1x− T1y‖ ≤ L‖x− y‖,

Thus, T1 is a contraction.
Step 2. T2 is completely continuous.

First, we will prove that T2 is continuous. Let {xn} be a sequence in C([ρ, 1],R) such
that xn → x ∈ C([ρ, 1],R). Then, we get
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|(T2xn)(t)− (T2x)(t)| ≤ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1|F (xn(s), xn(s− ϑ(s)))

−F (x(s), x(s− ϑ(s)))| ds
≤ K

Γ(α+1) (ψ(t)− ψ(0))α‖xn − x‖
≤ K

Γ(α+1) (ψ(1)− ψ(0))α‖xn − x‖.

So, we have that

‖T2xn − T2x‖ ≤ K
Γ(α+1) (ψ(1)− ψ(0))α‖xn − x‖.

Thus, ‖T2xn − T2x‖ → 0 as n→∞. Hence T2 is continuous operator. Therefore,
for each x, y ∈ C([ρ, 1],R) and t ∈ I, we have

|F (x(t), y(t))| ≤ |F (x, y)− F (0, 0)|+ |F (0, 0)|
≤ K(‖x‖+ ‖y‖) +A∗.

Therefore,

| (T2x)(t) |≤ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1|F (x(s), x(s, s− ϑ(s)))|ds

≤ 2K+A∗

Γ(α+1) (ψ(t)− ψ(0))α,

for all t ∈ I. Hence we have

‖ T2x ‖≤ 2K+A∗

Γ(α+1) (ψ(1)− ψ(0))α.

Thus T2 is bounded. Furthermore, if we choose t1, t2 ∈ I such that t1 < t2, then we
get

|(T2x)(t2)− (T2x)(t1)|
= | 1

Γ(α)

∫ t2
0
ψ
′
(s)(ψ(t2)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds

− 1
Γ(α)

∫ t1
0
ψ
′
(s)(ψ(t1)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds|

≤ | 1
Γ(α)

∫ t2
0
ψ
′
(s)(ψ(t2)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds

− 1
Γ(α)

∫ t2
0
ψ
′
(s)(ψ(t1)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds|

+| 1
Γ(α)

∫ t2
0
ψ
′
(s)(ψ(t1)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds

− 1
Γ(α)

∫ t1
0
ψ
′
(s)(ψ(t1)− ψ(s))α−1F (x(s), x(s− ϑ(s))) ds|

≤ 1
Γ(α)

∫ t2
0
ψ
′
(s)[(ψ(t2)− ψ(s))α−1 − (ψ(t1)− ψ(s))α−1] | F (x(s), x(s− ϑ(s))) | ds

+ 1
Γ(α)

∫ t2
t1
ψ
′
(s)(ψ(t1)− ψ(s))α−1 | F (x(s), x(s− ϑ(s))) | ds

≤ 2K r0+A∗

Γ(α+1) [(ψ(t2)− ψ(0))α − (ψ(t1)− ψ(0))α].

Since ψ is continuous, then we have that |(T2x)(t2)− (T2x)(t1)| → 0 as t1 → t2. Thus
T2(Ω) is relatively compact. From Arzela-Ascoli-theorem, we obtain T2 is compact.
Hence T2 is completely continuous.
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Step 3. Finding the fixed poind of T .
Let x, y ∈ Ω. We get

|(T1x)(t) + (T2y)(t)|
= |σ(0)−H(0, σ(−ϑ(0))) +H(t, x(t− ϑ(t)))

+ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (x(s), x(s− ϑ(s))) ds|

≤ |σ(0)−H(0, σ(−ϑ(0)))|+ |H(t, x(t− ϑ(t)))|+
+| 1

Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (x(s), x(s− ϑ(s))) ds|

≤ |σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ + K r0+A∗

Γ(α+1) (ψ(t)− ψ(0))α

≤ |σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ + K r0+A∗

Γ(α+1) (ψ(1)− ψ(0))α

≤ r0

Thus, the operators T1 and T2 satisfy all conditions of Theorem 2.5. Hence there
exists x∗ ∈ Ω such that x∗ is solution of Eq.(1).

Theorem 3.2. Suppose that the conditions (C1) and (C2) hold. Let,

(C3) L+ 2K
Γ(α+1) (ψ(1)− ψ(0))α < 1.

Then the Eq.(1) has unique solution.

Proof. We apply Banach contraction theorem to prove T has a unique fixed point.
Let x, y ∈ C([ρ, 1],R). Then, we have

|(T x)(t)− (T y)(t)| ≤ L|x(t)− y(t)|+ 2K‖x−y‖
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 ds

≤ L+ 2K
Γ(α+1) (ψ(t)− ψ(0))α

≤ L+ 2K
Γ(α+1) (ψ(1)− ψ(0))α

≤ 1.

Thus Eq.(1) has unique solution.

4. Ulam Stabilities

In this part, various Ulam stability types will be considered.

Lemma 4.1. Let α ∈ (0, 1), if z ∈ C([ρ, 1],R) is the solution of the inequality of
definition 2.6, then z is the solution of the following inequality

|z(t)−N(t)| ≤ ( (ψ(1)−ψ(0))α

Γ(α+1) )ε,

where

N(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, z(t− ϑ(t)))

+
1

Γ(α)

∫ t

0

ψ
′
(s)(ψ(t)− ψ(s))α−1 F (z(s), z(s− ϑ(s))) ds.
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Proof. Let z ∈ C([ρ, 1],R) be any solution of the inequality of definition 2.6, then
there exists Θ ∈ C([ρ, 1],R) dependent on z such that

∗Dα,ψ
0+ [z(t)−H(t, z(t− ϑ(t)))] = F (z(t), z(t− ϑ(t))) + Θ(t) ;

α ∈ (0, 1], t ∈ I = [0, 1] ;
subject to initial value
z(t) = σ(t), t ∈ [ρ, 0] ;

(3)

and
|Θ(t)| ≤ ε , ∀t ∈ I.

Thus, Eq.(3) is equivalent to the following equation

z(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, z(t− ϑ(t)))

+ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (z(s), z(s− ϑ(s))) ds

+ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))(α−1) Θ(s) ds.

Let

N(t) = σ(0)−H(0, σ(−ϑ(0))) +H(t, z(t− ϑ(t)))

+ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 F (z(s), z(s− ϑ(s))) ds.

Thus, we have

|z(t)−N(t)| ≤ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 |Θ(s)| ds ≤ 1

Γ(α+1) (ψ(1)− ψ(0))α ε.

Theorem 4.2. Suppose that (C1)-(C3) hold. Then the Eq.(1) is UHS and conse-
quently GUHS.

Proof. Let z ∈ C([ρ, 1],R) be a solution of the inequality of definition 2.6 and x be
the unique solution of Eq.(1), then we get |N(t)| ≤ ε for all t ∈ I and

|z(t)− x(t)| ≤ |z(t)−N(t)|+ |N(t)− x(t)|.

From Lemma 4.1, we get

|z(t)− x(t)| ≤ ( (ψ(1)−ψ(0))α

Γ(α+1) )ε1 + L|z(t)− x(t)|
+ 1

Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))(α−1) 2K |z(s)− x(s)| ds

≤ ( (ψ(1)−ψ(0))α

Γ(α+1) )ε1 + L|z(t)− x(t)|+ 2K
Γ(α+1) (ψ(1)− ψ(0))α |z(t)− x(t)| ,

therefore, we get

‖z − x‖ ≤ ( (ψ(1)−ψ(0))α

Γ(α+1) )ε1 + L‖z − x‖,

where
L = 1− [L+ 2K

Γ(α+1) (ψ(1)− ψ(0))α].
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Then , we get

‖z − x‖ ≤ λ ε,

where

λ =
( (ψ(1)−ψ(0))α

Γ(α+1) )

1− L
.

Thus the Eq.(1) is UHS. Therefore, if we put ϕ(ε) = λ ε, then we get that ϕ(0) = 0
and

‖z − x‖ ≤ ϕ(ε).

Then, the Eq.(1) is GUHS.

Lemma 4.3. Suppose that the following condition holds:
(C4) If φ ∈ C([ρ, 1],R) is increasing, then there exists µφ ∈ R+ such that for every

t ∈ I, the following inequality hold

∗Jα,ψ0+ φ(t) ≤ µφ φ(t) .

If z ∈ C([ρ, 1],R) is the solution of the inequality (2), then z is the solution of the
following inequality

|z(t)−N(t)| ≤ µφ( (ψ(1)−ψ(0))α

Γ(α+1) )φ(t) ε.

Proof. From Lemma 4.1, we get

|z(t)−N(t)| ≤ 1
Γ(α)

∫ t
0
ψ
′
(s)(ψ(t)− ψ(s))α−1 |Θ(s)| ds.

From (C4), we have that

|z(t)−N(t)| ≤ µφ( (ψ(T )−ψ(0))α

Γ(α+1) )φ(t) ε.

Theorem 4.4. Consider the Conditions (C1)-(C4) hold. Then the Eq.(1) is UHRS
and GUHRS .

Proof. Let z ∈ C([ρ, 1],R) be solution of the inequality (2) and x be the unique
solution of Eq.(1). From Lemma 4.3, we get

‖z − x‖ ≤ µφ( (ψ(1)−ψ(0))α

Γ(α+1) )φ1(t) ε+ L ‖z − x‖.

So, we have that

‖z − x‖ ≤ µφ λ φ(t)ε.

Thus the Eq.(1) is UHRS. Therefore, if we put ε = 1, then the Eq.(1) is GUHRS.
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5. Applications

The following examples are applications to the previous theoretical results.

Example 5.1. Consider the following ψ−Caputo FDE
∗D

1
3 ,ψ

0+ [x(t)− te−t

10 x(t− 0.1)] = 1
10 tan−1(x(t)) + |x(t−0.1)|

14+|x(t−0.1)| ;

t ∈ I = [0, 1],
subject to the nonlocal conditions
x(t) = 0.2 , t ∈ [−0.1, 0]

(4)

where ψ(t) =
√

1 + t , for all t ∈ [0, 1]. Clearly, ψ is increasing on [0, 1] and ψ ∈
C1([0, 1],R). Therefore,

H(t, x) =
te−t

10
x,

also

F (t, x, y) =
1

10
tan−1(x) +

|y|
14 + |y|

.

It is clear that, H,F are continuous. Since,

|H(t, x1)−H(t, x2)| ≤ 1

10
|x1 − x2|,

|F (t, x1, y1)− F (t, x2, y2)| ≤ 1

10
(|x1 − x2|+ |y1 − y2|),

for all x, y, x1, y1, x2, y2 ∈ R and t ∈ [0, 1]. Thus, the condition (C1) holds with

L = K =
1

10
,

therefore

A∗ = 0 , B∗ = 0 , σ(0) = 0.2.

The inequality of (C2)

|σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ +
K r0 +A∗

Γ(α+ 1)
(ψ(1)− ψ(0))α ≤ r0,

has the following form

0.2 +
r0

10
+
r0(
√

2− 1)
1
3

10Γ( 4
3 )

≤ r0.

Hence (C2) is hold and r0 ≥ 0.2447531. Similarly, we get: L+ 2K
Γ(α+1) (ψ(1)−ψ(0))α =

0.11657002573 < 1. Hence the condition (C3) holds. So, it is implies that, the Eq.(4)
has a unique solution. Hence, the Eq.(4) is UHS, GUHS, UHRS and GUHRS.
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Example 5.2. Consider the following ψ−Caputo FDE
∗D

1
2 ,ψ

0+ [x(t)− t
9 sin(x(t− 0.1))] = 1

12x(t) + 1
10x(t− 0.1)

t ∈ I = [0, 1],
subject to the nonlocal conditions
x(t) = 0.2 , t ∈ [−0.1, 0]

(5)

where ψ(t) = t2+t
2 , for all t ∈ [0, 1]. Clearly, ψ is increasing on [0, 1] and ψ ∈

C1([0, 1],R). Therefore,

H(t, x) =
t

9
sin(x),

also

F (t, x, y) =
1

12
x+

1

10
y.

It is clear that, H,F are continuous. Since,

|H(t, x1)−H(t, x2)| ≤ 1

9
|x1 − x2|,

|F (t, x1, y1)− F (t, x2, y2)| ≤ 1

10
(|x1 − x2|+ |y1 − y2|),

for all x, y, x1, y1, x2, y2 ∈ R and t ∈ [0, 1]. Thus, the conditions (C1) holds with

L =
1

9
,K =

1

10

therefore
A∗ = 0 , B∗ = 0 , σ(0) = 0.2.

The inequality of (C2)

|σ(0)−H(0, σ(−ϑ(0)))|+ L r0 +B∗ +
K r0 +A∗

Γ(α+ 1)
(ψ(1)− ψ(0))α ≤ r0,

has the following form

0.2 +
r0

10
+

r0

10Γ( 3
2 )
≤ r0.

Hence (C2) is hold and r0 ≥ 0.25390377047. Similarly, we get: L + 2K
Γ(α+1) (ψ(1) −

ψ(0))α = 0.32471910112 < 1. Hence the condition (C3) holds . So, it is implies
that, the Eq.(5) has a unique solution. Hence, the Eq.(5) is UHS, GUHS, UHRS and
GUHRS.

References
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1. Introduction
Every locally compact, noncompact Hausdorff space X has a well known one-point
compactification (Alexandroff compactification, [1]). In this paper we consider the
set B(X) of all one-point local compactifications of X up to an equivalence. We
prove that B(X) is a partially ordered set such that the order 6 induces a Boolean
algebra. Moreover, the elements 0 and 1 of B(X) are respectively X and ωX. Then
we focus on describing the algebra we get using topological notions and convergence
and we provide examples by computing the algebra in some special cases. We also
note the connection with the topic of ends of manifolds (see [2, pages 110-118]), as
for a noncompact, connected, second countable manifold L with n ends, n < ∞, we
have |B(L)| = 2n.

2. Notation and terminology
• Throughout the paper, ZFC is assumed.

• Given a locally compact Hausdorff space X we denote by ωX a one-point com-
pactification of X if X is not compact and X otherwise,
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• a clopen set is a set that is both closed and open,

• if Y is a one-point local compactification different from X, the unique point of
Y \X will be denoted by ∞Y ,

• a filter F of open sets in a topological space X is a non-empty family of sets
open in X such that ∅ /∈ F and, for all V1, V2 ∈ F and an open V ⊂ X we have
V1 ∩ V2 ∈ F ⇒ V ∈ F .

3. Main results
Definition 1. If X is a locally compact Hausdorff space, we call (Y, f) an at most one-
point local compactification of X iff Y is a locally compact Hausdorff and f : X → Y
is a homeomorphic embedding such that f(X) is dense in Y and |Y \ f(X)| 6 1. If
(Y, f) is an at most one point local compactification of X and |Y \ f(X)| = 1, we call
(Y, f) a one-point local compactiication of X.
For simplicity, we say that Y is a/an (at most) one-point local compactification of X
iff (Y, idX) is a/an (at most) one-point local compactification of X.

Definition 2. Let X be a locally compact Hausdorff space, (Y1, f1) and (Y2, f2) its
at most one-point local compactifications. We will write (Y1, f1) 6 (Y2, f2) (or, for
simplicity, Y1 6 Y2) iff one of the following conditions apply:

• f1(X) = Y1

• Y1 = f1(X) ∪ {∞Y1}, Y2 = f2(X) ∪ {∞Y2} and the function

Y1 3 x 7→
{
f2(f−1

1 (x)), x ∈ f1(X)
∞Y2 , x =∞Y1

∈ Y2

is continuous.

Note that 6 is reflexive and transitive, with 0 = X and 1 = ωX. We can define
an equivalence relation ≡ by

(Y1, f1) ≡ (Y2, f2) iff (Y1, f1) 6 (Y2, f2) and (Y2, f2) 6 (Y1, f1),

or, for simplicity,
Y1 ≡ Y2 iff Y1 6 Y2 and Y2 6 Y1.

We also define

B(X) := {Y—one-point local compactification of X}/≡.

From now on instead of an equivalence class of Y in B(X) we will just write Y .
We are now ready to state the first result where we will prove that B(X) ordered

by 6 is a Boolean algebra, by showing that it is in fact order isomorphic to a much
simpler one.
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Theorem 1. Given a locally compact Hausdorff space X, B(X) is a partially ordered
space with a lattice such that the order 6 induces a Boolean algebra, i.e., for Y1, Y2
one-point local compactifications of X:

• Y1 ∨ Y2 = sup6{Y1, Y2},

• Y1 ∧ Y2 = inf6{Y1, Y2},

• 0 = X,

• 1 = ωX,

• for any space Y ∈ B(X) there exists a unique space \Y ∈ B(X) : Y ∧ \Y = 0,
Y ∨ \Y = 1.

In particular, 0 = 1 iff X is compact.

Proof. First consider βX, a Čech–Stone compactification of X. We define A(X) :=
{F ⊂ βX \ X : F clopen in βX \ X} (note that βX \ X is compact). A(X) with
standard set operations is a Boolean algebra. We will show an isomorphism between
B(X) and A(X), proving that B(X) is also a Boolean algebra.

To this end, we will define f : B(X) → A(X). If X is compact, both B(X)
and A(X) are trivial, therefore assume that X is not compact. Consider a clopen in
βX \X set F such that ∅ 6= F 6= βX \X. We can now identify F and (βX \X) \ F
with points, getting a compact space X ∪ {{F}} ∪ {{(βX \ X) \ F}}. Its subspace
X ∪ {{F}} is then a one-point local compactification of X. Conversely, for any one-
point local compactification Y of X there exists a unique clopen in βX \ X set FY
such that Y is equivalent with X ∪ {{FY }} (from the universal property of βX).
We define f(X) = ∅ and for every one-point local compactification Y of X we put
f(Y ) = FY , where Y is the unique clopen in βX \ X set such that Y is equivalent
to X ∪{{FY }}. It can be easily seen that for one-point local compactifications Y1, Y2
of X we have Y1 6 Y2 iff FY1 ⊂ FY2 , so f preserves the partial order and is indeed
an isomorphism. Furthermore, for one-point local compactifications Y1, Y2 of X we
have:

1. Y1 ∨ Y2 = X ∪ {{FY1 ∪ FY2}}.

2. Y1 ∧ Y2 = X ∪ {{FY1 ∩ FY2}} if FY1 ∩ FY2 6= ∅ and Y1 ∧ Y2 = X otherwise.

3. \Y = X ∪ {{(βX \X) \ FY }} for ∅ 6= FY 6= βX \X.

Remark 1. The proof of Theorem 1 shows that B(X) is isomorphic (as a Boolean
algebra) to the algebra of all clopen subsets of the remainder βX \X of X. One easily
concludes that the Stone space of B(X) is homeomorphic to the space of all connected
components of βX \X (that is, the space obtained from βX \X by identifying points
that lie in a common connected component).
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Now that we know that B(X) is a Boolean algebra, we will focus on describing it
without using A(X). If we add a point {∞Y } to a locally compact Hausdorff space X
to get its one-point local compactification Y , we only need to know the neighborhood
basis at {∞Y } to know its topology. To this end, let us introduce the following
characterization. For simplicity, we will also use one more definition.

Definition 3. Let X be a locally compact Hausdorff space, Y its one-point local
compactification. Then

τ(Y ) := {U\{∞Y } : U open neighborhood of ∞Y in Y }.

τ(Y ) uniquely determines Y 6= X, Y ∈ B(X).

Proposition 1. Let X be a locally compact Hausdorff space, Y1, Y2 ∈ B(X), Y1, Y2 6=
0, Y1, Y2 6= 1.

1. τ(Y1 ∧ Y2) = {U1 ∩ U2 : U1 ∈ τ(Y1), U2 ∈ τ(Y2)}, provided that the sets U1 ∩ U2
are nonempty for all U1 ∈ τ(Y1), U2 ∈ τ(Y2) and Y1 ∧ Y2 = 0 otherwise.

2. τ(Y1 ∨ Y2) = {U1 ∪ U2 : U1 ∈ τ(Y1), U2 ∈ τ(Y2)} = τ(Y1) ∩ τ(Y2).

3. τ(\Y1) = {X\F : F ⊂ X, for any U ∈ τ(Y1) F\U compact}.

Or, in terms of convergence:

(a) A net (xγ) ⊂ X in Y1 ∧ Y2 is convergent to ∞Y1∧Y2 iff (xγ) is convergent to
∞Y1 in Y1 and to ∞Y2 in Y2, and Y1 ∧ Y2 = 0 if there is no such net.

(b) A net (xγ) ⊂ X in Y1 ∨ Y2 is convergent to ∞Y1∨Y2 iff every subnet of (xγ) has
a subnet convergent to ∞Y1 in Y1 or to ∞Y2 in Y2.

(c) A net (xγ) ⊂ X in \Y1 is convergent to ∞\Y1 iff (xγ) has no convergent subnets
in Y1.

Proof. Again, let βX be a Čech–Stone compactification of X.
Note that if Y is a one-point local compactification of X and FY is a clopen set

in βX \X such that Y is equivalent with X ∪ {{FY }}, then

τ(Y ) = {X ∩ U : U ⊃ FY and U open in βX}. (*)

Following this notation consider FY1 and FY2 such that Y1 and Y2 are equivalent
to X ∪ {{FY1}} and X ∪ {{FY2}} respectively.

Property (2) follows easily from (*).
To see that {U1 ∪ U2 : U1 ∈ τ(Y1), U2 ∈ τ(Y2)} = τ(Y1) ∩ τ(Y2), take any U1 ∈

τ(Y1), U2 ∈ τ(Y2). U2 = (U2 ∪ {∞Y2}) ∩ X is open in X, and thus open in Y1.
U1∪{∞Y1} is also open in Y1 and thus so is U1∪{∞Y1}∪U2. Similarly, U1∪{∞Y2}∪U2
is open in Y2. The reverse inclusion is trivial.

We turn to (1). If FY1 ∩ FY1 = ∅ we have Y1 ∧ Y2 = 0, assume the contrary.
Consider U open in βX such that FY1 ∩ FY1 ⊂ U and take V1, V2 open in βX such



Boolean Algebra of One-Point Local Compactifications 117

that V1 ∩ V2 = ∅, and we have FY1 \ U ⊂ V1 and FY2 \ U ⊂ V2. Then U1 := V1 ∪ U
and U2 := V2 ∪ U are open (in βX) supersets of respectively FY1 and FY2 such that
U1 ∩ U2 = U , which gives us (1).

We are left with (3). To see that

τ(\Y1) ⊂ {X\F : F ⊂ X, for any U ∈ τ(Y1) F\U compact},

consider V open in βX such that (βX \X) \ FY1 ⊂ V and take any U open in βX
such that FY1 ⊂ U . Then (X \ V ) \ U = X \ (U ∪ V ) = βX \ (U ∪ V ) is a closed
subset of βX contained in X and therefore compact.

For the reverse inclusion, let V0 and W0 be open sets with disjoint closures in
βX such that (βX \ X) \ FY1 ⊂ V0 and FY1 ⊂ W0. Consider F ⊂ X such that
for any U ∈ τ(Y1) the set F\U is compact. Take any x ∈ X and its closed (in X)
neighborhood G such that G is compact. Then X \G ∈ τ(Y1), so F ∩G is compact.
Since x and its neighborhood G were arbitrary, this implies that F is closed in X
(since if we take x from the boundary of F , we get that it must be in F ). Similarly,
since F∩V0 ⊂ F \W0 and W0∩X ∈ τ(Y1), we get that F∩V0 is compact which implies
that F ∪FY1 is closed in βX. Therefore we have X \F = X∩(βX \(F ∪F0)) ∈ τ(\Y1)
which ends the proof of (3).

Properties (a) – (c) follow easily from (1) – (3).

On the other hand, one can wonder when a family F of sets open in a locally com-
pact Hausdorff space X induces its one-point local compactifiaction. The following
proposition answers that question.

Proposition 2. Let F be a filter of open sets in a locally compact Hausdorff space
X. Then F induces a one-point local compactification Y of X such that τ(Y ) = F
iff:

1.
⋂
F = ∅,

2. there exists U ∈ F such that for every V ∈ F , U\V is compact,

3. for every U ∈ F there exists V ∈ F such that V ⊂ U .

Proof. It follows from the definition of τ(Y ) and the definition of a locally compact
Hausdorff space that those conditions are necessary. We will prove that they are also
sufficient. We take Y := X∪{∞Y }. A set is open in Y iff it is open in X or it is of the
form U ∪{∞Y } for some U ∈ F . It follows from (1) and (3) that the topology defined
like that is Hausdorff. It remains to show that Y is locally compact. Take U ∈ F
such that for every V ∈ F U\V is compact and assume that U (closure taken in Y ) is
not compact. It follows that there exists a net (xγ) ⊂ U with no convergent subnets.
In particular, (xγ) is not convergent to ∞Y , so there exists V1 a neighborhood of
∞Y and (yγ) a subnet of (xγ) such that (yγ) ⊂ U\V1 with no convergent subnets, a
contradiction.

We will now provide a characterization for B(Rn). To this end, we will need facts
about n-point Hausdorff compactifications (see [5] or [3, Theorem 6.8]).
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Theorem 2 (Theorem 2.1 in [5]). The following statements concerning a space X
are equivalent:

1. X has a N -point compactification.

2. X is locally compact and contains a compact subset K whose complement is the
union of N mutually disjoint, open subsets {Gi}Ni=1 such that K ∪ Gi is not
compact for each i.

3. X is locally compact and contains a compact subset K whose complement is
the union of N mutually disjoint, open subsets {Gi}Ni=1 such that K ∪ Gi is
contained in no compact subset for each i.

Using this, we can prove the following facts.

Lemma 1. Let X be a locally compact, noncompact Hausdorff space such that for
any K ⊂ X compact there exists K0 compact such that K ⊂ K0 and X\K0 has
exactly n connected components (for some fixed n ∈ N independent of the choice
of K), all of them are open and have noncompact (in X) closures. Then X has
an n-point Hausdorff compactification and does not have an (n + 1)-point Hausdorff
compactification.

Lemma 2. Let n ∈ N and X be a Hausdorff topological space that has an n-point
Hausdorff compactification and does not have an (n+ 1)-point Hausdorff compactifi-
cation. Then X is locally compact and |B(X)| = 2n.

We will start with Lemma 1.
Proof. Applying the assumption of the lemma to the empty set we get that there
exists n ∈ N and K0 compact such that X\K0 has exactly n connected components,
let us denote them by G1, . . . , Gn. Therefore (by [5]) X has an n-point Hausdorff
compactification. Suppose that X has an (n+ 1)-Hausdorff compactification. Again
by [5], there exist H1, . . . ,Hn+1 such that K1 := X \

⋃n+1
i=1 Hi is compact, but for each

i the set K1 ∪Hi is not compact. Applying the assumption of the lemma again, this
time to K1, we get that there exists a compact set K2 such that K1 ⊂ K2 and X \K2
has n connected components, let us denote them by V1, . . . , Vn. Then there exist
i0 ∈ {1, . . . , n} and j1, j2 ∈ {1, . . . , n + 1} such that j1 6= j2 and Hi0 has nonempty
intersection with both Vj1 , Vj2 , so it cannot be connected, a contradiction.

Now we turn to Lemma 2.
Proof. Since X has an n-point Hausdorff compactification, but does not have an
n+ 1-point Hausdorff compactification, βX \X has exactly n connected components.
From the proof of Theorem 1 we know that |B(X)| = |A(X)|. Each element of A(X)
is a union of some connected components of βX \X, so |B(X)| = |A(X)| = 2n.

Remark 2. Note that if we assume that if X is a locally compact space such that
|B(X)| = 2n, we also get that X has an n-point Hausdorff compactification and does
not have an (n+ 1)-point Hausdorff compactification (see also [3, Theorem 6.32]).
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From the above lemmas we immediately get the following.

Corollary 1.

• B(R) = {R, [−∞,∞), (−∞,∞],S1}.

• B(Rn) = {Rn,Sn} for n > 2.

We will now define the end of manifolds, as seen in [2].

Definition 4. Let L be a noncompact, connected manifold. Denote by {Kα}α∈K the
family of all compact subsets of L. We consider descending chains

Uα1 ! Uα2 ! · · · ! Uαn
! · · ·

where each Uαk
is a connected component of L\Kαk

, has noncompact closure in L,
satisfies Uαk

! Uαk+1 and
∞⋂
k=1

Uαk
= ∅.

We say that two such chains U = {Uαk
}∞k=1 and V = {Uβk

}∞k=1 are equivalent (U ∼ V)
if for each k > 1 there is n > k such that Uαk

⊃ Vβn
and Vβk

⊃ Uαn
. It is easy to

check that ∼ is an equivalence relation. If

U = {Uα1 ! Uα2 ! · · · ! Uαn ! · · · }

is as above, we call its equivalence class under ∼ an end of L.

Corollary 2.
If L is a noncompact, connected, second countable manifold with n ends, n <∞, then
|B(L)| = 2n.

Proof. Let
U1 = {U1

α1
! U1

α2
! · · · }

...
Un = {Unα1

! Unα2
! · · · }

be representatives of the ends of L.
For every k ∈ {1, 2, . . .}, l ∈ {1, 2, . . . , n} let Kl

αk
be a compact set such that U lαk

is a connected component of L\Kl
αk

. We will show that by taking subsequences
of U2, . . . ,Un we can assume that U l2αk

⊂ L\Kl1
αk

for every l2 > l1 (note that a
subsequence of a representative of an end is a representative of the same end).

Consider K1
α1

. Then {L\U2
α1
, L\U2

α2
, . . .} is an open cover of K1

α1
so there exists

N1 > 0 such that K1
α1
⊂ L\U2

αN1
⊂ L\U2

αN1
. Therefore U2

αN1
⊂ L\K1

α1
. Similarly,

for each m > 1, we can define Nm > Nm−1 such that U2
αNm

⊂ L\K1
αm

. Replacing
U2
αm

by U2
αNm

for each m > 0 we get a subsequence we want for U2. Now we proceed
similarly for U3, . . . ,Un.
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We will now show that by again taking subsequences we can assume that for
every l1 6= l2 we have U l1α1

∩ U l2α1
= ∅. Assume the contrary. Then, without loss of

generality, for each k > 0 we have U1
αk
∩ U2

αk
6= ∅. Since U2

αk
⊂ L\K1

αk
, the set U2

αk

is connected, U1
αk

is a connected component of L\K1
αk

and U1
αk
∩ U2

αk
6= ∅, it follows

that U2
αk
⊂ U1

αk
for each k > 0. Now consider K2

αk
. As before, there exists Nk > k

such that K2
αk
⊂ L\U1

αNk
. It follows that U1

αNk
⊂ L\K2

αk
. If U1

αNk
6⊂ U2

αk
then

U1
αNk
∩ U2

αk
= ∅, so U1

αNk
∩ U2

αNk
= ∅ (since U2

αNk
⊂ U2

αk
). Therefore U1

αNk
⊂ U2

αk

and so U1 and U2 are representatives of the same end, a contradiction.
Now our aim is to use Lemmas 1 and 2, which will end the proof. To this end,

we will construct a family of compact sets {Kj}∞j=1. We will need some properties
of manifolds, namely that a second countable manifold is metrizable and that the
one-point compactification of a connected manifold is locally connected (see [4] or [6,
page 104]). Let ωL = L ∪ {∞} be the one-point compactification of L. Since L is
second countable we can choose a countable basis of its topology B = {B1, B2, B3, . . .}
consisting of open sets with compact closures. Take A1 := K1

α1
∪ . . .∪Kn

α1
∪B1. Let

K1 be a compact superset of A1 such that ωL\K1 is connected (it exists because ωL
is locally connected). Note that connected components of L\K1 are all open and have
noncompact (in L) closures (because ∞ is in the closure taken in ωL of every one of
them). Again, because L is locally compact we can take an open set A2 with compact
closure such that K1 ∪ B2 ⊂ A2. Let K2 be a compact superset of A2 such that
ωL\K2 is connected. As before, all connected components of L\K2 are open and have
noncompact (in L) closures. Moreover, each of them is contained together with its
closure in some connected component of L\K1. Note that since ωL\K2 has non-empty
intersection with every connected component of L\K1 (because ∞ is in the closure
taken in ωL of every one of them), for every connected component of L\K1 there is at
least one connected component of L\K2 contained in it. Continuing in this manner,
we get {Kj}∞j=1. Note that Kj is contained in the interior of Kj+1 for each j > 1
and

⋃∞
j=1Kj = L. Moreover, when j increases the number of connected components

of L\Kj either increases or stays the same. Consider a connected component U1 of
L\K1. We want to show that U1∩U iα1

6= ∅ for some i. Indeed, otherwise by choosing
a connected component U2 of U1 \K2, then a connected U3 of U2 \K3 etc. we would
get a representative of an end that is not among U1, . . . ,Un, a contradiction. Suppose
that U1 ∩ U1

α1
6= ∅. Since K1

α1
⊂ K1 and U1

α1
, U1 are connected components of their

complements we get U1 ⊂ U1
α1

. The sets U iα1
are pairwise disjoint, so L \K1 has at

least n connected components. Moreover, the number of connected components of
L\Kj cannot increase past n for any j. Indeed, if we had at least n + 1 connected
components of L \ Kj for some j, we could construct at least n + 1 different ends
(similarly as before) which again contradicts the fast that U1, . . . ,Un are all of the
ends in L. Lemma 1 ends the proof.

From this and Remark 2 we also get the following.

Corollary 3. If L is a noncompact, connected, second countable manifold with n
ends, n <∞, then L has an n-point Hausdorff compactification and does not have an
(n+ 1)-point Hausdorff compactification.
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Abstract: A method of the finite approximation of continuous non-
cooperative two-person games is presented. The method is based on sam-
pling the functional spaces, which serve as the sets of pure strategies of the
players. The pure strategy is a linear function of time, in which the trend-
defining coefficient is variable. The spaces of the players’ pure strategies
are sampled uniformly so that the resulting finite game is a bimatrix game
whose payoff matrices are square. The approximation procedure starts
with not a great number of intervals. Then this number is gradually in-
creased, and new, bigger, bimatrix games are solved until an acceptable
solution of the bimatrix game becomes sufficiently close to the same-type
solutions at the preceding iterations. The closeness is expressed as the
absolute difference between the trend-defining coefficients of the strate-
gies from the neighboring solutions. These distances should be decreasing
once they are smoothed with respective polynomials of degree 2.
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1. Introduction

Continuous noncooperative two-person games model interactions of a pair of subjects
(players or persons) possessing continuums of their pure strategies [5, 10]. A specificity
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of such games consists in that finding and practicing a solution in mixed strategies
is often intractable [11, 6, 9]. Even if a solution exists in pure strategies, it often is
revealed not to be a single one. Thus, the problem of the single solution selection (or
uniqueness) arises. However, even if the solution is unique, it is not guaranteed to be
simultaneously profitable and symmetric [11, 9, 2, 1].

The solution search in continuous games is not a trivial task also. Analytic search
generalization is possible only in special classes [10, 3]. Therefore, finite approximation
of continuous noncooperative two-person games is not just preferable, but also is
necessary.

2. Motivation

A special class of noncooperative two-person games is when the player’s pure strat-
egy is a time-varying function. Commonly, apart from the time, this function is
determined by a few parameters (coefficients). These coefficients may vary through
intervals. Therefore, the set of the player’s pure strategies is a functional space. Such
a game model is typical for economic interaction processes, where the player uses
short-term time-varying strategies [11, 13, 12].

In the simplest case, the strategy is a linear function of time. The time interval is
usually short, through which a short-term trend of economic activity is realized [11,
9]. Thus, a whole process is modeled as a series of those noncooperative games. Each
game corresponds to its short term. Then, obviously, the games are required to be
solved as fast as possible.

The problems of fast solution and solution uniqueness are addressed in study-
ing finite approximations of continuous games. When the game is defined on finite-
dimensional Euclidean subspaces, it can be approximated by appropriately sampling
the sets of players’ pure strategies [6, 7]. Then an approximating game is solved easily
and faster. Besides, an approximated solution (with respect to the initial game) can
be selected in order to meet demands and rules of the economic system [11, 9]. In
the case when the game is defined on a product of functional spaces, a strict sub-
stantiation is required to sample the functional sets of players’ pure strategies. As in
the case of finite-dimensional Euclidean subspaces, this will allow sampling without
significant losses.

3. Goals and tasks to be fulfilled

Due to above reasons, the goal is to develop a method of finite approximation of
continuous noncooperative two-person games whose kernels are defined on a product
of linear strategy functional spaces. For achieving the goal, the following tasks are to
be fulfilled:

1. To formalize a continuous noncooperative two-person game whose kernel is
defined on a product of linear strategy functional spaces. In such a game, the set of
the player’s pure strategies is a continuum of linear functions of time.
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2. To formalize a method of finite approximation.
3. To discuss applicability and significance of the method.

4. A continuous noncooperative two-person game

Each of the players uses short-term time-varying strategies determined by two coeffi-
cients. The short-term trend is defined by a real-valued coefficient which is multiplied
by time t. The other coefficient is presumed to be known (i. e., it is a constant).
Herein, this real-valued constant is called an offset.

The pure strategy is valid on interval [t1; t2] by t2 > t1, so pure strategies of the
player belong to a functional space of linear functions of time:

L [t1; t2] ⊂ L2 [t1; t2] .

Denote the trend-defining coefficient of the first player by bx, where

bx ∈
[
b(min)
x ; b(max)

x

]
by b(max)

x > b(min)
x . (1)

If the first player’s offset is ax, then its set of pure strategies is

X =
{
x (t) = ax + bxt, t ∈ [t1; t2] : bx ∈

[
b
(min)
x ; b

(max)
x

]
⊂ R

}
⊂

⊂ L [t1; t2] ⊂ L2 [t1; t2] . (2)

For the second player, denote its offset by ay and its trend-defining coefficient by by,
where

by ∈
[
b(min)
y ; b(max)

y

]
by b(max)

y > b(min)
y . (3)

Then the set of pure strategies of the second player is

Y =
{
y (t) = ay + byt, t ∈ [t1; t2] : by ∈

[
b
(min)
y ; b

(max)
y

]
⊂ R

}
⊂

⊂ L [t1; t2] ⊂ L2 [t1; t2] . (4)

The players’ payoffs in situation {x (t) , y (t)} are

Kx (x (t) , y (t)) and Ky (x (t) , y (t)) ,

respectively. These payoffs are integral functionals:

Kx (x (t) , y (t)) =

t2∫
t1

f (x (t) , y (t)) dt (5)

and

Ky (x (t) , y (t)) =

t2∫
t1

g (x (t) , y (t)) dt, (6)
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where f (x (t) , y (t)) and g (x (t) , y (t)) are algebraic functions of x (t) and y (t) de-
fined everywhere on [t1; t2]. Therefore, the continuous noncooperative two-person
game

〈{X, Y } , {Kx (x (t) , y (t)) , Ky (x (t) , y (t))}〉 (7)

is defined on product

X × Y ⊂ L [t1; t2]× L [t1; t2] ⊂ L2 [t1; t2]× L2 [t1; t2] (8)

of linear strategy functional spaces (2) and (4).

5. Acceptable solutions

Since a series of games (7) on product (8) is to be solved in practice, the only ac-
ceptable solutions are equilibrium or/and efficient situations in pure strategies. Such
situations are defined similarly to those in games on finite-dimensional Euclidean
subspaces [5, 10].

Definition 1. Situation {x∗ (t) , y∗ (t)} in game (7) on product (8) by conditions
(1) — (6) is an equilibrium situation in pure strategies if inequalities

Kx (x (t) , y∗ (t)) 6 Kx (x∗ (t) , y∗ (t)) ∀x (t) ∈ X (9)

and

Ky (x∗ (t) , y (t)) 6 Ky (x∗ (t) , y∗ (t)) ∀ y (t) ∈ Y (10)

are simultaneously true.

Definition 2. Situation {x∗∗ (t) , y∗∗ (t)} in game (7) on product (8) by conditions
(1) — (6) is an efficient situation in pure strategies if both a pair of inequalities

Kx (x∗∗ (t) , y∗∗ (t)) 6 Kx (x (t) , y (t)) and

Ky (x∗∗ (t) , y∗∗ (t)) < Ky (x (t) , y (t)) (11)

and a pair of inequalities

Kx (x∗∗ (t) , y∗∗ (t)) < Kx (x (t) , y (t)) and

Ky (x∗∗ (t) , y∗∗ (t)) 6 Ky (x (t) , y (t)) (12)

are impossible for any x (t) ∈ X and y (t) ∈ Y .

The continuous noncooperative two-person game can have the empty set of equilib-
ria in pure strategies [10]. Moreover, every efficient situation can be too asymmetric,
i. e. it is profitable for one player and unacceptably unprofitable for the other player.
In such cases, the game does not have an acceptable solution. Then the concepts of
ε-equilibrium and ε-efficiency are useful [10, 11].
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Definition 3. Situation
{
x∗(ε) (t) , y∗(ε) (t)

}
in game (7) on product (8) by conditions

(1) — (6) is an ε-equilibrium situation in pure strategies for some ε > 0 if inequalities

Kx

(
x (t) , y∗(ε) (t)

)
6 Kx

(
x∗(ε) (t) , y∗(ε) (t)

)
+ ε ∀x (t) ∈ X (13)

and

Ky

(
x∗(ε) (t) , y (t)

)
6 Ky

(
x∗(ε) (t) , y∗(ε) (t)

)
+ ε ∀ y (t) ∈ Y (14)

are simultaneously true.

Definition 4. Situation
{
x∗∗(ε) (t) , y∗∗(ε) (t)

}
in game (7) on product (8) by condi-

tions (1) — (6) is an ε-efficient situation in pure strategies for some ε > 0 if both a
pair of inequalities

Kx

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε 6 Kx (x (t) , y (t)) and

Ky

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε < Ky (x (t) , y (t)) (15)

and a pair of inequalities

Kx

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε < Kx (x (t) , y (t)) and

Ky

(
x∗∗(ε) (t) , y∗∗(ε) (t)

)
+ ε 6 Ky (x (t) , y (t)) (16)

are impossible for any x (t) ∈ X and y (t) ∈ Y .

The situations given by Definitions 1 — 4 are the acceptable solutions regardless
of whether the game is finite or not. The best consequent is when a situation is
simultaneously equilibrium (by Definition 1) and efficient (by Definition 2). If this
is impossible, then the most preferable is an efficient situation at which the sum of
players’ payoffs is maximal. However, if the payoffs are unacceptably asymmetric,
then the best consequent is to find such ε for which a situation is simultaneously
equilibrium (by Definition 3) and efficient (by Definition 4). This approach relates to
the method of solving games approximately by providing concessions [8]. Eventually,
a payoff asymmetry may be smoothed by a compensation from the player whose payoff
is unacceptably greater [11].

6. The finite approximation

It is obvious that, in game (7) on product (8) by conditions (1) — (6), the pure strategy
of the player is determined by the trend-defining coefficient. Therefore, this game can
be thought of as it is defined, instead of product (8) of linear strategy functional
spaces (2) and (4), on rectangle[

b(min)
x ; b(max)

x

]
×
[
b(min)
y ; b(max)

y

]
⊂ R2. (17)
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This rectangle is easily sampled by using a number of equal intervals along each
dimension. Denote this number by S, S ∈ N\ {1}. Then

Bx =

{
b(min)
x + (s− 1) · b

(max)
x − b(min)

x

S

}S+1

s=1

=
{
b(s)x

}S+1

s=1
⊂
[
b(min)
x ; b(max)

x

]
(18)

and

By =

{
b(min)
y + (s− 1) · b

(max)
y − b(min)

y

S

}S+1

s=1

=
{
b(s)y

}S+1

s=1
⊂
[
b(min)
y ; b(max)

y

]
. (19)

So, rectangle (17) is substituted with grid Bx ×By. Set (18) leads to a finite set

XB =
{
x (t) = ax + bxt, t ∈ [t1; t2] : bx ∈ Bx ⊂

[
b
(min)
x ; b

(max)
x

]
⊂ R

}
=

=
{
xs (t) = ax + b

(s)
x t
}S+1

s=1
⊂ X ⊂ L [t1; t2] ⊂ L2 [t1; t2] (20)

of pure strategies (linear functions of time) of the first player, where

x1 (t) = ax + b(min)
x t, xS+1 (t) = ax + b(max)

x t,

and set (19) leads to a finite set

YB =
{
y (t) = ay + byt, t ∈ [t1; t2] : by ∈ By ⊂

[
b
(min)
y ; b

(max)
y

]
⊂ R

}
=

=
{
ys (t) = ay + b

(s)
y t
}S+1

s=1
⊂ Y ⊂ L [t1; t2] ⊂ L2 [t1; t2] (21)

of pure strategies (linear functions of time) of the second player, where

y1 (t) = ay + b(min)
y t, yS+1 (t) = ay + b(max)

y t.

Subsequently, game (7) on product (8) by conditions (1) — (6) is substituted with a
finite game

〈{XB , YB} , {Kx (x (t) , y (t)) , Ky (x (t) , y (t))}〉
by x (t) ∈ XB and y (t) ∈ YB (22)

defined on product

XB × YB ⊂ X × Y ⊂ L [t1; t2]× L [t1; t2] ⊂ L2 [t1; t2]× L2 [t1; t2] (23)

of linear strategy functional subspaces (20) and (21). In fact, game (22) is a bimatrix
(S + 1)× (S + 1)-game.

To perform an appropriate approximation via the sampling, number S is selected
so that none of S2 rectangles[

b(i)x ; b(i+1)
x

]
×
[
b(j)y ; b(j+1)

y

]
by i = 1, S and j = 1, S (24)

would contain significant specificities of payoff functionals (5) and (6). In fact, such
specificities are extremals of these functionals.
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Theorem 1. In game (7) on product (8) by conditions (1) — (6), the player’s payoff
functional achieves its maximal and minimal values on any closed subset of rectangle
(17) of the trend-defining coefficients.

Proof. Both f (x (t) , y (t)) and g (x (t) , y (t)) are algebraic functions of linear func-
tions x (t) and y (t) defined everywhere on [t1; t2]. Therefore, both integrals in func-
tionals (5) and (6) achieve some maximal and minimal values on any closed subset of
rectangle (17) of the trend-defining coefficients.

Thus, Theorem 1 allows controlling extremals of payoff functionals (5) and (6)
by the trend-defining coefficient. Moreover, Theorem 1 is easily expanded on closed
rectangles (24) for any number S. Consequently, if inequalities

max
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

Kx (x (t) , y (t))− min
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

Kx (x (t) , y (t)) =

= max
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

t2∫
t1

f (x (t) , y (t)) dt− min
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

t2∫
t1

f (x (t) , y (t)) dt 6 µ

∀ i = 1, S and ∀ j = 1, S (25)

and

max
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

Ky (x (t) , y (t))− min
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

Ky (x (t) , y (t)) =

= max
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

t2∫
t1

g (x (t) , y (t)) dt− min
bx∈[b(i)x ; b(i+1)

x ],
by∈[b(j)y ; b(j+1)

y ]

t2∫
t1

g (x (t) , y (t)) dt 6 µ

∀ i = 1, S and ∀ j = 1, S (26)

are simultaneously true for some sufficiently small µ > 0, then those µ-variations can
be ignored. Thus, for the properly selected S and µ, game (7) on product (8) by
conditions (1) — (6) can be approximated by finite game (22). The quality of the
approximation can be comprehended by the following assertions.

Theorem 2. If {x∗ (t) , y∗ (t)} is an equilibrium in game (7) on product (8) by
conditions (1) — (6), where functionals (5) and (6) are continuous, conditions (25)
and (26) hold for some S and µ,

x∗ (t) = ax + b∗xt by b∗x ∈
[
b
(h)
x ; b

(h+1)
x

]
and

y∗ (t) = ay + b∗yt by b∗y ∈
[
b
(k)
y ; b

(k+1)
y

]
for h ∈

{
1, S

}
, k ∈

{
1, S

}
, (27)



130 V. Romanuke

then every situation
{
x∗(ε) (t) , y∗(ε) (t)

}
for which

x∗(ε) (t) = ax + b
∗(ε)
x t by b

∗(ε)
x ∈

[
b
(h)
x ; b

(h+1)
x

]
and

y∗(ε) (t) = ay + b
∗(ε)
y t by b

∗(ε)
y ∈

[
b
(k)
y ; b

(k+1)
y

]
for h ∈

{
1, S

}
, k ∈

{
1, S

}
, (28)

is an ε-equilibrium for some ε > 0. As number S is increased, the value of ε can be
made smaller.

Proof. Whichever integer S and the corresponding µ are, the value of ε always can
be chosen such that inequalities (13) and (14) be true for every situation composed of
strategies (28) by (27). It is obvious that, owing to the continuity of the functionals,
increasing number S allows decreasing the value of µ, which provides ε-equilibria to
be closer to the equilibrium composed of strategies (27).

Theorem 3. If {x∗∗ (t) , y∗∗ (t)} is an efficient situation in game (7) on product (8)
by conditions (1) — (6), where functionals (5) and (6) are continuous, conditions (25)
and (26) hold for some S and µ,

x∗∗ (t) = ax + b∗∗x t by b∗∗x ∈
[
b
(h)
x ; b

(h+1)
x

]
and

y∗∗ (t) = ay + b∗∗y t by b∗∗y ∈
[
b
(k)
y ; b

(k+1)
y

]
for h ∈

{
1, S

}
, k ∈

{
1, S

}
, (29)

then every situation
{
x∗∗(ε) (t) , y∗∗(ε) (t)

}
for which

x∗∗(ε) (t) = ax + b
∗∗(ε)
x t by b

∗∗(ε)
x ∈

[
b
(h)
x ; b

(h+1)
x

]
and

y∗∗(ε) (t) = ay + b
∗∗(ε)
y t by b

∗∗(ε)
y ∈

[
b
(k)
y ; b

(k+1)
y

]
for h ∈

{
1, S

}
, k ∈

{
1, S

}
, (30)

is an ε-efficient situation for some ε > 0. As number S is increased, the value of ε
can be made smaller.

Proof. Whichever integer S and the corresponding µ are, value ε always can be
chosen such that inequalities (15) and (16) be true for every situation composed of
strategies (30) by (29). It is obvious that, owing to the continuity of the function-
als, increasing number S allows decreasing the value of µ, which provides ε-efficient
situations to be closer to the efficient situation composed of strategies (29).

Hence, the finite approximation should start from some integer S, for which a
bimatrix (S + 1)×(S + 1)-game (22) is built and solved. Then this integer is gradually
increased (although, the increment is not ascertained for general case), and new,
bigger, bimatrix games are solved. The process can be stopped if the acceptable
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solution (whether it is an equilibrium, efficient, ε-equilibrium, or ε-efficient situation)
by the last iteration does not differ much from the acceptable solutions (of the same
type) by a few preceding iterations. Thus, if{

x<l>∗ (t) , y<l>∗ (t)
}

=
{
ax + b<l>∗

x t, ay + b<l>∗
y t

}
∈ XB × YB ⊂ X × Y (31)

is an acceptable solution at the l-th iteration, then the conditions of the sufficient
closeness to the solutions at the preceding and succeeding iterations are as follows:√√√√√ t2∫

t1

(x<l−1>∗ (t)− x<l>∗ (t))
2
dt >

√√√√√ t2∫
t1

(x<l>∗ (t)− x<l+1>∗ (t))
2
dt and

√√√√√ t2∫
t1

(
y<l−1>∗ (t)− y<l>∗ (t)

)2
dt >

√√√√√ t2∫
t1

(
y<l>∗ (t)− y<l+1>∗ (t)

)2
dt (32)

and

max
t∈[t1; t2]

∣∣x<l−1>∗ (t)− x<l>∗ (t)
∣∣ > max

t∈[t1; t2]

∣∣x<l>∗ (t)− x<l+1>∗ (t)
∣∣ and

max
t∈[t1; t2]

∣∣y<l−1>∗ (t)− y<l>∗ (t)
∣∣ > max

t∈[t1; t2]

∣∣y<l>∗ (t)− y<l+1>∗ (t)
∣∣ (33)

by l = 2, 3, 4, ...

Theorem 4. Conditions (32) and (33) of the sufficient closeness for game (7) on
product (8) by conditions (1) — (6) are expressed as∣∣b<l−1>∗

x − b<l>∗
x

∣∣ > ∣∣b<l>∗
x − b<l+1>∗

x

∣∣ by l = 2, 3, 4, ... (34)

and ∣∣b<l−1>∗
y − b<l>∗

y

∣∣ > ∣∣b<l>∗
y − b<l+1>∗

y

∣∣ by l = 2, 3, 4, ... (35)

Proof. Due to that√√√√√ t2∫
t1

(x<l−1>∗ (t)− x<l>∗ (t))
2
dt =

√√√√√ t2∫
t1

(
ax + b<l−1>∗

x t− ax − b<l>∗
x t

)2
dt =

=

√√√√√ t2∫
t1

(
b<l−1>∗
x − b<l>∗

x

)2
t2dt =

√(
b<l−1>∗
x − b<l>∗

x

)2( t32
3
− t31

3

)
=

=
∣∣b<l−1>∗

x − b<l>∗
x

∣∣√ t32 − t31
3

and

max
t∈[t1; t2]

∣∣x<l−1>∗ (t)− x<l>∗ (t)
∣∣ = max

t∈[t1; t2]

∣∣(b<l−1>∗
x − b<l>∗

x

)
t
∣∣ =
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=
∣∣b<l−1>∗

x − b<l>∗
x

∣∣ t2
(where time is presumed to be nonnegative), inequalities (32) and (33) are simplified
explicitly:

∣∣b<l−1>∗
x − b<l>∗

x

∣∣√ t32 − t31
3

>
∣∣b<l>∗

x − b<l+1>∗
x

∣∣√ t32 − t31
3

and

∣∣b<l−1>∗
y − b<l>∗

y

∣∣√ t32 − t31
3

>
∣∣b<l>∗

y − b<l+1>∗
y

∣∣√ t32 − t31
3

and ∣∣b<l−1>∗
x − b<l>∗

x

∣∣ t2 >
∣∣b<l>∗

x − b<l+1>∗
x

∣∣ t2 and∣∣b<l−1>∗
y − b<l>∗

y

∣∣ t2 >
∣∣b<l>∗

y − b<l+1>∗
y

∣∣ t2,
whence they are expressed as (34) and (35), respectively.

If inequalities (34) and (35) hold for at least three iterations, the approximation
procedure can be stopped. Clearly, the closeness strengthens if inequalities (34) and
(35) hold strictly. However, inequalities (34) and (35) may not hold for a wide range
of iterations, so it is better to require that both polylines

λx (l) =
∣∣b<l>∗

x − b<l+1>∗
x

∣∣ by l = 1, 2, 3, ... (36)

and
λy (l) =

∣∣b<l>∗
y − b<l+1>∗

y

∣∣ by l = 1, 2, 3, ... (37)

be decreasing on average. Herein, term “on average” implies that, in the case when
inequalities (34) and (35) do not hold, polylines (36) and (37) are smoothed (approx-
imated) with the respective polynomials of degree 2.

7. Exemplification

To exemplify the method of the game finite approximation, consider a case in which
t ∈ [1; 30], the set of pure strategies of the first player is

X = {x (t) = 100 + bxt, t ∈ [1; 30] : bx ∈ [−0.4; 0.4] ⊂ R} ⊂
⊂ L [1; 30] ⊂ L2 [1; 30] , (38)

and the set of pure strategies of the second player is

Y = {y (t) = 120 + byt, t ∈ [1; 30] : by ∈ [−0.6; 0.6] ⊂ R} ⊂
⊂ L [1; 30] ⊂ L2 [1; 30] . (39)

The payoff functionals are

Kx (x (t) , y (t)) =

30∫
1

10000 · 5x2 (t) + x (t)− x (t) y (t)− y2 (t)

x3 (t) + x2 (t) + x (t)− x (t) y (t)− y2 (t)
dt (40)
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and

Ky (x (t) , y (t)) =

30∫
1

(y (t)− 1.2x (t))
2
dt. (41)

Consequently, this game can be thought of as it is defined on rectangle (17):

[−0.4; 0.4]× [−0.6; 0.6] ⊂ R2. (42)

It is easy to show that functional (40) is continuous (Figure 1). The continuity of
functional (41) is quite clear (Figure 2). Therefore, Theorem 2 and Theorem 3 will
ensure fast approximation here. At S = 5 the respective bimatrix 6 × 6-game has a
single equilibrium and two efficient situations. By increasing the number of intervals

Figure 1: The first player’s payoff functional (40) shown on rectangle (42)
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Figure 2: The second player’s payoff functional (41) shown on rectangle (42)

with a step of 5 up to 100, a single equilibrium is still found, but the number of efficient
situations grows. One of those efficient situations is equilibrium (by Definition 1). In
such a situation, the equilibrium-and-efficient strategies of the first player become
“stable” as S increases (Figure 3). Eventually,

x<20>∗ (t) = 100 + 0.344t,

whereas the equilibrium-and-efficient strategy of the second player remains the same
for all S = 5, 10, 15, ..., 100 (Figure 4). So, condition (35) of the sufficient closeness
of the second player’s strategies holds trivially. After all, the first player’s polyline by
(36) decreases on average (Figure 5). This means that situation
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Figure 3: The series of 20 equilibrium-and-efficient strategies of the first player

Figure 4: The second player’s unvarying equilibrium-and-efficient strategy
y<l>∗ (t) = 120− 0.6t (l = 1, 20)
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Figure 5: The first player’s polyline from (36), which decreases on average

{
x<20>∗ (t) , y<20>∗ (t)

}
= {100 + 0.344t, 120− 0.6t}

is the solution of the corresponding bimatrix 101 × 101-game, which is the single
acceptable approximate solution to the initial game with (38) — (41).

8. Discussion

Continuous games are approximated to finite games not just for the sake of simplic-
ity itself. The matter is the finite approximation makes solutions tractable so that
they can be easily implemented and practiced. So, the presented method of finite
approximation specifies and, what is more important, establishes the applicability of
continuous noncooperative two-person games on a product of linear strategy func-
tional spaces. Mainly, it concerns modeling economic interaction processes, where
the player can use a continuum of short-term time-varying strategies.
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The presented method is quite significant for avoiding too complicated solutions
resulting from game continuities and, moreover, functional spaces of pure strategies.
This is similar to preventing Einstellung effect in modeling [4]. The transfer from a
functional space product to a real-valued rectangle with subsequently sampling it into
a grid herein “deeinstellungizes” the continuous noncooperative two-person game.

9. Conclusion

For solving continuous noncooperative two-person games on a product of linear strat-
egy functional spaces, a method of their finite approximation is presented, which is
based on sampling the linear strategy functional spaces. The sets (i. e., the spaces) of
the players’ pure strategies are sampled uniformly so that the resulting finite game is a
bimatrix game whose payoff matrices are square. The approximation procedure starts
with not a great number of intervals. Then this number is gradually increased, and
new, bigger, bimatrix games are solved until an acceptable solution of the bimatrix
game becomes sufficiently close to the same-type solutions at the preceding iterations.
The closeness is expressed in terms of the respective functional spaces, which is sim-
plified by Theorem 4, giving just the absolute difference between the trend-defining
coefficients of the strategies from the neighboring solutions. These distances should
be decreasing once they are smoothed with respective polynomials of degree 2.

A question of the game finite approximation for cases of nonlinear strategy spaces
(when, say, the player’s strategy space is of parabolas or cubic polynomials) is believed
to be answered in the similar manner. Nevertheless, some peculiarities concerning the
continuity of the payoff functionals may weaken the impact of Theorem 2 and Theo-
rem 3. Despite this, the game finite approximation will definitely have an expansion
in order not to admit the above-mentioned Einstellung effect in modeling economic
interaction processes, where players use short-term time-varying strategies of various
types.
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Abstract: In this paper, we present analogues of Radon’s inequality
and Nesbitt’s inequality on time scales. Furthermore, we find refinements
of some classical inequalities such as Bergström’s inequality, the weighted
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1. Introduction

We present here some well–known classical inequalities.
If n ∈ N, xk ≥ 0 and yk > 0 for k ∈ {1, 2, . . . , n} and β ≥ 2, then

n2−β

(
n∑
k=1

xk

)β
n∑
k=1

yk

≤
n∑
k=1

xβk
yk
. (1.1)

Inequality (1.1) is called Radon’s inequality as given in [21, 22, 23, 24].
The weighted power mean inequality given in [9, pp. 111-112, Theorem 10.5], [11,

pp. 12-15] and [15] is defined as follows:
Let x1, x2, . . . , xn be nonnegative real numbers and p1, p2, . . . , pn be positive real

numbers. If η2 > η1 > 0, then(
p1x

η1
1 + p2x

η1
2 + . . .+ pnx

η1
n

p1 + p2 + . . .+ pn

) 1
η1

≤
(
p1x

η2
1 + p2x

η2
2 + . . .+ pnx

η2
n

p1 + p2 + . . .+ pn

) 1
η2

. (1.2)
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If xk and yk for k ∈ {1, 2, . . . , n} are sequences of real numbers, then Cauchy–
Schwarz’s inequality is given by:

n∑
k=1

xkyk ≤

(
n∑
k=1

x2
k

) 1
2
(

n∑
k=1

y2
k

) 1
2

, (1.3)

as given in [9].
We will prove these results on time scales. The calculus of time scales was initiated

by Stefan Hilger as given in [12]. A time scale is an arbitrary nonempty closed subset
of the real numbers. The theory of time scales is applied to combine results in one
comprehensive form. The three most popular examples of calculus on time scales
are differential calculus, difference calculus, and quantum calculus, i.e., when T = R,
T = N and T = qN0 = {qt : t ∈ N0} where q > 1. The time scales calculus is studied
as delta calculus, nabla calculus and diamond–α calculus. This hybrid theory is also
widely applied on dynamic inequalities. The basic work on dynamic inequalities is
done by Ravi Agarwal, George Anastassiou, Martin Bohner, Allan Peterson, Donal
O’Regan, Samir Saker and many other authors.

In this paper, it is assumed that all considerable integrals exist and are finite and
T is a time scale, a, b ∈ T with a < b and an interval [a, b]T means the intersection of
a real interval with the given time scale.

2. Preliminaries

We need here basic concepts of delta calculus. The results of delta calculus are
adopted from monographs [6, 7].

For t ∈ T, the forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t}.

The mapping µ : T → R+
0 = [0,+∞) such that µ(t) := σ(t) − t is called the forward

graininess function. The backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t}.

The mapping ν : T→ R+
0 = [0,+∞) such that ν(t) := t− ρ(t) is called the backward

graininess function. If σ(t) > t, we say that t is right–scattered, while if ρ(t) < t, we
say that t is left–scattered. Also, if t < supT and σ(t) = t, then t is called right–dense,
and if t > inf T and ρ(t) = t, then t is called left–dense. If T has a left–scattered
maximum M , then Tk = T− {M}, otherwise Tk = T.

For a function f : T→ R, the delta derivative f∆ is defined as follows:
Let t ∈ Tk. If there exists f∆(t) ∈ R such that for all ε > 0, there is a neighborhood

U of t, such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|,
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for all s ∈ U , then f is said to be delta differentiable at t, and f∆(t) is called the delta
derivative of f at t.

A function f : T→ R is said to be right–dense continuous (rd–continuous), if it is
continuous at each right–dense point and there exists a finite left–sided limit at every
left–dense point. The set of all rd–continuous functions is denoted by Crd(T,R).

The next definition is given in [6, 7].

Definition 2.1. A function F : T→ R is called a delta antiderivative of f : T→ R,
provided that F∆(t) = f(t) holds for all t ∈ Tk. Then the delta integral of f is defined
by ∫ b

a

f(t)∆t = F (b)− F (a).

The following results of nabla calculus are taken from [2, 6, 7].

If T has a right–scattered minimum m, then Tk = T − {m}, otherwise Tk = T.
A function f : Tk → R is called nabla differentiable at t ∈ Tk, with nabla derivative
f∇(t), if there exists f∇(t) ∈ R such that given any ε > 0, there is a neighborhood V
of t, such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|,

for all s ∈ V .

A function f : T→ R is said to be left–dense continuous (ld–continuous), provided
it is continuous at all left–dense points in T and its right–sided limits exist (finite)
at all right–dense points in T. The set of all ld–continuous functions is denoted by
Cld(T,R).

The next definition is given in [2, 6, 7].

Definition 2.2. A function G : T→ R is called a nabla antiderivative of g : T→ R,
provided that G∇(t) = g(t) holds for all t ∈ Tk. Then the nabla integral of g is
defined by ∫ b

a

g(t)∇t = G(b)−G(a).

Now we present short introduction of diamond–α derivative as given in [1, 19].

Let T be a time scale and f(t) be differentiable on T in the ∆ and ∇ senses. For
t ∈ Tkk, where Tkk = Tk ∩ Tk, the diamond–α dynamic derivative f�α(t) is defined by

f�α(t) = αf∆(t) + (1− α)f∇(t), 0 ≤ α ≤ 1.

Thus f is diamond–α differentiable if and only if f is ∆ and ∇ differentiable.

The diamond–α derivative reduces to the standard ∆–derivative for α = 1, or the
standard ∇–derivative for α = 0. It represents a weighted dynamic derivative for
α ∈ (0, 1).

Theorem 2.3 ([19]). Let f, g : T → R be diamond–α differentiable at t ∈ T and we
write fσ(t) = f(σ(t)), gσ(t) = g(σ(t)), fρ(t) = f(ρ(t)) and gρ(t) = g(ρ(t)). Then
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(i) f ± g : T→ R is diamond–α differentiable at t ∈ T, with

(f ± g)�α(t) = f�α(t)± g�α(t).

(ii) fg : T→ R is diamond–α differentiable at t ∈ T, with

(fg)�α(t) = f�α(t)g(t) + αfσ(t)g∆(t) + (1− α)fρ(t)g∇(t).

(iii) For g(t)gσ(t)gρ(t) 6= 0, f
g : T→ R is diamond–α differentiable at t ∈ T, with(

f

g

)�α
(t) =

f�α(t)gσ(t)gρ(t)− αfσ(t)gρ(t)g∆(t)− (1− α)fρ(t)gσ(t)g∇(t)

g(t)gσ(t)gρ(t)
.

Definition 2.4 ([19]). Let a, t ∈ T and h : T → R. Then the diamond–α integral
from a to t of h is defined by∫ t

a

h(s) �α s = α

∫ t

a

h(s)∆s+ (1− α)

∫ t

a

h(s)∇s, 0 ≤ α ≤ 1,

provided that there exist delta and nabla integrals of h on T.

Theorem 2.5 ([19]). Let a, b, t ∈ T, c ∈ R. Assume that f(s) and g(s) are �α–
integrable functions on [a, b]T. Then

(i)
∫ t
a
[f(s)± g(s)] �α s =

∫ t
a
f(s) �α s±

∫ t
a
g(s) �α s.

(ii)
∫ t
a
cf(s) �α s = c

∫ t
a
f(s) �α s.

(iii)
∫ t
a
f(s) �α s = −

∫ a
t
f(s) �α s.

(iv)
∫ t
a
f(s) �α s =

∫ b
a
f(s) �α s+

∫ t
b
f(s) �α s.

(v)
∫ a
a
f(s) �α s = 0.

We need the following results.

Definition 2.6 ([10]). A function f : T→ R is called convex on IT = I ∩T, where I
is an interval of R (open or closed), if

f(χt+ (1− χ)s) ≤ χf(t) + (1− χ)f(s), (2.1)

for all t, s ∈ IT and all χ ∈ [0, 1] such that χt+ (1− χ)s ∈ IT.
The function f is strictly convex on IT if the inequality (2.1) is strict for distinct

t, s ∈ IT and χ ∈ (0, 1).
The function f is concave (respectively, strictly concave) on IT, if −f is convex

(respectively, strictly convex).
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Theorem 2.7 ([1]). Let a, b ∈ T and c, d ∈ R. Suppose that g ∈ C([a, b]T, (c, d)) and

h ∈ C([a, b]T,R) with
∫ b
a
|h(s)| �α s > 0. If Φ ∈ C((c, d),R) is convex, then generalized

Jensen’s inequality is

Φ

(∫ b
a
|h(s)|g(s) �α s∫ b
a
|h(s)| �α s

)
≤
∫ b
a
|h(s)|Φ (g(s)) �α s∫ b
a
|h(s)| �α s

. (2.2)

If Φ is strictly convex, then the inequality ≤ can be replaced by <.

Theorem 2.8 ([16]). Let w, f, g ∈ C([a, b]T,R) be �α–integrable functions, where w,
g 6= 0. If ξ ≥ 0, then(∫ b

a
|w(x)||f(x)| �α x

)ξ+1

(∫ b
a
|w(x)||g(x)| �α x

)ξ ≤
∫ b

a

|w(x)||f(x)|ξ+1

|g(x)|ξ
�α x. (2.3)

Inequality (2.3) is called Radon’s inequality on time scales and is reversed for
−1 < ξ < 0.

3. Main Results

In order to present our main results, first we present a simple proof for an extension
of Radon’s inequality on time scales.

Theorem 3.1. Let w, f, g ∈ C([a, b]T,R) be �α–integrable functions with
∫ b
a
|w(x)| �α

x > 0 and g 6= 0. If β ≥ 2, then

(∫ b

a

|w(x)| �α x

)2−β
(∫ b

a
|w(x)||f(x)| �α x

)β
∫ b
a
|w(x)||g(x)| �α x

≤
∫ b

a

|w(x)||f(x)|β

|g(x)|
�α x. (3.1)

Proof. The right–hand side of (3.1) takes the form∫ b

a

|w(x)||f(x)|β

|g(x)|
�α x =

∫ b

a

|w(x)||f(x)|β(
|g(x)|

1
β−1

)β−1
�α x. (3.2)

Applying Radon’s inequality (2.3), the inequality (3.2) becomes

∫ b

a

|w(x)||f(x)|β

|g(x)|
�α x ≥

(∫ b
a
|w(x)||f(x)| �α x

)β
(∫ b

a
|w(x)||g(x)|

1
β−1 �α x

)β−1
. (3.3)

Note that ∫ b

a

|w(x)||g(x)|
1

β−1 �α x =

∫ b

a

|w(x)||g(x)|
1

β−1

1
1

β−1−1
�α x. (3.4)
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Applying reverse Radon’s inequality on right–hand side of (3.4), we get

∫ b

a

|w(x)||g(x)|
1

β−1

1
1

β−1−1
�α x ≤

(∫ b
a
|w(x)||g(x)| �α x

) 1
β−1

(∫ b
a
|w(x)| �α x

) 2−β
β−1

. (3.5)

From (3.3) and (3.5), we get the proof of the desired result.

Remark 3.2. Let α = 1, T = Z, a = 1, b = n+ 1, w ≡ 1, f(k) = xk ∈ [0,+∞) and
g(k) = yk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}. Then (3.1) reduces to (1.1).

Remark 3.3. Let α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk ∈ R and
g(k) = yk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}. If β = 2, then (3.1) reduces to(

n∑
k=1

xk

)2

n∑
k=1

yk

≤
n∑
k=1

x2
k

yk
, (3.6)

which is called Bergström’s inequality or Titu Andreescu’s inequality, or Engel’s in-
equality in literature as given in [4, 5, 8, 14] with equality if and only if x1

y1
= x2

y2
=

. . . = xn
yn

.

The following inequality is called the dynamic weighted power mean inequality on
time scales.

Corollary 3.4. Let w, f ∈ C([a, b]T,R) be �α–integrable functions with
∫ b
a
|w(x)| �α

x > 0. If η ≥ η1 > 0 and η2 = 2η, then(∫ b
a
|w(x)||f(x)|η1 �α x∫ b
a
|w(x)| �α x

) 1
η1

≤

(∫ b
a
|w(x)||f(x)|η2 �α x∫ b
a
|w(x)| �α x

) 1
η2

. (3.7)

Proof. Set β = 2
(
η
η1

)
= η2

η1
≥ 2 and g ≡ 1. The inequality (3.1) reduces to

(∫ b

a

|w(x)| �α x

)2− η2η1
(∫ b

a
|w(x)||f(x)| �α x

) η2
η1∫ b

a
|w(x)| �α x

≤
∫ b

a

|w(x)||f(x)|
η2
η1 �α x. (3.8)

Replacing |f(x)| by |f(x)|η1 and taking power 1
η2

on both sides of (3.8), we get(∫ b

a

|w(x)| �α x

) 1
η2
− 1
η1
(∫ b

a

|w(x)||f(x)|η1 �α x

) 1
η1

≤

(∫ b

a

|w(x)||f(x)|η2 �α x

) 1
η2

. (3.9)

This completes the desired result.



Analogy of Classical and Dynamic Inequalities on Time Scales 145

Remark 3.5. If we set α = 1, T = Z, a = 1, b = n + 1, w(k) = pk ∈ (0,+∞) and
f(k) = xk ∈ [0,+∞) for k ∈ {1, 2, . . . , n}, then (3.7) reduces to (1.2). Further, if
n∑
k=1

pk = 1 and η1 = η, then (1.2) reduces to

(
n∑
k=1

pkx
η1
k

) 1
η1

≤

(
n∑
k=1

pkx
2η1
k

) 1
2η1

,

as given in [11].

Now we present Cauchy–Schwarz’s inequality on time scales.

Corollary 3.6. Let w, f, g ∈ C([a, b]T,R) be �α–integrable functions. We have:(∫ b

a

|w(x)||f(x)g(x)| �α x

)2

≤

(∫ b

a

|w(x)||f(x)|2 �α x

)(∫ b

a

|w(x)||g(x)|2 �α x

)
. (3.10)

Proof. Setting β = 2 and replacing |w(x)| by |w(x)g(x)| in (3.1), the inequality
(3.10) follows.

Remark 3.7. If we set α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk ∈ R and
g(k) = yk ∈ R for k ∈ {1, 2, . . . , n}, then (3.10) reduces to (1.3).

Corollary 3.8. Let w, f ∈ C([a, b]T,R − {0}) be �α–integrable functions. If β ≥ 2,
then(∫ b

a

|w(x)||f(x)| �α x

)β
≤

(∫ b

a

|w(x)|β �α x

)(∫ b

a

|f(x)|
β
β−1 �α x

)β−1

. (3.11)

Proof. Let W,F,G ∈ C([a, b]T,R) be �α–integrable functions, neither W ≡ 0 nor
G ≡ 0. If β ≥ 2, then (3.1) takes the form

(∫ b

a

|W (x)| �α x

)2−β
(∫ b

a
|W (x)||F (x)| �α x

)β
∫ b
a
|W (x)||G(x)| �α x

≤
∫ b

a

|W (x)||F (x)|β

|G(x)|
�α x.

Putting G ≡ 1 and replacing |W (x)| by |f(x)|
β
β−1 and |F (x)| by |w(x)||f(x)|

−1
β−1 , we

get (3.11).
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Remark 3.9. Let α = 1, T = Z, a = 1, b = n + 1, w(k) = pk ∈ (0,+∞) and
f(k) = xk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}. If β ≥ 2, then (3.11) reduces to(

n∑
k=1

pkxk

)β
≤

(
n∑
k=1

pβk

)(
n∑
k=1

x
β
β−1

k

)β−1

, (3.12)

which is symmetric form of Hölder’s inequality, as given in [13].

The following result is a generalization of Nesbitt’s inequality on time scales.

Theorem 3.10. Let w, f ∈ C([a, b]T,R− {0}) be �α– integrable functions. If γ ≥ 1,

η ≥ η1 > 0, η2 = 2η, Ω =
∫ b
a
|w(x)||f(x)|η1 �α x and Ω > sup

x∈[a,b]T

|f(x)|η1 , then

 ∫ b
a
|w(x)| �α x(∫ b

a
|w(x)| �α x− 1

)γ
( Ω∫ b

a
|w(x)| �α x

)γ( η2η1−1
)

≤
∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)γ
�α x. (3.13)

Proof. Applying Jensen’s inequality for γ > 1, we get(∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)
�α x

)γ

≤

(∫ b

a

|w(x)| �α x

)γ−1 ∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)γ
�α x. (3.14)

Now applying Radon’s inequality (3.1), we get∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)
�α x

=

∫ b

a

|w(x)|

(
(|f(x)|η1)

η2
η1

Ω− |f(x)|η1

)
�α x

≥

(∫ b

a

|w(x)| �α x

)2− η2η1
(∫ b

a
|w(x)||f(x)|η1 �α x

) η2
η1∫ b

a
|w(x)| (Ω− |f(x)|η1) �α x

=

(∫ b
a
|w(x)| �α x

)
(∫ b

a
|w(x)| �α x− 1

) ( Ω∫ b
a
|w(x)| �α x

) η2
η1
−1

.

Thus(∫ b

a

|w(x)|
(
|f(x)|η2

Ω− |f(x)|η1

)
�α x

)γ
≥

(∫ b
a
|w(x)| �α x

)γ
(∫ b

a
|w(x)| �α x− 1

)γ
(

Ω∫ b
a
|w(x)| �α x

)γ( η2η1−1
)
.

(3.15)
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Combining (3.14) and (3.15), we get the desired claim.

Remark 3.11. If we set α = 1, T = Z, a = 1, b = n+1, w ≡ 1, f(k) = xk ∈ (0,+∞)

for k ∈ {1, 2, . . . , n} and
n∑
k=1

xη1k > max
1≤k≤n

xη1k , then (3.13) reduces to

(
n

(n− 1)γ

)
n∑
k=1

xη1k

n


γ
(
η2
η1
−1
)

≤
n∑
k=1

 xη2k
n∑
k=1

xη1k − x
η1
k


γ

, (3.16)

as given in [20].

Further, if we take η1 = 1, γ = 1, n = 3, x1 = x, x2 = y and x3 = z, then (3.16)
takes the form

3

2

(
x+ y + z

3

)η2−1

≤ xη2

y + z
+

yη2

z + x
+

zη2

x+ y
. (3.17)

Inequality (3.17) is called the generalized Nesbitt’s inequality as given in [20].

The following result is another consequence of Radon’s inequality on time scales.

Theorem 3.12. Let w, f ∈ C([a, b]T,R − {0}) be �α–integrable functions. If c1 ∈
[0,+∞), c2, c3, c4 ∈ (0,+∞), γ, ζ, κ, λ ∈ [1,+∞) and c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
>

c4 sup
x∈[a,b]T

|f(x)|γ , then

(
c1

(∫ b
a
|w(x)| �α x

)κ
+ c2

)λ
(
c3

(∫ b
a
|w(x)| �α x

)γ
− c4

)ζ
(∫ b

a

|w(x)| �α x

)γζ−κλ+1

(∫ b

a

|w(x)||f(x)| �α x

)κλ−γζ
≤

(
1∫ b

a
|w(x)| �α x

)

∫ b

a

|w(x)|

(
c1

(∫ b

a

|w(x)||f(x)| �α x

)κ
+ c2|f(x)|κ

)λ
�α x


×
∫ b

a

|w(x)|

 1(
c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4|f(x)|γ

)ζ
 �α x. (3.18)

Proof. We obtain the following result by applying Radon’s inequality given in (2.3),
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as (∫ b
a
|w(x)| �α x

)ζ+1

{∫ b
a
|w(x)|

(
c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4|f(x)|γ

)
�α x

}ζ
≤
∫ b

a

|w(x)|

 1ζ+1(
c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4|f(x)|γ

)ζ
 �α x. (3.19)

Applying (2.2) and (3.19), the right–hand side of (3.18) takes the form(
1∫ b

a
|w(x)| �α x

)
∫ b

a

|w(x)|

(
c1

(∫ b

a

|w(x)||f(x)| �α x

)κ
+ c2|f(x)|κ

)λ
�α x


×
∫ b

a

|w(x)|

 1(
c3

(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4|f(x)|γ

)ζ
 �α x

≥

(∫ b

a

|w(x)| �α x

)ζ+1−λ

×

{
c1

(∫ b
a
|w(x)| �α x

)(∫ b
a
|w(x)||f(x)| �α x

)κ
+ c2

∫ b
a
|w(x)||f(x)|κ �α x

}λ
{
c3

(∫ b
a
|w(x)| �α x

)(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4

∫ b
a
|w(x)||f(x)|γ �α x

}ζ
≥

(∫ b

a

|w(x)| �α x

)ζ+1−λ

×

{
c1

(∫ b
a
|w(x)| �α x

)(∫ b
a
|w(x)||f(x)| �α x

)κ
+ c2

(
∫ b
a
|w(x)||f(x)|�αx)

κ

(
∫ b
a
|w(x)|�αx)

κ−1

}λ
{
c3

(∫ b
a
|w(x)| �α x

)(∫ b
a
|w(x)||f(x)| �α x

)γ
− c4

(
∫ b
a
|w(x)||f(x)|�αx)

γ

(
∫ b
a
|w(x)|�αx)

γ−1

}ζ .
Therefore, the inequality (3.18) follows.

Remark 3.13. If we set α = 1, T = Z, a = 1, b = n+1, w ≡ 1, f(k) = xk ∈ (0,+∞)

for k ∈ {1, 2, . . . , n}, Xn =
n∑
k=1

xk and c3

(
n∑
k=1

xk

)γ
> c4 max

1≤k≤n
xγk , then (3.18)

reduces to

(c1n
κ + c2)λ

(c3nγ − c4)ζ
nγζ−κλ+1Xκλ−γζ

n

≤ 1

n

(
n∑
k=1

(c1X
κ
n + c2x

κ
k)λ

)
n∑
k=1

1

(c3X
γ
n − c4xγk)

ζ
, (3.20)
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as given in [3].

Corollary 3.14. Let w, f ∈ C([a, b]T,R − {0}) be �α–integrable functions. If

c1 ∈ [0,+∞), c2, c3, c4 ∈ (0,+∞), β ∈ [2,+∞) and c3
∫ b
a
|w(x)||f(x)| �α x >

c4 sup
x∈[a,b]T

|f(x)|, then

(
c1
∫ b
a
|w(x)| �α x+ c2

)β
c3
∫ b
a
|w(x)| �α x− c4

(∫ b

a

|w(x)| �α x

)2−β (∫ b

a

|w(x)||f(x)| �α x

)β−1

≤
∫ b

a

|w(x)|


(
c1
∫ b
a
|w(x)||f(x)| �α x+ c2|f(x)|

)β
c3
∫ b
a
|w(x)||f(x)| �α x− c4|f(x)|

 �α x. (3.21)

Proof. By applying (3.1), the right–hand side of (3.21) becomes

∫ b

a

|w(x)|


(
c1
∫ b
a
|w(x)||f(x)| �α x+ c2|f(x)|

)β
c3
∫ b
a
|w(x)||f(x)| �α x− c4|f(x)|

 �α x

≥

(∫ b

a

|w(x)| �α x

)2−β
{∫ b

a
|w(x)|

(
c1
∫ b
a
|w(x)||f(x)| �α x+ c2|f(x)|

)
�α x

}β
∫ b
a
|w(x)|

(
c3
∫ b
a
|w(x)||f(x)| �α x− c4|f(x)|

)
�α x

.

(3.22)

Thus inequality (3.21) follows.

Remark 3.15. If we set α = 1, T = Z, a = 1, b = n+1, w ≡ 1, f(k) = xk ∈ (0,+∞)

for k ∈ {1, 2, . . . , n}, Xn =
n∑
k=1

xk and c3

(
n∑
k=1

xk

)
> c4 max

1≤k≤n
xk, then (3.21) reduces

to
(c1n+ c2)β

c3n− c4
n2−βXβ−1

n ≤
n∑
k=1

(c1Xn + c2xk)
β

c3Xn − c4xk
, (3.23)

which is similar to an inequality given in [3].

Corollary 3.16. Let w, f ∈ C([a, b]T,R−{0}) be �α–integrable functions. If c3, c4 ∈
(0,+∞), β ∈ [2,+∞) and c3

∫ b
a
|w(x)||f(x)| �α x > c4 sup

x∈[a,b]T

|f(x)|, then

(∫ b
a
|w(x)| �α x

)1−β

c3
∫ b
a
|w(x)| �α x− c4

(∫ b

a

|w(x)||f(x)| �α x

)β

≤
∫ b

a

|w(x)|

{
|f(x)|β+1

c3
∫ b
a
|w(x)||f(x)| �α x− c4|f(x)|

}
�α x. (3.24)
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Proof. Putting c1 = 0, c2 = 1 and replacing β by β + 1 in (3.21), the inequality
(3.24) follows.

Remark 3.17. If we set α = 1, then we get delta versions and if we set α = 0, then
we get nabla versions of diamond–α integral operator inequalities presented in this
article.

Also, if we set T = Z, then we get discrete versions and if we set T = R, then we
get continuous versions of diamond–α integral operator inequalities presented in this
article.

4. Conclusion and Future Work

There have been recent developments of the theory and applications of dynamic in-
equalities on time scales. In this research article, we have presented some dynamic
inequalities on diamond–α calculus, which is the linear combination of the delta
and nabla integrals. Some generalizations and applications of Radon’s inequality,
Bergström’s inequality, Nesbitt’s inequality and other dynamic inequalities on time
scales are also given in [17, 18].

In the future research, we can generalize the well–known inequalities using func-
tional generalization, n–tuple diamond–α integral, fractional Riemann–Liouville inte-
gral, quantum calculus and α,β–symmetric quantum calculus.
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