Journal of
Mathematics
and Applications
JMA No 37, pp 13-26 (2014)

Involutory $B E-$ algebras

R. Borzooei, A. Borumand Saeid, R. Ameri, A. Rezaei

Abstract

This paper is devoted to the study of some structural properties of bounded and involutory $B E$-algebras and investigate the relationship between them. We construct a commutative monoid by definition of proper operation in an involutory $B E$-algebra. Some rules of calculus for $B E$-algebras with a semi-lattice structure are provided. Many results related to the natural order of a $B E$-algebras were found. Finally, we show that an involutory bounded $B E$-algebra X is semi-simple.

AMS Subject Classification: 06F35, 03G25
Keywords and Phrases: (bounded, involutory)BE-algebra, involution, semi-lattice, lattice, semi-simple.

1 Introduction and Preliminaries

The study of $B C K / B C I$-algebras was initiated by K. Iséki in 1966 as a generalization of propositional logic. There exist several generalization of $B C K / B C I$-algebras, such as $B C H$-algebras, d-algebras, B-algebras, $B H$-algebras, etc.

Especially, the notion of $B E$-algebras was introduced by H. S. Kim and Y. H. Kim [7], in which was deeply studied by S. S. Ahn and et. al., in [1, 2, 3], Walendziak in [15], A. Rezaei and et. al., in [12, 13, 14]. Lattice-valued logic is becoming a research filed strongly influences the development of Algebraic Logic, Computer Science and Artificial Intelligence Technology. BE-algebras are important tools for certain investigations in algebraic logic since they can be consider as fragments of any propositional logic containing a logical connective implication and the constant 1 which is considered as the logical value "true". In this paper, we develop the theory $B E$-algebras with define a new structure as bounded and involutory $B E$-algebras and investigate the relationship between them and proved some theorems.

The paper has been organized in tree sections. In section 1, we give some definitions and some previous results and in section 2 we define bounded $B E$-algebras and define a congruence relation on this algebra with respect to a filter which this

COPYRIGHT © by Publishing Department Rzeszów University of Technology P.O. Box 85, 35-959 Rzeszów, Poland
congruence relation allowed us to define a quotient algebra is also a bounded $B E-$ algebra. In section 3 we discus on involutory $B E$-algebra because it is well known this structure has an important and vital role in investigating the structure of a logical system. Since quotient algebra is a basic tool for exploring the structures of algebras and there are close contacts among congruences and quotient algebras, we introduce a new congruence relation on X and construct quotient algebra via this congruence relation.

Definition 1.1. [7] An algebra $(X ; *, 1)$ of type $(2,0)$ is called a BE-algebra if following axioms hold:

```
(BE1) }x*x=1
(BE2) }x*1=1
(BE3) 1 1*x=x,
(BE4) x*(y*z)=y*(x*z), for all x,y,z\inX.
```

We introduce a relation " $\leq "$ on X by $x \leq y$ if and only if $x * y=1$.
Proposition 1.2. [7] Let X be a $B E$-algebra. Then
(i) $x *(y * x)=1$,
(ii) $y *((y * x) * x)=1$, for all $x, y \in X$.

From now on, in this paper X is a $B E$-algebra, unless otherwise is stated. A subset F of X is called a filter of X if $(F 1) 1 \in F$ and $(F 2) x \in F$ and $x * y \in F$ imply $y \in F$. We denote By $F(X)$ the set of all filters of X and $\operatorname{Max}(X)$ the set of all maximal filters of X. Let A be a non-empty subset of X, then the set

$$
<A>=\bigcap\{G \in F(X) \mid A \subseteq G\}
$$

is called the filter generated by A, written $<A>$. If $A=\{a\}$, we will denote $<\{a\}>$, briefly by $\langle a\rangle$, and we call it a principal filter of X. For $F \in F(X)$ and $a \in X$, we denote by F_{a} the filter generated by $F \cup\{a\}$. X is said to be self distributive if $x *(y * z)=(x * y) *(x * z)$, for all $x, y, z \in X$, (Example 8., [7]).

In a self distributive $B E$-algebra $X, F_{a}=\{x \in X: a * x \in F\},([3]) . X$ is said to be transitive if $y * z \leq(x * y) *(x * z)$ for all $x, y, z \in X$, [1]. We say that X is commutative if $(x * y) * y=(y * x) * x$, for all $x, y \in X$. In [15], A. Walendziak, showed that every dual $B C K$-algebra is a $B E$-algebra and any commutative $B E$-algebra is a dual $B C K$-algebra.

We note that " \leq " is reflexive by $(B E 1)$. If X is self distributive, then relation $" \leq "$ is a transitive order set on X. Because if $x \leq y$ and $y \leq z$, then

$$
x * z=1 *(x * z)=(x * y) *(x * z)=x *(y * z)=x * 1=1
$$

and so $x \leq z$. If X is commutative, then by Proposition 3.3, [15], relation " \leq " is antisymmetric. Hence if X is a commutative self distributive $B E$-algebra, then " $\leq "$ is a partial order set on X, (Example 3.4., [3]). We show that if I be an obstinate ideal of a self distributive $B E$-algebra X, then $\left(X / I ; *, C_{1}\right)$ is also a $B E$-algebra, which is called to be the quotient algebra via I, and $C_{1}=I$, (see Theorem 3.13, [12]).

Proposition 1.3. [12] Let X be self distributive. If $x \leq y$, then
(i) $z * x \leq z * y$ and $y * z \leq x * z$,
(ii) $y * z \leq(z * x) *(y * x)$, for all $x, y, z \in X$.

Theorem 1.4. [13] A dual BCK-algebra X is commutative if and only if $(X ; \leq)$ is an upper semi-lattice with $x \vee y=(y * x) * x$, for all $x, y \in X$.

Proposition 1.5. [13] Let X be a commutative BE-algebra. Then
(i) for each $a \in X$, the mapping $f_{a}: x \rightarrow x * a$ is an anti-tone involution on the section $[a, 1]$.
(ii) (A, \leq) is a near-lattice with section anti-tone involutions and for every $a \in X$, the anti-tone involutions f_{a} on $[a, 1]$ is given by $f_{a}(x)=x * a$.

Theorem 1.6. [15, 13] Let X be commutative. Then it is a semi-lattice with respect to \vee.

Definition 1.7. [4] A filter F of X is called an obstinate filter if $x, y \notin F$ imply $x * y \in F$ and $y * x \in F$.

Theorem 1.8. [5] Let X be self distributive. $F \in F(X)$ and $F \neq X$. Then the following are equivalent:
(i) F is an obstinate filter,
(ii) if $x \notin F$, then $x * y \in F$, for all $y \in F$.

2 On Bounded BE-algebras

Definition 2.1. X is called bounded if there exists the smallest element 0 of X (i.e., $0 * x=1$, for all $x \in X$).

Example 2.2. (i). The interval $[0,1]$ of real numbers with the operation $" *$ defined by

$$
x * y=\min \{1-x+y, 1\}, \text { for all } x, y \in X
$$

is a bounded $B E$-algebra.
(ii). Let $(X ; *, 1)$ be a $B E$-algebra, $0 \notin X$ and $\bar{X}=X \cup\{0\}$. If we extensively define

$$
0 * x=0 * 0=1 \text { and } x * 0=0 \quad \text { for all } x \in X
$$

Then $(\bar{X} ; *, 0,1)$ is a bounded BE-algebra with 0 as the smallest element.
(iii). Let $X:=\{0, a, b, 1\}$ be a set with the following table.

$*$	0	a	b	1
0	1	1	1	1
a	a	1	b	1
b	b	a	1	1
1	0	a	b	1

Then $(X ; *, 0,1)$ is a bounded $B E$-algebra with 0 as the smallest element.
(iv). Let $X:=\{0, a, b, c, 1\}$ be a set with the following table.

$*$	0	a	b	c	1
0	1	1	1	1	1
a	0	1	b	c	1
b	0	a	1	c	1
c	0	1	b	1	1
1	0	a	b	c	1

Then $(X ; *, 0,1)$ is a bounded BE-algebra with 0 as the smallest element.
(v). Let $(X ; \vee, \wedge, \neg, 0,1)$ be a Boolean-lattice. Then $(X ; *, 1)$ is a bounded BEalgebra, where operation " *" is defined by $x * y=(\neg x) \vee y$, for all $x, y \in X$.

Remark. The following example shows that the bounded $B E$-algebra is not a dual $B C K$-algebra and Hilbert algebra in general (see Definition 2.3, [15] and Definition 3.1, [14]).

Example 2.3. Let $X:=\{0, a, b, 1\}$ be a set with the following table.

$*$	0	a	b	1
0	1	1	1	1
a	0	1	1	1
b	0	1	1	1
1	0	a	b	1

Then $(X ; *, 0,1)$ is a bounded $B E$-algebra with 0 as the smallest element but it is not a dual BCK-algebra, Hilbert algebra. Because

$$
a * b=b * a=1 \quad \text { while } a \neq b
$$

Also, it is not an implication algebra. Because

$$
(a * b) * b=1 * b=b \neq(b * a) * a=1 * a=a
$$

Given a bounded $B E$-algebra X with 0 as the smallest element, we denote $x * 0$ by $N x$, then N can be regarded as a unary operation on X.

Proposition 2.4. Let X be bounded with the smallest element 0 . Then the following hold:
(i) $N 0=1$ and $N 1=0$,
(ii) $x \leq N N x$,
(iii) $x * N y=y * N x$, for all $x, y \in X$.

Proof. (i). By (BE1) and (BE2) we have $N 0=0 * 0=1$ and $N 1=1 * 0=0$.
(ii). Since $x *(N x x)=x *((x * 0) * 0)=(x * 0) *(x * 0)=1$, then $x \leq N N x$.
(iii). By (BE4) we have $x * N y=x *(y * 0)=y *(x * 0)=y * N x$.

Proposition 2.5. Let X be a self distributive and bounded. Then
(i) $y * x \leq N x * N y$,
(ii) $x \leq y$, implies $N y \leq N x$, for all $x, y \in X$.

Proof. (i). We have

$$
\begin{aligned}
(y * x) *(N x * N y)=N x *((y * x) * N y) & =(x * 0) *((y * x) *(y * 0)) \\
& =(x * 0) *(y *(x * 0)) \\
& =y *((x * 0) *(x * 0)) \\
& =y * 1=1 .
\end{aligned}
$$

Hence $y * x \leq N x * N y$.
(ii). By ($B E 3$) and assumption we have

$$
\begin{aligned}
N y * N x=(y * 0) *(x * 0) & =(y * 0) *(1 *(x * 0)) \\
& =(y * 0) *((x * y) *(x * 0)) \\
& =(y * 0) *(x *(y * 0)) \\
& =x *((y * 0) *(y * 0)) \\
& =x * 1=1 .
\end{aligned}
$$

Hence $N y \leq N x$.
In the following example we show that the self-distributivity condition in the above theorem is necessary.

Example 2.6. Example 2.2(iii), is a bounded BE-algebra with 0 as the smallest element, while it is not self-distributive. Because

$$
b *(0 * a)=2 * 1=1 \neq(b * 0) *(b * a)=b * a=a .
$$

We can seen easily that, $b=a * b \nless N b * N a=b * a=a$.
Proposition 2.7. Let X be bounded implicative self distributive. Then the following hold:
(i) X is commutative,
(ii) $x=N x * x$,
(iii) $x \vee y=y \vee x=N x * y$, for all $x, y \in X$.

Proof. (i). See proof of Theorem 3.12([14]).
(ii). Assume that X is a bounded implicative. Then $N x * x=(x * 0) * x=x$.
(iii). Let X be bounded implicative self distributive and $x, y \in X$. then by Proposition 1.3, $0 \leq y$ and $x * 0 \leq x * y$. Furthermore, by Propositions 1.2 and 1.3 , we get

$$
x \leq(x * y) * y \leq(x * 0) * y=N x * y
$$

Since by Proposition 1.2, $y \leq N x * y$, then $N x * y$ is an upper bound of x and y. Hence $x \vee y \leq N x * y$. Also, we have

$$
N x * y \leq(y * x) *(N x * x)=(y * x) * x .
$$

Since X is commutative, then by Theorem 1.6, we have $(y * x) * x=x \vee y=y \vee x$ and so by Proposition 3.3([15]), the proof is complete.

Corollary 2.8. Let X be self distributive, $F \in F(X)$ and $F \neq X$. Then the following are equivalent:
(i) F is an obstinate filter,
(ii) if $x \notin F$, then $N x \in F$.

Definition 2.9. Let X and Y be bounded. A homomorphism from X to Y is a function $f: X \rightarrow Y$ such that
(i) $f(x * y)=f(x) * f(y)$,
(ii) $f(N x)=N(f(x))$,
(iii) $f(0)=0$, for all $x, y \in X$.

Example 2.10. Consider X as Example 2.2(iii) and Y as Example 2.3. Define f : $X \rightarrow Y$ such that $f(1)=f(a)=f(b)=1$ and $f(0)=0$. Then f is a homomorphism.

Theorem 2.11. Let $f: X \rightarrow Y$ be a homomorphism. Then $\operatorname{ker}(f)=\{x \in X: f(x)=$ $1\}$ is a filter in X. Moreover, if $f(x)=f(y)$, then $x * y \in \operatorname{ker}(f)$ and $y * x \in \operatorname{ker}(f)$, for all $x, y \in X$. If Y is commutative, then the converse is valid.
Proof. We have $f(1)=f(x * x)=f(x) * f(x)=1$. Hence $1 \in \operatorname{ker}(f)$. Now, let $x \in \operatorname{ker}(f)$ and $x * y \in \operatorname{ker}(f)$. Then $f(x)=f(x * y)=1$. But $f(x * y)=f(x) * f(y)=1$. Hence $f(y)=1 * f(y)=1$. Therefore, $y \in \operatorname{ker}(f)$.

Now, let $f(x)=f(y)$. By using $(B E 1), f(x) * f(y)=1$ and $f(y) * f(x)=1$. But $1=f(x) * f(y)=f(x * y)$ and $1=f(y) * f(x)=f(y * x)$ implies $x * y \in \operatorname{ker}(f)$ and $y * x \in \operatorname{ker}(f)$.

Assume that Y is commutative, $x * y \in \operatorname{ker}(f)$ and $y * x \in \operatorname{ker}(f)$. Then $f(x * y)=$ $f(y * x)=1$ which implies that $f(x) * f(y)=f(y) * f(x)=1$. Hence by Proposition $3.3([15]), f(x)=f(y)$.

Theorem 2.12. Let X be bounded transitive, F be a filter and X / F be the corresponding quotient algebra. Then the map $f: X \rightarrow X / F$ which is defined by $f(a)=[a]$, for all $a \in X$, is a homomorphism and $\operatorname{ker}(f)=F$.

Proof. By Propositions 5.4 and $5.7([11]), X / F$ is a quotient $B E$-algebra. Now, we have $f(0)=[0]$ and

$$
f(N x)=f(x * 0)=f(x) * f(0)=f(x) *[0]=N(f(x)) .
$$

Now, let $x \in \operatorname{ker}(f)$. Then $f(x)=[x]=[1]$ if and only if $1=x * 1 \in F$ and $x=1 * x \in F$ if and only if $1 \in F$ and $x \in F$. Therefore, $\operatorname{ker}(f)=F$.

3 Involutory $B E$-algebras

If $N N x=x$, then x is called an involution of X. The smallest element 0 and the greatest element 1 are two involutions of X, because

$$
\begin{aligned}
& N N 0=N(0 * 0)=N 1=1 * 0=0 \\
& N N 1=N(1 * 0)=N 0=0 * 0=1
\end{aligned}
$$

Definition 3.1. A bounded $B E$-algebra X is called involutory if any element of X is involution.

Example 3.2. (i). Examples 2.2(i), (iii), (v), are involutory.
(ii). Let $X:=\{0, a, b, 1\}$ be a set with the following table.

$*$	0	a	b	1
0	1	1	1	1
a	0	1	b	1
b	0	a	1	1
1	0	a	b	1

Then $(X ; *, 0,1)$ is a bounded BE-algebra but it is not an involutory. Because

$$
N N b=N(b * 0)=N 0=0 * 0=1 \neq b .
$$

(iii). Let $X:=\{0, a, b, 1\}$ be a set with the following table.

$*$	0	a	b	1
0	1	1	1	1
a	b	1	1	1
b	a	1	1	1
1	0	a	b	1

Then $(X ; *, 0,1)$ is an involutory $B E$-algebra but it is not an involutory dual $B C K-$ algebra and involutory Hilbert algebra. Because

$$
a * b=1 \text { and } b * a=1 \text { while, } a \neq b
$$

Also, it is not an involutory implication algebra. Because

$$
(a * b) * b=1 * b=b \neq(b * a) * a=1 * a=a
$$

Proposition 3.3. If X is a bounded commutative, then X is an involutory.
Proof. By using the commutativity we get

$$
N N x=(x * 0) * 0=(0 * x) * x=1 * x=x .
$$

Hence X is an involutory.
In the following example we show that the commutativity condition in the above theorem is necessary.

Example 3.4. Example 3.2(ii), is not an involutory. Because it is not commutative.
Proposition 3.5. If X is an involutory, then
(i) $x * y=N y * N x$,
(ii) $x \leq N y$ implies $y \leq N x$, for all $x, y \in X$.

Proof. (i). Since X is an involutory, then we have $N N x=x$, for all $x, y \in X$. Hence by Proposition $2.4(i i i), x * y=x * N N y=N y * N x$.
(ii). Since $x \leq N y$, we get $x * N y=1$. Hence by Proposition 2.4(iii), $1=x * N y=$ $y * N x$. So, $y \leq N x$.

Lemma 3.6. Let X be bounded self distributive and $x, y \in X$.
(i) if the smallest upper bound $x \vee y$ of x and y exists, then the greatest lower bound $N x \wedge N y$ of $N x$ and $N y$ exists and $N x \wedge N y=N(x \vee y)$.
(ii) if X is involutory and the greatest lower bound $x \wedge y$ exists, then the least upper bound $N x \vee N y$ exists and $N x \vee N y=N(x \wedge y)$.

Proof. (i). Assume that the smallest upper bound $x \vee y$ of x and y exists. Since $x \leq x \vee y$, then by Proposition 1.3, $(x \vee y) * 0 \leq x * 0$, (i.e., $N(x \vee y) \leq N x)$. By the similar way $N(x \vee y) \leq N y$. Hence $N(x \vee y)$ is a lower bound of $N x$ and $N y$. Also, assume that u is any lower bound of $N x$ and $N y$. Then $u \leq N x$ and $u \leq N y$. Hence by $(B E 4)$, we have $x *(u * 0)=u *(x * 0)=u * N x=1$. Hence $x \leq N u$ and by the similar way $y \leq N u$. So, $x \vee y \leq N u$. Now, by (BE4), we have $(x \vee y) *(u * 0)=u *((x \vee y) * 0)=1$. So, $u \leq N(x \vee y)$. Hence $N(x \vee y)$ is a greatest lower bound of $N x$ and $N y$. Therefore, the greatest lower bound $N x \wedge N y$ of $N x$ and $N y$ exists, and $N x \wedge N y=N(x \vee y)$.
(ii). Assume that $x \wedge y$ exists. Since $x \wedge y \leq x$ and $x \wedge y \leq y$, then by Proposition 2.5, we have $N(x) \leq N(x \wedge y)$ and $N(y) \leq N(x \wedge y)$. Hence $N(x \wedge y)$ is an upper bound of $N x$ and $N y$. Also, let u be any upper bound of $N x$ and $N y$. Then $N x \leq u$ and $N y \leq u$. Since X is involutory, then by Proposition 2.5, we derive $N u \leq N N x=x$ and $N u \leq N N y=y$. So, $N u \leq x \wedge y$. By Proposition 2.5, we have $N(x \wedge y) \leq$ $N N u=u$. Hence $N(x \wedge y)$ is the smallest upper bound of $N x$ and $N y$. Then the least upper bound $N x \vee N y$ exists, and $N x \vee N y=N(x \wedge y)$.

Theorem 3.7. Let X be involutory self distributive. Then the following are equivalent:
(i) $(X ; \leq)$ is an upper semi-lattice,
(ii) $(X ; \leq)$ is a lower semi-lattice,
(iii) $(X ; \leq)$ is a lattice.

Moreover, if $(X ; \leq)$ is a lattice, then the following identities hold:

$$
x \wedge y=N(N x \vee N y) \text { and } x \vee y=N(N x \wedge N y) .
$$

Proof. $(i) \Rightarrow(i i)$. Since $(X ; \leq)$ is an upper semi-lattice, then $N x \vee N y$ exists for all $x, y \in X$. By the first half part of Lemma 3.6, $N N x \wedge N N y$ exists. Also, since X is involutory, we have $N N x \wedge N N y=x \wedge y$. Then $x \wedge y$ exists. So, $(X ; \leq)$ is a lower semi-lattice.
(ii) $\Rightarrow($ iii $)$. Since $(X ; \leq)$ is a lower semi-lattice, $N x \wedge N y$ exists and using the second half part of Lemma 3.6, $N N x \vee N N y$ exists, for all $x, y \in X$. Also, since X is involutory, we have $N N x \vee N N y=x \vee y$. Then $x \vee y$ exists. So, $(X ; \leq)$ is an upper semi-lattice.
$($ iii $) \Rightarrow(i)$. The proof is obvious.
Now, let $(X ; \leq)$ is a lattice. Since by Lemma 3.6, X is involutory, then we have

$$
\begin{aligned}
& x \wedge y=N N x \wedge N N y=N(N x \vee N y), \\
& x \vee y=N N x \vee N N y=N(N x \wedge N y) .
\end{aligned}
$$

Theorem 3.8. Let I be an obstinate ideal of involutory(bounded) self-distributive X. Then $\left(X / I ; *, C_{1}\right)$ is involutory(bounded) self-distributive, too.

Proof. By Theorems 3.13 and $3.16([12]),\left(X / I ; *, C_{1}\right)$ is a self-distributive $B E-$ algebra. Let $x \in X$. Then $C_{0} * C_{x}=C_{0 * x}=C_{1}$. Hence X / I is a bounded $B E$-algebra. Now,

$$
N N C_{x}=\left(C_{x} * C_{0}\right) * C_{0}=C_{x * 0} * C_{0}=C_{(x * 0) * 0}=C_{N N x}=C_{x}
$$

Therefore, X / I is an involutory $B E$-algebra.
Proposition 3.9. Let X be involutory and operation " \circ " is defined on X by $x \circ y=$ $N x * y$, for all $x, y \in X$. Then $(X ; \circ, 0)$ is a commutative monoid.

Proof. By Proposition 2.4(iii),

$$
x \circ y=N x * y=N x * N N y=N y * N N x=N y * x=y \circ x
$$

and so X is commutative. Now, by Proposition 2.4(iii), and (BE4) we have

$$
\begin{aligned}
x \circ(y \circ z)=N x *(y \circ z) & =N x *(z \circ y) \\
& =N x *(N z * y) \\
& =N z *(N x * y) \\
& =z \circ(N x * y) \\
& =(N x * y) \circ z \\
& =(x \circ y) \circ z .
\end{aligned}
$$

Hence " \circ " is associative operation on X. Moreover, for any $x \in X$

$$
x \circ 0=N x * 0=N N x=x \text { and } 0 \circ x=N 0 * x=1 * x=x \text {. }
$$

In the following example we show that the converse of the Proposition 3.9, is not valid in general.

Example 3.10. Let $X:=\{0, a, b, 1\}$ be a set with the following table.

$$
\begin{array}{c|cc}
* & 1 & a \\
\hline 1 & 1 & a \\
a & a & a
\end{array}
$$

Then $(X ; *, 1)$ is a commutative monoid, but it is not a BE-algebra. Because $a * a=$ $a \neq 1$ and $a * 1=a \neq 1$, (i.e., conditions (BE1) and (BE2) are not holds).

Lemma 3.11. Let X be bounded. Then
(i) filter F of X is proper if and only if $0 \notin F$.
(ii) each proper filter F is contained in a maximal filter.

Proof. (i). Let F be a proper filter of X and $0 \in F$. If $x \in X$, since $0 * x=1 \in F$, which implies $x \in F$. Hence $X=F$, which is a contradiction. The converse is clear. (ii). The proof is obvious.

Theorem 3.12. Every bounded BE-algebra contains at least one maximal filter.
Proof. Let X be a bounded $B E$-algebra. Since $\{1\}$ is a proper filter of X, then the proof is clear by Lemma 3.11.

Definition 3.13. Let X be bounded. Then the radical of X, written $\operatorname{Rad}(X)$, is defined by

$$
\operatorname{Rad}(X)=\cap\{F: F \in \operatorname{Max}(X)\}
$$

In view of Theorem 3.12, $\operatorname{Rad}(X)$ always exists for a bounded algebra X. Following a standard terminology in the contemporary algebra, we shall call an algebra X semisimple if $\operatorname{Rad}(X)=\{1\}$.

Example 3.14. In Example 2.2(iv), $F_{1}=\{1\}, F_{2}=\{1, a\}, F_{3}=\{1, a, b, c\}$ and X are filters in X and F_{3} is only maximal filter of X. Hence $\operatorname{Rad}(X)=F_{3}$.

Example 3.15. In Example 2.2(iii), $F_{1}=\{1\}, F_{2}=\{1, a\}, F_{3}=\{1, b\}$ and X are filters in X and F_{2}, F_{3} are maximal filters of X, also $F_{2} \cap F_{3}=\{1\}$. Hence $\operatorname{Rad}(X)=\{1\}$ and therefore X is semi-simple.

Lemma 3.16. Let X be an involutory bounded BE-algebra. Then for every $x \in X$ with $x \neq 1$, there exists a maximal filter F of X such that $x \notin F$.

Proof. Let $1 \neq x \in X$. We claim that $<N x>$ is a proper filter of X. By contrary, if it is not, then $<N x>=X$. Hence $0 \in<N x>$ and therefore $N x * 0=N N x=1$. Since X is involutory, then $x=N N x=1$, which is a contradiction. By Lemma $3.11(i i)$, there is a maximal filter F of X such that $<N x>\subseteq F$, and $x \notin F$. Suppose $x \in F$. Since $N x=x * 0 \in F$, then $0 \in F$, which is contrary by Lemma 3.11(i).

Theorem 3.17. Let X be involutory and bounded. Then X is a semi-simple.
Proof. By Lemma 3.16, the proof is clear.
In this section we define a congruence relation " θ " on involutory bounded $B E-$ algebra X and construct quotient algebra $\left(X / \theta ; *, \theta_{0}, \theta_{1}\right)$ induced by the congruence relation " θ ", where, we denote θ_{x} for the equivalence class $[x]$ containing x. Since " θ " is a congruence on X, then the operation " $*$ " on X / θ given by $\theta_{x} * \theta_{y}=\theta_{x * y}$ is well-defined, because " θ " satisfied of the substitution property. Then $\left(X / \theta ; *, \theta_{0}, \theta_{1}\right)$ is an algebra of type $(2,0,0)$ where,

$$
\theta_{0}=\{x: N 0=N x\}=\{x: N x=1\}
$$

is the zero equivalence class containing 0 and

$$
\theta_{1}=\{x: N 1=N x\}=\{x: N x=0\}
$$

is the one equivalence class containing 1 . Now, in the following theorem define and prove this results.

Theorem 3.18. Let X be involutory and bounded. The relation " θ " defined on X by:

$$
(x, y) \in \theta \text { if and only if } N x=N y
$$

is a congruence relation on X and the quotient algebra $\left(X / \theta ; *, \theta_{0}, \theta_{1}\right)$ is an involutory bounded BE-algebra.

Proof. It is clear that " θ " is an equivalence relation on X. Now, Let $(x, y) \in \theta$ and $(u, v) \in \theta$. Then $N x=N y$ and $N u=N v$. Hence,

$$
N x * N u=(x * 0) *(u * 0)=u *((x * 0) * 0)=u * N N x=u * x .
$$

Thus $N(u * x)=N(N x * N u)=N(N y * N v)=N(v * y)$, and so $(u * x, v * y) \in \theta$. By the similarly way we have $(x * u, y * v) \in \theta$. Hence " θ " is a congruence relation on X.

Let $\theta_{x}, \theta_{y}, \theta_{z} \in X / \theta$. Then
(BE1) $\theta_{x} * \theta_{x}=\theta_{x * x}=\theta_{1}$,
(BE2) $\theta_{x} * \theta_{1}=\theta_{x * 1}=\theta_{1}$,
(BE3) $\theta_{1} * \theta_{x}=\theta_{1 * x}=\theta_{x}$,
(BE4) $\theta_{x} *\left(\theta_{y} * \theta_{z}\right)=\theta_{x} * \theta_{y * z}=\theta_{x *(y * z)}=\theta_{y *(x * z)}=\theta_{y} * \theta_{x * z}=\theta_{y} *\left(\theta_{x} * \theta_{z}\right)$.
Now, since $\theta_{0} * \theta_{x}=\theta_{0 * x}=\theta_{1}$. Hence θ_{0} is as the smallest element of X / θ. Also,

$$
N N \theta_{x}=\left(\theta_{x} * \theta_{0}\right) * \theta_{0}=\theta_{x * 0} * \theta_{0}=\theta_{(x * 0) * 0}=\theta_{N N x}=\theta_{x} .
$$

Therefore, $\left(X / \theta ; *, \theta_{0}, \theta_{1}\right)$ is an involutory bounded $B E$-algebra.
Example 3.19. Consider Example 2.2(iv), $\theta_{0}=\{0\}$ and $\theta_{a}=\theta_{b}=\theta_{c}=\theta_{1}=$ $\{a, b, c, 1\}$. Then $X / \theta=\left\{\theta_{0}, \theta_{1}\right\}$. Thus $\left(X / \theta ; *, \theta_{0}, \theta_{1}\right)$ is an involutory bounded $B E-$ algebra.

Corollary 3.20. Let X be an involutory bounded BE-algebra and $X_{0}:=\{N x: x \in$ $X\}$. Then $\left(X_{0} ; *, N 0\right)$ is a BE-algebra.

Example 3.21. In Example 2.2(ii), (iv), respectively, $X_{0}=\{0,1\}$ and $X_{0}=$ $\{0, a, b, 1\}$.

Proposition 3.22. Let X be involutory, bounded and self-distributive(commutative). Then X / θ is involutory, bounded and self-distributive(commutative), too.

4 Conclusion and future research

In this paper, we introduced the notion of bounded and involutory $B E$-algebras and get some results. In addition, we have defined a congruence relation on involutory bounded $B E$-algebras and construct the quotient $B E$-algebra via this relations. In [10], J. Meng proved that implication algebras are dual to implicative $B C K$-algebras. Also R. Halaŝ in [9], showed commutative Hilbert algebras are implication algebras and A. Digo in [6], proved implication algebras are Hilbert algebras. Recently, A. Walendziak in [15], showed that an implication algebra is a $B E$-algebra and commutative $B E$-algebras are dual $B C K$-algebras. In [14], we showed that every Hilbert algebra is a self distributive $B E$-algebra and commutative self distributive $B E$-algebra is a Hilbert algebra. Then in the following diagram we summarize the results of this paper and we give the relations among such structures of involutory algebras.
" $A \rightarrow B$," means that A conclude B.

We think such results are very useful for study in this structure. In the future work we try assemble of calculus relative to different kinds of $B E$-algebras, as example, latticeal structure and Boolean lattices.

Acknowledgments: The authors wish to thank the reviewers for their excellent suggestions that have been incorporated into this paper.

References

[1] S. S. Ahn and Y. H. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. 68, No. 2(2008), 279-285.
[2] S. S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46, No. 2(2009), 281-287.
[3] S. S. Ahn, Y. H. Kim and J. M. Ko, Filters in commutative BE-algebras, Bull. Korean Math. Soc. 27, No. 2(2012), 233-242.
[4] A. Borumand Saeid, A. Rezaei and R. A. Borzooei, Some types of filters in BE-algebras, Math. Comput. Sci. Vol. 6, No 3 (2013), 341-352.
[5] R. A. Borzooei, A. Borumand Saeid, R. Ameri and A. Rezaei, States in BE-algebras, Kochi Journal of Mathematics, Kochi Journal of Mathematics, 9 (2014), 27-42.
[6] A. Diego, Sur algébra de Hilbert, Logique Math. Ser. A, 21(1967), 177-198.
[7] H. S. Kim and Y. H. Kim, On BE-algebras, Sci, Math, Jpn. 66, No. 1(2007), 113-116.
[8] Y. Huang, BCI-algebra, Science Press, Beijing 100717, China, (2006).
[9] R. Halaŝ, Remarks on commutative Hilbert algebras, Mathematica Bohemica, 127, No. 4(2002), 525-529.
[10] J. Meng, Implication algebras are dual to Implicative BCK-algebras, Soochow Journal of Math. V. 22, No. 4(1996), 567-571.
[11] B. L. Meng, On filters in BE-algebras, Sci. Math. Jpn. 71(2010), 201-207.
[12] A. Rezaei and A. Borumand Saeid, Some results in BE-algebras, Analele Universitatii Oradea Fasc. Matematica, Tom XIX (2012), 33-44.
[13] A. Rezaei and A. Borumand Saeid, Commutative ideals in BE-algebras, Kyungpook Math. J. 52(2012), 483-494.
[14] A. Rezaei, A. Borumand Saeid and R. A. Borzooei, Relation between Hilbert algebras and BE-algebras, Appl. Math. 8. No 1 (2013), 573-574.
[15] A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. 69, No. 2(2008), 585-588.

DOI: 10.7862/rf.2014.2

Rajab Ali Borzooei
email: borzooei@sbu.ac.ir
Dept. of Math.
Shahid Beheshti University of Tehran, Tehran, Iran

Arsham Borumand Saeid - corresponding author
email: rameri@ut.ac.ir
Dept. of. Math.
Tehran University
Tehran, Iran
Reza Ameri
email: arsham@uk.ac.ir
Dept. of Math.
Shahid Bahonar University of Kerman
Kerman, Iran
Akbar Rezaei
mailRezaei@pnu.ac.ir
Dept. of Math.
Payame Noor University
p. o. box. 19395-3697, Tehran, Iran

Received 13.12.2013, Accepted 12.02.2014

