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1 Introduction and Preliminaries

The study of BCK/BCI–algebras was initiated by K. Iséki in 1966 as a generalization
of propositional logic. There exist several generalization of BCK/BCI–algebras, such
as BCH–algebras, d–algebras, B–algebras, BH–algebras, etc.

Especially, the notion of BE–algebras was introduced by H. S. Kim and Y. H.
Kim [7], in which was deeply studied by S. S. Ahn and et. al., in [1, 2, 3], Wal-
endziak in [15], A. Rezaei and et. al., in [12, 13, 14]. Lattice-valued logic is becoming
a research filed strongly influences the development of Algebraic Logic, Computer
Science and Artificial Intelligence Technology. BE–algebras are important tools for
certain investigations in algebraic logic since they can be consider as fragments of
any propositional logic containing a logical connective implication and the constant 1
which is considered as the logical value ”true”. In this paper, we develop the theory
BE–algebras with define a new structure as bounded and involutory BE–algebras
and investigate the relationship between them and proved some theorems.

The paper has been organized in tree sections. In section 1, we give some defi-
nitions and some previous results and in section 2 we define bounded BE–algebras
and define a congruence relation on this algebra with respect to a filter which this
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congruence relation allowed us to define a quotient algebra is also a bounded BE–
algebra. In section 3 we discus on involutory BE–algebra because it is well known this
structure has an important and vital role in investigating the structure of a logical
system. Since quotient algebra is a basic tool for exploring the structures of algebras
and there are close contacts among congruences and quotient algebras, we introduce
a new congruence relation on X and construct quotient algebra via this congruence
relation.

Definition 1.1. [7] An algebra (X; ∗, 1) of type (2, 0) is called a BE–algebra if fol-
lowing axioms hold:

(BE1) x ∗ x = 1,

(BE2) x ∗ 1 = 1,

(BE3) 1 ∗ x = x,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.

We introduce a relation ” ≤ ” on X by x ≤ y if and only if x ∗ y = 1.

Proposition 1.2. [7] Let X be a BE–algebra. Then

(i) x ∗ (y ∗ x) = 1,

(ii) y ∗ ((y ∗ x) ∗ x) = 1, for all x, y ∈ X.

From now on, in this paper X is a BE–algebra, unless otherwise is stated.
A subset F of X is called a filter of X if (F1) 1 ∈ F and (F2) x ∈ F and x ∗ y ∈ F
imply y ∈ F . We denote By F (X) the set of all filters of X and Max(X) the set of
all maximal filters of X. Let A be a non-empty subset of X, then the set

< A >=
⋂
{G ∈ F (X)| A ⊆ G}

is called the filter generated by A, written < A >. If A = {a}, we will denote < {a} >,
briefly by < a >, and we call it a principal filter of X. For F ∈ F (X) and a ∈ X,
we denote by Fa the filter generated by F ∪ {a}. X is said to be self distributive if
x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X, (Example 8., [7]).

In a self distributive BE–algebra X, Fa = {x ∈ X : a ∗ x ∈ F},([3]). X is said
to be transitive if y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X, [1]. We say that X is
commutative if (x∗y)∗y = (y ∗x)∗x, for all x, y ∈ X. In [15], A. Walendziak, showed
that every dual BCK–algebra is a BE–algebra and any commutative BE–algebra is
a dual BCK–algebra.

We note that ”≤” is reflexive by (BE1). If X is self distributive, then relation
”≤” is a transitive order set on X. Because if x ≤ y and y ≤ z, then

x ∗ z = 1 ∗ (x ∗ z) = (x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z) = x ∗ 1 = 1
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and so x ≤ z. If X is commutative, then by Proposition 3.3, [15], relation ”≤” is
antisymmetric. Hence if X is a commutative self distributive BE–algebra, then ”≤”
is a partial order set on X, (Example 3.4., [3]). We show that if I be an obstinate
ideal of a self distributive BE–algebra X, then (X/I; ∗, C1) is also a BE-algebra,
which is called to be the quotient algebra via I, and C1 = I, (see Theorem 3.13, [12]).

Proposition 1.3. [12] Let X be self distributive. If x ≤ y, then

(i) z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z,

(ii) y ∗ z ≤ (z ∗ x) ∗ (y ∗ x), for all x, y, z ∈ X.

Theorem 1.4. [13] A dual BCK–algebra X is commutative if and only if (X;≤) is
an upper semi-lattice with x ∨ y = (y ∗ x) ∗ x, for all x, y ∈ X.

Proposition 1.5. [13] Let X be a commutative BE–algebra. Then

(i) for each a ∈ X, the mapping fa : x → x ∗ a is an anti-tone involution on the
section [a, 1].

(ii) (A,≤) is a near-lattice with section anti-tone involutions and for every a ∈ X,
the anti-tone involutions fa on [a, 1] is given by fa(x) = x ∗ a.

Theorem 1.6. [15, 13] Let X be commutative. Then it is a semi-lattice with respect
to ∨.

Definition 1.7. [4] A filter F of X is called an obstinate filter if x, y /∈ F imply
x ∗ y ∈ F and y ∗ x ∈ F .

Theorem 1.8. [5] Let X be self distributive. F ∈ F (X) and F 6= X. Then the
following are equivalent:

(i) F is an obstinate filter,

(ii) if x /∈ F , then x ∗ y ∈ F, for all y ∈ F.

2 On Bounded BE-algebras

Definition 2.1. X is called bounded if there exists the smallest element 0 of X (i.e.,
0 ∗ x = 1, for all x ∈ X).

Example 2.2. (i). The interval [0, 1] of real numbers with the operation ” ∗ ” defined
by

x ∗ y = min{1− x+ y, 1}, for all x, y ∈ X

is a bounded BE–algebra.
(ii). Let (X; ∗, 1) be a BE–algebra, 0 /∈ X and X̄ = X ∪ {0}. If we extensively

define
0 ∗ x = 0 ∗ 0 = 1 and x ∗ 0 = 0 for all x ∈ X.
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Then (X̄; ∗, 0, 1) is a bounded BE–algebra with 0 as the smallest element.
(iii). Let X := {0, a, b, 1} be a set with the following table.

∗ 0 a b 1
0 1 1 1 1
a a 1 b 1
b b a 1 1
1 0 a b 1

Then (X; ∗, 0, 1) is a bounded BE–algebra with 0 as the smallest element.
(iv). Let X := {0, a, b, c, 1} be a set with the following table.

∗ 0 a b c 1
0 1 1 1 1 1
a 0 1 b c 1
b 0 a 1 c 1
c 0 1 b 1 1
1 0 a b c 1

Then (X; ∗, 0, 1) is a bounded BE–algebra with 0 as the smallest element.
(v). Let (X;∨,∧,¬, 0, 1) be a Boolean-lattice. Then (X; ∗, 1) is a bounded BE–

algebra, where operation ” ∗ ” is defined by x ∗ y = (¬x) ∨ y, for all x, y ∈ X.

Remark. The following example shows that the bounded BE–algebra is not
a dual BCK–algebra and Hilbert algebra in general (see Definition 2.3, [15] and
Definition 3.1, [14]).

Example 2.3. Let X := {0, a, b, 1} be a set with the following table.

∗ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 1 1 1
1 0 a b 1

Then (X; ∗, 0, 1) is a bounded BE–algebra with 0 as the smallest element but it is not
a dual BCK–algebra, Hilbert algebra. Because

a ∗ b = b ∗ a = 1 while a 6= b.

Also, it is not an implication algebra. Because

(a ∗ b) ∗ b = 1 ∗ b = b 6= (b ∗ a) ∗ a = 1 ∗ a = a.

Given a bounded BE–algebra X with 0 as the smallest element, we denote x ∗ 0
by Nx, then N can be regarded as a unary operation on X.

Proposition 2.4. Let X be bounded with the smallest element 0. Then the following
hold:
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(i) N0 = 1 and N1 = 0,

(ii) x ≤ NNx,

(iii) x ∗Ny = y ∗Nx, for all x, y ∈ X.

Proof. (i). By (BE1) and (BE2) we have N0 = 0 ∗ 0 = 1 and N1 = 1 ∗ 0 = 0.
(ii). Since x ∗ (Nxx) = x ∗ ((x ∗ 0) ∗ 0) = (x ∗ 0) ∗ (x ∗ 0) = 1, then x ≤ NNx.
(iii). By (BE4) we have x ∗Ny = x ∗ (y ∗ 0) = y ∗ (x ∗ 0) = y ∗Nx.

Proposition 2.5. Let X be a self distributive and bounded. Then

(i) y ∗ x ≤ Nx ∗Ny,

(ii) x ≤ y, implies Ny ≤ Nx, for all x, y ∈ X.

Proof. (i). We have

(y ∗ x) ∗ (Nx ∗Ny) = Nx ∗ ((y ∗ x) ∗Ny) = (x ∗ 0) ∗ ((y ∗ x) ∗ (y ∗ 0))

= (x ∗ 0) ∗ (y ∗ (x ∗ 0))

= y ∗ ((x ∗ 0) ∗ (x ∗ 0))

= y ∗ 1 = 1.

Hence y ∗ x ≤ Nx ∗Ny.
(ii). By (BE3) and assumption we have

Ny ∗Nx = (y ∗ 0) ∗ (x ∗ 0) = (y ∗ 0) ∗ (1 ∗ (x ∗ 0))

= (y ∗ 0) ∗ ((x ∗ y) ∗ (x ∗ 0))

= (y ∗ 0) ∗ (x ∗ (y ∗ 0))

= x ∗ ((y ∗ 0) ∗ (y ∗ 0))

= x ∗ 1 = 1.

Hence Ny ≤ Nx.

In the following example we show that the self-distributivity condition in the above
theorem is necessary.

Example 2.6. Example 2.2(iii), is a bounded BE–algebra with 0 as the smallest
element, while it is not self-distributive. Because

b ∗ (0 ∗ a) = 2 ∗ 1 = 1 6= (b ∗ 0) ∗ (b ∗ a) = b ∗ a = a.

We can seen easily that, b = a ∗ b 
 Nb ∗Na = b ∗ a = a.

Proposition 2.7. Let X be bounded implicative self distributive. Then the following
hold:

(i) X is commutative,
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(ii) x = Nx ∗ x,

(iii) x ∨ y = y ∨ x = Nx ∗ y, for all x, y ∈ X.

Proof. (i). See proof of Theorem 3.12([14]).
(ii). Assume that X is a bounded implicative. Then Nx ∗ x = (x ∗ 0) ∗ x = x.
(iii). Let X be bounded implicative self distributive and x, y ∈ X. then by Propo-

sition 1.3, 0 ≤ y and x ∗ 0 ≤ x ∗ y. Furthermore, by Propositions 1.2 and 1.3, we
get

x ≤ (x ∗ y) ∗ y ≤ (x ∗ 0) ∗ y = Nx ∗ y
Since by Proposition 1.2, y ≤ Nx ∗ y, then Nx ∗ y is an upper bound of x and y.
Hence x ∨ y ≤ Nx ∗ y. Also, we have

Nx ∗ y ≤ (y ∗ x) ∗ (Nx ∗ x) = (y ∗ x) ∗ x.

Since X is commutative, then by Theorem 1.6, we have (y ∗ x) ∗ x = x ∨ y = y ∨ x
and so by Proposition 3.3([15]), the proof is complete.

Corollary 2.8. Let X be self distributive, F ∈ F (X) and F 6= X. Then the following
are equivalent:

(i) F is an obstinate filter,

(ii) if x /∈ F , then Nx ∈ F.

Definition 2.9. Let X and Y be bounded. A homomorphism from X to Y is a
function f : X → Y such that

(i) f(x ∗ y) = f(x) ∗ f(y),

(ii) f(Nx) = N(f(x)),

(iii) f(0) = 0, for all x, y ∈ X.

Example 2.10. Consider X as Example 2.2(iii) and Y as Example 2.3. Define f :
X → Y such that f(1) = f(a) = f(b) = 1 and f(0) = 0. Then f is a homomorphism.

Theorem 2.11. Let f : X → Y be a homomorphism. Then ker(f) = {x ∈ X : f(x) =
1} is a filter in X. Moreover, if f(x) = f(y), then x ∗ y ∈ ker(f) and y ∗ x ∈ ker(f),
for all x, y ∈ X. If Y is commutative, then the converse is valid.

Proof. We have f(1) = f(x ∗ x) = f(x) ∗ f(x) = 1. Hence 1 ∈ ker(f). Now, let
x ∈ ker(f) and x∗y ∈ ker(f). Then f(x) = f(x∗y) = 1. But f(x∗y) = f(x)∗f(y) = 1.
Hence f(y) = 1 ∗ f(y) = 1. Therefore, y ∈ ker(f).

Now, let f(x) = f(y). By using (BE1), f(x) ∗ f(y) = 1 and f(y) ∗ f(x) = 1. But
1 = f(x) ∗ f(y) = f(x ∗ y) and 1 = f(y) ∗ f(x) = f(y ∗ x) implies x ∗ y ∈ ker(f) and
y ∗ x ∈ ker(f).

Assume that Y is commutative, x∗y ∈ ker(f) and y ∗x ∈ ker(f). Then f(x∗y) =
f(y ∗ x) = 1 which implies that f(x) ∗ f(y) = f(y) ∗ f(x) = 1. Hence by Proposition
3.3([15]), f(x) = f(y).
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Theorem 2.12. Let X be bounded transitive, F be a filter and X/F be the corre-
sponding quotient algebra. Then the map f : X → X/F which is defined by f(a) = [a],
for all a ∈ X, is a homomorphism and ker(f) = F.

Proof. By Propositions 5.4 and 5.7([11]), X/F is a quotient BE–algebra. Now, we
have f(0) = [0] and

f(Nx) = f(x ∗ 0) = f(x) ∗ f(0) = f(x) ∗ [0] = N(f(x)).

Now, let x ∈ ker(f). Then f(x) = [x] = [1] if and only if 1 = x ∗ 1 ∈ F and
x = 1 ∗ x ∈ F if and only if 1 ∈ F and x ∈ F. Therefore, ker(f) = F.

3 Involutory BE–algebras

If NNx = x, then x is called an involution of X. The smallest element 0 and the
greatest element 1 are two involutions of X, because

NN0 = N(0 ∗ 0) = N1 = 1 ∗ 0 = 0,

NN1 = N(1 ∗ 0) = N0 = 0 ∗ 0 = 1.

Definition 3.1. A bounded BE–algebra X is called involutory if any element of X
is involution.

Example 3.2. (i). Examples 2.2(i), (iii), (v), are involutory.
(ii). Let X := {0, a, b, 1} be a set with the following table.

∗ 0 a b 1
0 1 1 1 1
a 0 1 b 1
b 0 a 1 1
1 0 a b 1

Then (X; ∗, 0, 1) is a bounded BE–algebra but it is not an involutory. Because

NNb = N(b ∗ 0) = N0 = 0 ∗ 0 = 1 6= b.

(iii). Let X := {0, a, b, 1} be a set with the following table.

∗ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a 1 1 1
1 0 a b 1

Then (X; ∗, 0, 1) is an involutory BE–algebra but it is not an involutory dual BCK–
algebra and involutory Hilbert algebra. Because

a ∗ b = 1 and b ∗ a = 1 while, a 6= b.
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Also, it is not an involutory implication algebra. Because

(a ∗ b) ∗ b = 1 ∗ b = b 6= (b ∗ a) ∗ a = 1 ∗ a = a.

Proposition 3.3. If X is a bounded commutative, then X is an involutory.

Proof. By using the commutativity we get

NNx = (x ∗ 0) ∗ 0 = (0 ∗ x) ∗ x = 1 ∗ x = x.

Hence X is an involutory.

In the following example we show that the commutativity condition in the above
theorem is necessary.

Example 3.4. Example 3.2(ii), is not an involutory. Because it is not commutative.

Proposition 3.5. If X is an involutory, then

(i) x ∗ y = Ny ∗Nx,

(ii) x ≤ Ny implies y ≤ Nx, for all x, y ∈ X.

Proof. (i). Since X is an involutory, then we have NNx = x, for all x, y ∈ X. Hence
by Proposition 2.4(iii), x ∗ y = x ∗NNy = Ny ∗Nx.

(ii). Since x ≤ Ny, we get x∗Ny = 1. Hence by Proposition 2.4(iii), 1 = x∗Ny =
y ∗Nx. So, y ≤ Nx.

Lemma 3.6. Let X be bounded self distributive and x, y ∈ X.

(i) if the smallest upper bound x∨y of x and y exists, then the greatest lower bound
Nx ∧Ny of Nx and Ny exists and Nx ∧Ny = N(x ∨ y).

(ii) if X is involutory and the greatest lower bound x∧y exists, then the least upper
bound Nx ∨Ny exists and Nx ∨Ny = N(x ∧ y).

Proof. (i). Assume that the smallest upper bound x ∨ y of x and y exists. Since
x ≤ x ∨ y, then by Proposition 1.3, (x ∨ y) ∗ 0 ≤ x ∗ 0, (i.e., N(x ∨ y) ≤ Nx).
By the similar way N(x ∨ y) ≤ Ny. Hence N(x ∨ y) is a lower bound of Nx and
Ny. Also, assume that u is any lower bound of Nx and Ny. Then u ≤ Nx and
u ≤ Ny. Hence by (BE4), we have x ∗ (u ∗ 0) = u ∗ (x ∗ 0) = u ∗ Nx = 1. Hence
x ≤ Nu and by the similar way y ≤ Nu. So, x ∨ y ≤ Nu. Now, by (BE4), we have
(x∨ y) ∗ (u ∗ 0) = u ∗ ((x∨ y) ∗ 0) = 1. So, u ≤ N(x∨ y). Hence N(x∨ y) is a greatest
lower bound of Nx and Ny. Therefore, the greatest lower bound Nx∧Ny of Nx and
Ny exists, and Nx ∧Ny = N(x ∨ y).

(ii). Assume that x∧ y exists. Since x∧ y ≤ x and x∧ y ≤ y, then by Proposition
2.5, we have N(x) ≤ N(x∧y) and N(y) ≤ N(x∧y). Hence N(x∧y) is an upper bound
of Nx and Ny. Also, let u be any upper bound of Nx and Ny. Then Nx ≤ u and
Ny ≤ u. Since X is involutory, then by Proposition 2.5, we derive Nu ≤ NNx = x
and Nu ≤ NNy = y. So, Nu ≤ x ∧ y. By Proposition 2.5, we have N(x ∧ y) ≤
NNu = u. Hence N(x ∧ y) is the smallest upper bound of Nx and Ny. Then the
least upper bound Nx ∨Ny exists, and Nx ∨Ny = N(x ∧ y).
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Theorem 3.7. Let X be involutory self distributive. Then the following are equiva-
lent:

(i) (X;≤) is an upper semi-lattice,

(ii) (X;≤) is a lower semi-lattice,

(iii) (X;≤) is a lattice.

Moreover, if (X;≤) is a lattice, then the following identities hold:

x ∧ y = N(Nx ∨Ny) and x ∨ y = N(Nx ∧Ny).

Proof. (i) ⇒ (ii). Since (X;≤) is an upper semi-lattice, then Nx ∨Ny exists for all
x, y ∈ X. By the first half part of Lemma 3.6, NNx ∧NNy exists. Also, since X is
involutory, we have NNx ∧ NNy = x ∧ y. Then x ∧ y exists. So, (X;≤) is a lower
semi-lattice.

(ii) ⇒ (iii). Since (X;≤) is a lower semi-lattice, Nx ∧ Ny exists and using the
second half part of Lemma 3.6, NNx∨NNy exists, for all x, y ∈ X. Also, since X is
involutory, we have NNx ∨NNy = x ∨ y. Then x ∨ y exists. So, (X;≤) is an upper
semi-lattice.

(iii)⇒ (i). The proof is obvious.

Now, let (X;≤) is a lattice. Since by Lemma 3.6, X is involutory, then we have

x ∧ y = NNx ∧NNy = N(Nx ∨Ny),

x ∨ y = NNx ∨NNy = N(Nx ∧Ny).

Theorem 3.8. Let I be an obstinate ideal of involutory(bounded) self-distributive X.
Then (X/I; ∗, C1) is involutory(bounded) self-distributive, too.

Proof. By Theorems 3.13 and 3.16([12]), (X/I; ∗, C1) is a self-distributive BE–
algebra. Let x ∈ X. Then C0∗Cx = C0∗x = C1. Hence X/I is a bounded BE–algebra.
Now,

NNCx = (Cx ∗ C0) ∗ C0 = Cx∗0 ∗ C0 = C(x∗0)∗0 = CNNx = Cx.

Therefore, X/I is an involutory BE–algebra.

Proposition 3.9. Let X be involutory and operation ” ◦ ” is defined on X by x ◦ y =
Nx ∗ y, for all x, y ∈ X. Then (X; ◦, 0) is a commutative monoid.

Proof. By Proposition 2.4(iii),

x ◦ y = Nx ∗ y = Nx ∗NNy = Ny ∗NNx = Ny ∗ x = y ◦ x
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and so X is commutative. Now, by Proposition 2.4(iii), and (BE4) we have

x ◦ (y ◦ z) = Nx ∗ (y ◦ z) = Nx ∗ (z ◦ y)

= Nx ∗ (Nz ∗ y)

= Nz ∗ (Nx ∗ y)

= z ◦ (Nx ∗ y)

= (Nx ∗ y) ◦ z
= (x ◦ y) ◦ z.

Hence ” ◦ ” is associative operation on X. Moreover, for any x ∈ X

x ◦ 0 = Nx ∗ 0 = NNx = x and 0 ◦ x = N0 ∗ x = 1 ∗ x = x.

In the following example we show that the converse of the Proposition 3.9, is not
valid in general.

Example 3.10. Let X := {0, a, b, 1} be a set with the following table.

∗ 1 a
1 1 a
a a a

Then (X; ∗, 1) is a commutative monoid, but it is not a BE–algebra. Because a ∗ a =
a 6= 1 and a ∗ 1 = a 6= 1, (i.e., conditions (BE1) and (BE2) are not holds).

Lemma 3.11. Let X be bounded. Then

(i) filter F of X is proper if and only if 0 /∈ F .

(ii) each proper filter F is contained in a maximal filter.

Proof. (i). Let F be a proper filter of X and 0 ∈ F. If x ∈ X, since 0 ∗ x = 1 ∈ F,
which implies x ∈ F. Hence X = F , which is a contradiction. The converse is clear.
(ii). The proof is obvious.

Theorem 3.12. Every bounded BE–algebra contains at least one maximal filter.

Proof. Let X be a bounded BE–algebra. Since {1} is a proper filter of X, then the
proof is clear by Lemma 3.11.

Definition 3.13. Let X be bounded. Then the radical of X, written Rad(X), is
defined by

Rad(X) = ∩{F : F ∈Max(X)}.

In view of Theorem 3.12, Rad(X) always exists for a bounded algebraX. Following
a standard terminology in the contemporary algebra, we shall call an algebra X semi-
simple if Rad(X) = {1}.
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Example 3.14. In Example 2.2(iv), F1 = {1}, F2 = {1, a}, F3 = {1, a, b, c} and X
are filters in X and F3 is only maximal filter of X. Hence Rad(X) = F3.

Example 3.15. In Example 2.2(iii), F1 = {1}, F2 = {1, a}, F3 = {1, b} and X
are filters in X and F2, F3 are maximal filters of X, also F2 ∩ F3 = {1}. Hence
Rad(X) = {1} and therefore X is semi-simple.

Lemma 3.16. Let X be an involutory bounded BE–algebra. Then for every x ∈ X
with x 6= 1, there exists a maximal filter F of X such that x /∈ F.

Proof. Let 1 6= x ∈ X. We claim that < Nx > is a proper filter of X. By contrary, if
it is not, then < Nx >= X. Hence 0 ∈< Nx > and therefore Nx ∗ 0 = NNx = 1.
Since X is involutory, then x = NNx = 1, which is a contradiction. By Lemma
3.11(ii), there is a maximal filter F of X such that < Nx >⊆ F, and x /∈ F. Suppose
x ∈ F . Since Nx = x ∗ 0 ∈ F , then 0 ∈ F, which is contrary by Lemma 3.11(i).

Theorem 3.17. Let X be involutory and bounded. Then X is a semi-simple.

Proof. By Lemma 3.16, the proof is clear.

In this section we define a congruence relation ”θ” on involutory bounded BE–
algebra X and construct quotient algebra (X/θ; ∗, θ0, θ1) induced by the congruence
relation ”θ”, where, we denote θx for the equivalence class [x] containing x. Since
”θ” is a congruence on X, then the operation ” ∗ ” on X/θ given by θx ∗ θy = θx∗y is
well-defined, because ”θ” satisfied of the substitution property. Then (X/θ; ∗, θ0, θ1)
is an algebra of type (2, 0, 0) where,

θ0 = {x : N0 = Nx} = {x : Nx = 1}

is the zero equivalence class containing 0 and

θ1 = {x : N1 = Nx} = {x : Nx = 0}

is the one equivalence class containing 1. Now, in the following theorem define and
prove this results.

Theorem 3.18. Let X be involutory and bounded. The relation ”θ” defined on X
by:

(x, y) ∈ θ if and only if Nx = Ny

is a congruence relation on X and the quotient algebra (X/θ; ∗, θ0, θ1) is an involutory
bounded BE–algebra.

Proof. It is clear that ”θ” is an equivalence relation on X. Now, Let (x, y) ∈ θ and
(u, v) ∈ θ. Then Nx = Ny and Nu = Nv. Hence,

Nx ∗Nu = (x ∗ 0) ∗ (u ∗ 0) = u ∗ ((x ∗ 0) ∗ 0) = u ∗NNx = u ∗ x.

Thus N(u ∗x) = N(Nx ∗Nu) = N(Ny ∗Nv) = N(v ∗ y), and so (u ∗x, v ∗ y) ∈ θ. By
the similarly way we have (x ∗ u, y ∗ v) ∈ θ. Hence ”θ” is a congruence relation on X.
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Let θx, θy, θz ∈ X/θ. Then
(BE1) θx ∗ θx = θx∗x = θ1,
(BE2) θx ∗ θ1 = θx∗1 = θ1,
(BE3) θ1 ∗ θx = θ1∗x = θx,
(BE4) θx ∗ (θy ∗ θz) = θx ∗ θy∗z = θx∗(y∗z) = θy∗(x∗z) = θy ∗ θx∗z = θy ∗ (θx ∗ θz).

Now, since θ0 ∗ θx = θ0∗x = θ1. Hence θ0 is as the smallest element of X/θ. Also,

NNθx = (θx ∗ θ0) ∗ θ0 = θx∗0 ∗ θ0 = θ(x∗0)∗0 = θNNx = θx.

Therefore, (X/θ; ∗, θ0, θ1) is an involutory bounded BE–algebra.

Example 3.19. Consider Example 2.2(iv), θ0 = {0} and θa = θb = θc = θ1 =
{a, b, c, 1}. Then X/θ = {θ0, θ1}. Thus (X/θ; ∗, θ0, θ1) is an involutory bounded BE–
algebra.

Corollary 3.20. Let X be an involutory bounded BE–algebra and X0 := {Nx : x ∈
X}. Then (X0; ∗, N0) is a BE–algebra.

Example 3.21. In Example 2.2(ii), (iv), respectively, X0 = {0, 1} and X0 =
{0, a, b, 1}.

Proposition 3.22. Let X be involutory, bounded and self-distributive(commutative).
Then X/θ is involutory, bounded and self-distributive(commutative), too.

4 Conclusion and future research

In this paper, we introduced the notion of bounded and involutory BE–algebras and
get some results. In addition, we have defined a congruence relation on involutory
bounded BE–algebras and construct the quotient BE–algebra via this relations. In
[10], J. Meng proved that implication algebras are dual to implicative BCK–algebras.
Also R. Halaŝ in [9], showed commutative Hilbert algebras are implication algebras
and A. Digo in [6], proved implication algebras areHilbert algebras. Recently, A. Wal-
endziak in [15], showed that an implication algebra is a BE–algebra and commutative
BE–algebras are dual BCK–algebras. In [14], we showed that every Hilbert algebra
is a self distributive BE–algebra and commutative self distributive BE–algebra is
a Hilbert algebra. Then in the following diagram we summarize the results of this
paper and we give the relations among such structures of involutory algebras.

”A→ B,” means that A conclude B.

invo-BE–algebra

imp-com

��

self-com

**com

tt
invo-dual BCK–algebra

imp //

44

invo-implication algebra

OO

//oo invo- Hilbert algebra
com
oo

jj
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We think such results are very useful for study in this structure. In the future work
we try assemble of calculus relative to different kinds of BE–algebras, as example,
latticeal structure and Boolean lattices.

Acknowledgments: The authors wish to thank the reviewers for their excellent
suggestions that have been incorporated into this paper.
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