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On circularly symmetric functions
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Abstract: Let D ⊂ C and 0 ∈ D. A set D is circularly symmetric
if for each % ∈ R+ a set D ∩ {ζ ∈ C : |ζ| = %} is one of three forms:
an empty set, a whole circle, a curve symmetric with respect to the real
axis containing %. A function f ∈ A is circularly symmetric if f(∆) is a
circularly symmetric set. The class of all such functions we denote by X.
The above definitions were given by Jenkins in [2].

In this paper besides X we also consider some of its subclasses: X(λ)
and Y ∩ S∗ consisting of functions in X with the second coefficient fixed
and univalent starlike functions respectively. According to the suggestion,
in Abstract we add one more paragraph at the end of the section:

For X(λ) we find the radii of starlikeness, starlikeness of order α,
univalence and local univalence. We also obtain some distortion results.
For Y ∩S∗ we discuss some coefficient problems, among others the Fekete-
Szegö ineqalities.

AMS Subject Classification: 30C45
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1 The class of circularly symmetric functions and
some its subclasses.

Let Ã denote the class of all functions analytic in ∆ ≡ {ζ ∈ C : |ζ| < 1} and let A
denote the class of all functions analytic in ∆ normalized by f(0) = f ′(0) − 1 = 0.
Similar notation is applied to the class of typically real functions, i.e. functions
satisfying the following condition: Im z Im f(z) ≥ 0 for z ∈ ∆. The set of all analytic
and typically real functions is denoted by T̃ ; the subset of T̃ consisting of normalized
functions is denoted by T . Hence T = T̃ ∩ A. It follows from the definition of a
typically real function that z ∈ ∆+ ⇔ f(z) ∈ C+ and z ∈ ∆− ⇔ f(z) ∈ C−. The
symbols ∆+, ∆−, C+, C− mean the following open sets: the upper and the lower half
of the unit disk ∆ and the upper and the lower halfplane.
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In this paper we focus on so called circularly symmetric functions, which were
defined by Jenkins in [2]. Let us start with the following definitions.

Let D ⊂ C and 0 ∈ D.

Definition 1. A set D is circularly symmetric if for each % ∈ R+ a set D ∩ {ζ ∈ C :
|ζ| = %} is one of three forms: an empty set, a whole circle, a curve symmetric with
respect to the real axis containing %.

Definition 2. A function f ∈ A is circularly symmetric if f(∆) is a circularly sym-
metric set. The class of all such functions we denote by X.

In fact, Jenkins claimed more than it was stated in the above definition. He consid-
ered only these circularly symmetric functions which are univalent. This assumption
is rather restrictive. Furthermore, there are no objections to reject it. The number
of interesting problems appear while discussing non-univalent circularly symmetric
functions. For these reasons we decided to define a circularly symmetric function as
in Definition 2. In order to distinguish the classes of non-univalent and univalent
circularly symmetric functions we will denote the latter by Y .

Besides X we will also consider some of its subclasses: X(λ) and Y ∩S∗ consisting
of functions in X with the fixed second coefficient of the Taylor series expansion and
univalent starlike functions respectively. As it was shown in [2], for all r ∈ (0, 1)
and for a circularly symmetric function f the expression |f(reiϕ)| is a nonincreasing
function for ϕ ∈ (0, π) and a nondecreasing function for ϕ ∈ (π, 2π). From this fact
and the equality

− ∂

∂ϕ

(
log |f(reiϕ)|

)
= Im

(
reiϕ

f ′(reiϕ)

f(reiϕ)

)
it follows that on the circle |z| = r there is

Im
zf ′(z)

f(z)
≥ 0 if and only if Im z ≥ 0 .

Hence

Theorem 1. [2]

f ∈ X ⇔ zf ′(z)

f(z)
∈ T̃ .

The condition zf ′(z)
f(z) ∈ T̃ is not sufficient for univalence of f . We have only

Theorem 2. If f ∈ Y then zf ′(z)
f(z) ∈ T̃ .

According to Theorem 1, all coefficients of the Taylor expansion of f ∈ X are real.
Some other results concerning Y one can find in [1] and [4].
Similar, but more general, functions were discussed by Libera in [3]. He considered

so called disk-like functions. The functions f of this class have the property: there
exists a number % depending on f that for each fixed r, r ∈ (%, 1], there exist numbers
ϕ1, ϕ2 depending on r that |f(reiϕ)| is decreasing if ϕ increases in some interval
I1 = (ϕ1, ϕ2) and increasing in I2 = (ϕ2, ϕ1 +2π). The class of these functions Libera
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denoted by D. In particular, if f has real coefficients and |f(reiϕ)| is increasing on
the lower half of the circle |z| = r and is decreasing on the upper half of this circle,
then f is a circularly symmetric function. Although D is more general than X, some
of the results of the paper [3] are still valid for the class X.

Let us assume that f is of the form f(z) = z + λz2 + . . .. From Theorem 1 it
follows that a function

1

λ

(
zf ′(z)

f(z)
− 1

)
is in T ; let us denote it by h(z). Hence

(1) f(z) = z exp

(
λ

∫ z

0

h(ζ)

ζ
dζ

)
.

Applying the very well known relation between T and CV R(i) consisting of functions
with real coefficients g which are convex in the direction of the imaginary axis and
normalized by g(0) = g′(0)− 1 = 0, we obtain

Corollary 1.

(2) f ∈ X ⇔ f(z) = z exp {λg(z)} , g ∈ CV R(i) , λ > 0 .

The conclusion similar to the above corollary one can find in the paper of Libera
(corollary on page 253).

Basing on the equivalence (2) we can define the subclass of X containing these
circularly symmetric functions for which the second coefficient is fixed and equal to
λ ≥ 0. We denote this class by X(λ). For λ = 0 the set X(0) has only one element -
the identity function. We shall present the properties of X(λ) in next section.

2 Properties of X(λ).

Theorem 3. The radius of starlikeness for X(λ) is equal to rS∗(X(λ)) = rλ, where

rλ = 1
4

(√
λ+ 4−

√
λ
)2

. The extremal function is fλ(z) = z exp (λ z
1+z ).

Proof

It follows from (1) that zf ′(z)
f(z) = 1 + λzg′(z) = 1 + λh(z), where g ∈ CV R(i), h ∈ T .

The well-known estimate of the real part of a typically real function leads to

Re
zf ′(z)

f(z)
≥ 1− λ r

(1− r)2
.

Therefore, Re zf
′(z)

f(z) ≥ 0 if and only if r ≤ 2
2+λ+

√
λ2+4λ

, or equivalently, if r ≤ rλ.

Equality in the above estimate holds for h(z) = z
(1+z)2 and z = −r. It means that

the extremal function is fλ. �
The result of Theorem 3 can be generalized in order to finding the radius of

starlikeness of order α, α ∈ [0, 1). It sufficies to replace the inequality 1−λ r
(1−r)2 ≥ 0

by 1− λ r
(1−r)2 ≥ α. Hence
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Theorem 4. The radius of starlikeness of order α, α ∈ [0, 1) for X(λ) is equal

to rS∗(α)(X(λ)) = 1
4

(√
λ

1−α + 4−
√

λ
1−α

)2
. The extremal function is fλ(z) =

z exp (λ z
1+z ).

Observe that for all f ∈ X(λ) the condition zf ′(z)
f(z) 6= 0 holds if only z ∈ ∆rλ .

Moreover, for fλ and z = −rλ there is

zf ′(z)

f(z)

∣∣∣∣
z=−rλ

=

(
1 + λ

z

(1 + z)2

)∣∣∣∣
z=−rλ

= 1− λ rλ
(1− rλ)2

= 0 .

This results in

Theorem 5. The radius of local univalence for X(λ) is equal to rLU (X(λ)) = rλ.

Because of rS∗ ≤ rS ≤ rLU , which is true for any class of analytic functions, we
obtain

Corollary 2. The radius of univalence for X(λ) is equal to rS(X(λ)) = rλ.

It is known that the second coefficients of the Taylor expansion of functions in
the following subclasses of A consisting of: convex functions, univalent functions and
locally univalent functions have the upper bounds: 1, 2, 4 respectively. For this reason
it is worth observing that

rS(X(1)) =
1

2
(3−

√
5) , rS(X(2)) = 2−

√
3 , rS(X(4)) = (

√
2− 1)2 .

Theorem 6. If f ∈ X(λ) and r = |z| ∈ (0, 1) then

(3) r exp

(
−λr
1− r

)
≤ |f(z)| ≤ r exp

(
λr

1− r

)
,

Equalities in the above estimates hold for f(z) = z exp
(
λz
1+z

)
, z = −r and f(z) =

z exp
(
λz
1−z

)
, z = r respectively.

Proof
For g ∈ CV R(i) the exact estimate holds (see for example [5])

(4) |Re g(z)| ≤ r

1− r
,

with equality for g(z) = z
1+z , z = −r and g(z) = z

1−z , z = r respectively. From
Corollary 1 it follows that

|f(z)| = |z| exp (λRe g(z)) .

Combining it with (4) completes the proof. �
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Theorem 7. If f ∈ X(λ) and r = |z| ∈ (0, 1) then

(5) |f ′(z)| ≤
(

1 + λ
r

(1− r)2

)
exp

(
λr

1− r

)
,

Equality in the above estimate holds for f(z) = z exp
(
λz
1−z

)
and z = r.

Proof
From Corollary 1 and (1) we have

|f ′(z)| =
∣∣∣∣f(z)

z

∣∣∣∣ |1 + λh(z)| ,

where h ∈ T . Applying Theorem 6 and the estimate of the modulus of a function in
T in the above equality leads to the assertion. �

According to Theorems 6 and 7, both |f(z)| and |f ′(z)| can be arbitrarily large
while considering functions in the whole class X, not only functions with the second
coefficient fixed.

3 Properties of Y ∩ S∗.
In the paper of Szapiel [4] one can find the relation between the class of circurally
symmetric functions which are starlike with the class of typically real functions T :

Theorem 8.

f ∈ Y ∩ S∗ ⇔ zf ′(z)

f(z)
∈ T̃ ∩ PR .

Szapiel also proved the representation formula for functions in the class R2 = {q ∈
A : q = p2, p ∈ T̃ ∩ PR}. Namely, q ∈ R2 if and only if

(6) q(z) =

∫ 1

−1

(1 + z)2

1− 2zt+ z2
dµ(t) .

From this formula one can establish the relationship between R2 and T :

(7) q ∈ R2 ⇔ g ∈ T ,

where

q(z) = (1 + z)2
g(z)

z
.

From the above we get

Corollary 3.

(8) f ∈ Y ∩ S∗ ⇔ zf ′(z)

f(z)
= (1 + z)

√
g(z)

z
, g ∈ T.
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Examples. Putting functions of the class T into (8) we obtain associated functions
from Y ∩ S∗:
1. If g(z) = z, then zf ′(z)

f(z) = 1 + z and hence f(z) = zez.

2. If g(z) = z
(1+z)2 , then zf ′(z)

f(z) = 1 and hence f(z) = z.

3. If g(z) = z
(1−z)2 , then zf ′(z)

f(z) = 1+z
1−z and hence f(z) = z

(1−z)2 .

Many of the properties of Y ∩S∗ follow directly from obvious inclusion Y ∩S∗ ⊂ S∗
and the fact that the Koebe function f(z) = z

(1−z)2 , which is starlike, belongs also to

Y ∩ S∗. This observation gives us the following sharp results:

1. If f ∈ Y ∩ S∗ and f(z) =
∑∞
n=1 anz

n, then |an| ≤ n.

2. If f ∈ Y ∩ S∗ and r = |z| ∈ (0, 1), then r
(1+r)2 ≤ |f(z)| ≤ r

(1−r)2 .

3. If f ∈ Y ∩ S∗ and r = |z| ∈ (0, 1), then 1−r
(1+r)3 ≤ |f

′(z)| ≤ 1+r
(1−r)3 .

4. Every function in Y ∩ S∗ is convex in the disk |z| < 2−
√

3.

5. Every function in Y ∩S∗ is strongly starlike of order α in the disk |z| < tan(απ4 ).

Now we shall find the lower bounds of the second and the third coefficients in
Y ∩ S∗. Let f(z) = z +

∑∞
n=2 anz

n ∈ Y ∩ S∗ and g(z) = z +
∑∞
n=2 bnz

n ∈ T . From
(8) we conclude

2a2 = b2 + 2 ,(9)

4a3 − a22 = b3 + 2b2 + 1 .(10)

Let us denote by A2,3(A) a set {(a2(f), a3(f)) : f ∈ A}. This set for T is known:
A2,3(T ) = {(x, y) : −2 ≤ x ≤ 2, x2 − 1 ≤ y ≤ 3}. This results in the following bound
for a function in Y ∩ S∗:

(11) 0 ≤ a2 ≤ 2 .

Taking into account (9) and (10) in A2,3(T ) we obtain

Theorem 9.

A2,3(Y ∩ S∗) =

{
(x, y) : 0 ≤ x ≤ 2,

1

4

(
5x2 − 4x

)
≤ y ≤ 1

4

(
x2 + 4x

)}
.

Consequently

Corollary 4. Let f ∈ Y ∩S∗ have the Taylor series expansion f(z) = z+
∑∞
n=2 anz

n.
Then − 1

5 ≤ a3 ≤ 3 .

From (10) and A2,3(T ) it follows that

4a3 − a22 = b3 + 2b2 + 1 ≥ b22 + 2b2 ≥ −1

and
4a3 − a22 = b3 + 2b2 + 1 ≤ b22 + 4 ≤ 8 .

Hence
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Theorem 10. Let f ∈ Y ∩S∗ have the Taylor series expansion f(z) = z+
∑∞
n=2 anz

n.
Then − 1

4 ≤ a3 −
1
4a2

2 ≤ 2 .

The points of intersection of two parabolas from Theorem 9 coincide with two pairs
of coefficients (a2, a3) of the functions f1(z) = z and f2(z) = z

(1−z)2 . From Theorem

10 it follows that the class Y ∩ S∗ is not a convex set because the set A2,3(Y ∩ S∗) is
not convex.

Basing on Theorem 9 one can derive so called the Fekete-Szegö ineqalities for
Y ∩ S∗.

Theorem 11. Let f ∈ Y ∩ S∗ be of the form f(z) = z +
∑∞
n=2 anz

n. Then{
1

4µ−5 µ ≤ 1

3− 4µ µ ≥ 1
≤ a3 − µa22 ≤

{
3− 4µ µ ≤ 1

2
1

4µ−1 µ ≥ 1
2 .

Proof
Assume that f(z) = z +

∑∞
n=2 anz

n ∈ Y ∩ S∗. Let us denote by Q a function
Q(a2, a3) = a3−µa22. With a fixed µ ∈ R the function Q achieves its extremal value
on the boundary of the set A2,3(Y ∩ S∗).

Let us consider two functions

Q1(x) = Q(x,
1

4
x2 + x) = x2

(
1

4
− µ

)
+ x

and

Q2(x) = Q(x,
5

4
x2 − x) = x2

(
5

4
− µ

)
− x .

For x ∈ [0, 2] the inequality
Q1(x) ≥ Q2(x)

holds; hence

(12) max{Q : f ∈ Y ∩ S∗}
= max{Q(x, y) : (x, y) ∈ A2,3(Y ∩ S∗)}

= max{Q1(x) : x ∈ [0, 2]}

and

(13) min{Q : f ∈ Y ∩ S∗}
= min{Q(x, y) : (x, y) ∈ A2,3(Y ∩ S∗)}

= min{Q2(x) : x ∈ [0, 2]} .

The function Q1 for µ ≤ 1
2 is strictly increasing in [0, 2]; thus max{Q1(x) : x ∈

[0, 2]} = Q1(2). For µ > 1
2 the function Q1 increases in (0, x1) and decreases in (x1, 2),

where x1 = 2
4µ−1 . This results in max{Q1(x) : x ∈ [0, 2]} = Q1(x1).



66 L. Koczan, P. Zaprawa

Similarly, the function Q2 for µ < 1 decreases in (0, x2) and increases in (x2, 2),
where x2 = 2

5−4µ . Hence min{Q2(x) : x ∈ [0, 2]} = Q2(x2). For µ ≥ 1 the function

Q2 is strictly decreasing in [0, 2], so min{Q2(x) : x ∈ [0, 2]} = Q2(2). �
Taking µ = 0 or µ = 1

4 we obtain previously obtained results from Corollary 4
and from Theorem 10.
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