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Abstract: The main purpose of this paper is to study the controlla-
bility of solutions of the differential equation

f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = 0.

In fact, we study the growth and oscillation of higher order differen-
tial polynomial with meromorphic coefficients in the unit disc ∆ =
{z : |z| < 1} generated by solutions of the above kth order differential
equation.
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1 Introduction and main results

Throughout this paper, we assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna’s value distribution theory on
the complex plane and in the unit disc ∆ = {z : |z| < 1} (see [13] , [14] , [18] , [20]). We
need to give some definitions and discussions. Firstly, let us give two definitions about
the degree of small growth order of functions in ∆ as polynomials on the complex
plane C. There are many types of definitions of small growth order of functions in ∆
(see [10] , [11]) .

Definition 1.1 ([10] , [11]) Let f be a meromorphic function in ∆, and

D (f) := lim sup
r→1−

T (r, f)

log 1
1−r

= b.
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If b < ∞, we say that f is of finite b degree (or is non-admissible). If b = ∞, we say
that f is of infinite degree (or is admissible), both defined by characteristic function
T (r, f).

Definition 1.2 ([10] , [11]) Let f be an analytic function in ∆, and

DM (f) := lim sup
r→1−

log+M (r, f)

log 1
1−r

= a <∞ (or a = ∞) ,

then we say that f is a function of finite a degree (or of infinite degree) defined by
maximum modulus function M(r, f) = max

|z|=r
|f (z)| .

Now we give the definitions of iterated order and growth index to classify generally
the functions of fast growth in ∆ as those in C (see [4] , [17] , [18]) . Let us define
inductively, for r ∈ [0, 1) , exp1 r = er and expp+1 r = exp

(

expp r
)

, p ∈ N. We also

define for all r sufficiently large in (0, 1) , log1 r = log r and logp+1 r = log
(

logp r
)

, p ∈
N. Moreover, we denote by exp0 r = r, log0 r = r, exp−1 r = log1 r, log−1 r = exp1 r.

Definition 1.3 [5, 6] The iterated p−order of a meromorphic function f in ∆ is
defined by

ρp (f) = lim sup
r→1−

log+p T (r, f)

log 1
1−r

(p ≥ 1) .

For an analytic function f in ∆, we also define

ρM,p (f) = lim sup
r→1−

log+p+1M (r, f)

log 1
1−r

(p ≥ 1) .

Remark 1.1 It follows by M. Tsuji in [25] that if f is an analytic function in ∆, then

ρ1 (f) ≤ ρM,1 (f) ≤ ρ1 (f) + 1.

However, it follows by Proposition 2.2.2 in [18]

ρM,p (f) = ρp (f) , (p ≥ 2) .

Definition 1.4 [5] The growth index of the iterated order of a meromorphic function
f(z) in ∆ is defined by

i (f) =







0, if f is non-admissible,
min {j ∈ N, ρj (f) <∞} , if f is admissible,

+∞, if ρj (f) = ∞ for all j ∈ N.

For an analytic functionf in ∆, we also define

iM (f) =







0, if f is non-admissible,
min {j ∈ N, ρM,j (f) <∞} , if f is admissible,

+∞, if ρM,j (f) = ∞ for all j ∈ N.
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Definition 1.5 [3, 15, 20] The iterated p−type of a meromorphic function f of iterated
p−order ρ (0 < ρ <∞) in ∆ is defined by

τp (f) = lim sup
r→1−

(1− r)
ρp(f) log+p−1 T (r, f) .

Definition 1.6 [7] Let f be a meromorphic function in ∆. Then the iterated p−con-
vergence exponent of the sequence of zeros of f (z) is defined by

λp (f) = lim sup
r→1−

log+p N
(

r, 1
f

)

log 1
1−r

,

where N
(

r, 1
f

)

is the counting function of zeros of f (z) in {z ∈ C : |z| ≤ r}.

Similarly, the iterated p−convergence exponent of the sequence of distinct zeros of
f (z) is defined by

λp (f) = lim sup
r→1−

log+p N
(

r, 1
f

)

log 1
1−r

,

where N
(

r, 1
f

)

is the counting function of distinct zeros of f (z) in {z ∈ C : |z| ≤ r}.

Definition 1.7 [7] The growth index of the convergence exponent of the sequence of
the zeros of f(z) in ∆ is defined by

iλ (f) =











0, if N
(

r, 1
f

)

= O
(

log 1
1−r

)

,

min {j ∈ N, λj (f) <∞} , if some j ∈ N with λj (f) <∞,

+∞, if λj (f) = ∞ for all j ∈ N.

Similarly, we can define the growth index of the convergence exponent of the
sequence of distinct zeros iλ(f) of f(z) in ∆.

Consider the complex differential equation

f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = 0 (1.1)

and the kth order differential polynomial

gk = dkf
(k) + dk−1f

(k−1) + · · ·+ d0f, (1.2)

where Aj (j = 0, 1, · · · , k − 1) and di (i = 0, 1, · · · , k) are meromorphic functions in
∆.

Let L (G) denote a differential subfield of the field M (G) of meromorphic functions
in a domain G ⊂ C. If G = ∆, we simply denote L instead of L (∆) . Special case of
such differential subfield

Lp+1,ρ = {g meromorphic: ρp+1 (g) < ρ} ,
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where ρ is a positive constant. In [7] , T. B. Cao, H. Y. Xu and C. X. Zhu studied
the complex oscillation of differential polynomial generated meromorphic solutions of
second order linear differential equations with meromorphic coefficients and obtained
the following results.

Theorem A [7] Let A be an admissible meromorphic function of finite iterated order

ρp (A) = ρ > 0 (1 ≤ p <∞) in the unit disc ∆ such that δ (∞, A) = lim inf
r→1−

m(r,A)
T (r,A) =

δ > 0, and let f be a non-zero meromorphic solution of the differential equation

f ′′ +A (z) f = 0,

such that δ (∞, f) > 0. Moreover, let

P [f ] =

k
∑

j=0

pjf
(j)

be a linear differential polynomial with coefficients pj ∈ Lp+1,ρ, assuming that at least

one of the coefficients pj does not vanish identically. If ϕ ∈ Lp+1,ρ is a non-zero

meromorphic function in ∆, and neither P [f ] nor P [f ] − ϕ vanishes identically,

then we have

i (f) = iλ (P [f ]− ϕ) = p+ 1

and

λp (P [f ]− ϕ) = ρp+1 (f) = ρp (A) = ρ

if p > 1, while

ρp (A) ≤ λp+1 (P [f ]− ϕ) ≤ ρp+1 (f) ≤ ρp (A) + 1

if p = 1.

Remark 1.2 The idea of the proofs of Theorem A is borrowed from the paper of
Laine, Rieppo [19] with the modifications reflecting the change from the complex
plane C to the unit disc ∆.

Before we state our results, we define the sequence of meromorphic functions αi,j

(j = 0, · · · , k − 1) in ∆ by

αi,j =

{

α′
i,j−1 + αi−1,j−1 −Aiαk−1,j−1, for all i = 1, · · · , k − 1,

α′
0,j−1 −A0αk−1,j−1, for i = 0

(1.3)

and
αi,0 = di − dkAi, for i = 0, · · · , k − 1 (1.4)

we define also hk by

hk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α0,0 α1,0 . . αk−1,0

α0,1 α1,1 . . αk−1,1

. . . . .

. . . . .

α0,k−1 α1,k−1 . . αk−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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and ψk (z) by
ψk (z) = C0ϕ+ C1ϕ

′ + · · ·+ Ck−1ϕ
(k−1),

where Cj (j = 0, · · · , k − 1) are finite iterated p−order meromorphic functions in ∆
depending on αi,j , and ϕ 6≡ 0 is a meromorphic function in ∆ with ρp (ϕ) <∞.

The main purpose of this paper is to study the controllability of solutions of the differ-
ential equation (1.1) . In the fact we study the growth and oscillation of higher order
differential polynomial with meromorphic coefficients in the unit disc ∆ generated by
solutions of equation (1.1).

Theorem 1.1 Let Ai (z) (i = 0, 1, · · · , k − 1) be meromorphic functions in ∆ of finite

iterated p−order. Let dj (z) (j = 0, 1, · · · , k) be finite iterated p−order meromorphic

functions in ∆ that are not all vanishing identically such that h 6≡ 0. If f (z) is an

infinite iterated p−order meromorphic solution in ∆ of (1.1) with ρp+1 (f) = ρ, then

the differential polynomial (1.2) satisfies

ρp (gk) = ρp (f) = ∞

and

ρp+1 (gk) = ρp+1 (f) = ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution in ∆ such that

ρp (f) > max {ρp (Ai) (i = 0, 1, · · · , k − 1) , ρp (dj) (j = 0, 1, · · · , k)} , (1.5)

then

ρp (gk) = ρp (f) .

Remark 1.3 In Theorem 1.1, if we do not have the condition h 6≡ 0, then the
conclusions of Theorem 1.1 cannot hold. For example, if we take di = dkAi

(i = 0, · · · , k − 1) , then h ≡ 0. It follows that gk ≡ 0 and ρp (gk) = 0. So, if f (z) is an
infinite iterated p−order meromorphic solution of (1.1) , then ρp (gk) = 0 < ρp (f) =
∞, and if f is a finite iterated p−order meromorphic solution of (1.1) such that (1.5)
holds, then ρp (gk) = 0 < ρp (f).

Theorem 1.2 Under the hypotheses of Theorem 1.1, let ϕ (z) 6≡ 0 be a meromorphic

function in ∆ with finite iterated p−order such that ψk (z) is not a solution of (1.1) .
If f (z) is an infinite iterated p−order meromorphic solution in ∆ of (1.1) with

ρp+1 (f) = ρ, then the differential polynomial (1.2) satisfies

λp (gk − ϕ) = λp (gk − ϕ) = ρp (f) = ∞

and

λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution in ∆ such that

ρp (f) > max {ρp (Ai) (i = 0, 1, · · · , k − 1) , ρp (dj) (j = 0, 1, · · · , k) , ρp (ϕ)} , (1.6)
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then

λp (gk − ϕ) = λp (gk − ϕ) = ρp (f) .

From Theorems 1-2, we obtain the following corollaries which have been proved
in [23] .

Corollary 1.1 [23] Suppose that A (z) is admissible meromorphic function in ∆ such

that i (A) = p (1 ≤ p <∞) and δ (∞, A) = δ > 0. Let dj (z) (j = 0, 1, · · · , k) be finite

iterated p−order meromorphic functions in ∆ that are not all vanishing identically

such that h 6≡ 0, and let f be a nonzero meromorphic solution of

f (k) +A (z) f = 0. (1.7)

If δ (∞, f) > 0, then the differential polynomial gk satisfies i (gk) = p + 1 and

ρp+1 (gk) = ρp+1 (f) = ρp (A) if p > 1, while

ρp (A) ≤ ρp+1 (gk) = ρp+1 (f) ≤ ρp (A) + 1

if p = 1.

Corollary 1.2 [23] Under the hypotheses of Corollary 1.1, let ϕ (z) 6≡ 0 be mero-

morphic function in ∆ with finite iterated p−order such that ψk (z) 6≡ 0. Then the

differential polynomial (1.2) satisfies

λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρp+1 (f) = ρp (A)

if p > 1, while

ρp (A) ≤ λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρp+1 (f) ≤ ρp (A) + 1

if p = 1.

Remark 1.4 The present article may be understood as an extension and improvement
of the recent article of the authors [23] from equation (1.7) to equation (1.1). The
method used in the proofs of our theorems is simple and quite different from the
method used in the papers of Laine and Rieppo [19] and Cao, Xu and Zhu [7] .

We consider now the differential equation

f ′′ +A1 (z) f
′ +A0 (z) f = 0, (1.8)

where A1 (z) , A0 (z) are analytic functions of finite iterated p−order in the unit disc
∆. In the following we will give sufficient conditions on A1 and A0 which satisfied
the results of Theorem 1.1 and Theorem 1.2 without the conditions ” hk 6≡ 0 ” and ”
ψk (z) is not a solution of (1.1) ” where k = 2.

Corollary 1.3 Let A1 (z) , A0 (z) (6≡ 0) be analytic functions in ∆ such that ρp (A0) =
ρ (0 < ρ <∞) , τp (A0) = τ (0 < τ <∞) , and let ρp (A1) < ρp (A0) or τp (A1) <
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τp (A0) if ρp (A0) = ρp (A1) . Let d2, d1, d0 be analytic functions in ∆ such that at

least one of d2, d1, d0 does not vanish identically with max {ρp (dj) (j = 0, 1, 2)} <
ρp (A0) . If f 6≡ 0 is a solution of (1.8) , then the differential polynomial g2 = d2f

′′ +
d1f

′ + d0f satisfies ρp+1 (g2) = ρp+1 (f) = ρp (A0) if p > 1, while

ρp (A0) ≤ ρp+1 (g2) = ρp+1 (f) ≤ max {ρM (Aj) (j = 0, 1)}

if p = 1.

Corollary 1.4 Let A1 (z) , A0 (z) ( 6≡ 0) be analytic functions in ∆ such that ρp (A0) =
ρ (0 < ρ <∞) , τp (A0) = τ (0 < τ <∞) , and let ρp (A1) < ρp (A0) or 2τp (A1) <
τp (A0) if ρp (A0) = ρp (A1) . Let d2, d1, d0 be analytic functions in ∆ such that at

least one of d2, d1, d0 does not vanish identically with max {ρp (dj) (j = 0, 1, 2)} <
ρp (A1), and let ϕ (z) 6≡ 0 be analytic function in ∆ of finite iterated p−order such

that ψ2 (z) 6≡ 0. If f 6≡ 0 is a solution of (1.8) , then the differential polynomial

g2 = d2f
′′ + d1f

′ + d0f satisfies

λp+1 (g2 − ϕ) = λp+1 (g2 − ϕ) = ρp+1 (f) = ρp (A0)

if p > 1, while

ρp (A0) ≤ λp+1 (g2 − ϕ) = λp+1 (g2 − ϕ) = ρp+1 (f) ≤ max {ρM (Aj) (j = 0, 1)}

if p = 1.

Remark 1.5 For some papers related in the complex plane see [19, 22, 24] and in
the unit disc see [7, 9, 12] .

2 Auxiliary lemmas

Lemma 2.1 [8] Let A0, A1, · · · , Ak−1, F 6≡ 0 be meromorphic functions in ∆, and let

f be a meromorphic solution of the differential equation

f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = F (z) (2.1)

such that i (f) = p (1 ≤ p <∞) . If either

max {i (Aj) (j = 0, 1, · · · , k − 1) , i (F )} < p

or

max {ρp (Aj) (j = 0, 1, · · · , k − 1) , ρp (F )} < ρp (f) ,

then

iλ (f) = iλ (f) = i (f) = p

and

λp (f) = λp (f) = ρp (f) .
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Using the same arguments as in the proof of Lemma 2.1 (see, the proof of Lemma 2.5
in [8]), we easily obtain the following lemma.

Lemma 2.2 Let A0, A1, · · · , Ak−1, F 6≡ 0 be finite iterated p−order meromorphic

functions in the unit disc ∆. If f is a meromorphic solution with ρp (f) = ∞
and ρp+1 (f) = ρ < ∞ of equation (2.1) , then λp (f) = λp (f) = ρp (f) = ∞ and

λp+1 (f) = λp+1 (f) = ρp+1 (f) = ρ.

Lemma 2.3 [5] Let p ≥ 1 be an integer, and let A0(z), · · · , Ak−1(z) be analytic

functions in ∆ such that i (A0) = p. If

max{i (Aj) : j = 1, · · · , k − 1} < p

or

max{ρp (Aj) : j = 1, · · · , k − 1} < ρp (A0) ,

then every solution f 6≡ 0 of equation (1.1) satisfies i (f) = p + 1 and ρp (f) = ∞,

ρp (A0) ≤ ρp+1 (f) = ρM,p+1 (f) ≤ max{ρM,p (Aj) : j = 0, 1, · · · , k − 1}.

Lemma 2.4 [3] Let f and g be meromorphic functions in the unit disc ∆ such that

0 < ρp (f) , ρp (g) <∞ and 0 < τp (f) , τp (g) <∞. Then we have

(i) If ρp (f) > ρp (g) , then we obtain

τp (f + g) = τp (fg) = τp (f) .

(ii) If ρp (f) = ρp (g) and τp (f) 6= τp (g) , then we get

ρp (f + g) = ρp (fg) = ρp (f) = ρp (g) .

Lemma 2.5 ([14]) Let f be a meromorphic function in the unit disc and let k ∈ N.

Then

m

(

r,
f (k)

f

)

= S (r, f) ,

where S (r, f) = O
(

log+ T (r, f) + log
(

1
1−r

))

, possibly outside a set E1 ⊂ [0, 1) with
∫

E1

dr
1−r

<∞. If f is of finite order of growth, then

m

(

r,
f (k)

f

)

= O

(

log

(

1

1− r

))

.

Lemma 2.6 [2] Let f be a meromorphic function in the unit disc for which i (f) =
p ≥ 1 and ρp (f) = β <∞, and let k ∈ N. Then for any ε > 0,

m

(

r,
f (k)

f

)

= O

(

expp−2

(

log
1

1− r

)β+ε
)

for all r outside a set E2 ⊂ [0, 1) with
∫

E2

dr
1−r

<∞.
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Lemma 2.7 Let f be a meromorphic function in ∆ with iterated order ρp (f) = ρ

(0 < ρ <∞) and iterated type τp (f) = τ (0 < τ <∞) . Then for any given β < τ,

there exists a subset E3 of [0, 1) that has an infinite logarithmic measure such that

logp−1 T (r, f) > β
(

1
1−r

)ρ

holds for all r ∈ E3.

Proof . When p = 1, the lemma is proved in [21] . Thus we assume p ≥ 2. By
definitions of iterated order and iterated type, there exists an increasing sequence
{rm}

∞
m=1 ⊂ [0, 1) (rm → 1−) satisfying 1

m
+
(

1− 1
m

)

rm < rm+1 and

lim
m→∞

logp−1 T (rm, f)
(

1
1−rm

)ρ = τp (f) .

Then there exists a positive integer m0 such that for all m > m0 and for any given
0 < ε < τp (f)− β, we have

logp−1 T (rm, f) > (τp (f)− β)

(

1

1− rm

)ρ

. (2.2)

For any given β < τp (f) − ε, there exists a positive integer m1 such that for all
m > m1 we have

(

1−
1

m

)ρ

>
β

τp (f)− ε
. (2.3)

Take m ≥ m2 = max {m0,m1} . By (2.2) and (2.3) , for any r ∈ [rm,
1
m
+
(

1− 1
m

)

rm],
we have

logp−1 T (r, f) ≥ logp−1 T (rm, f) > (τp (f)− β)

(

1

1− rm

)ρ

≥ (τp (f)− β)

(

1−
1

m

)ρ(
1

1− r

)ρ

> β

(

1

1− r

)ρ

.

Set E3 = ∪∞
m=m2

[

rm,
1
m

+
(

1− 1
m

)

rm
]

, then there holds

mlE3 =
∞
∑

m=m2

1

m
+(1− 1

m )rm
∫

rm

dt

1− t
=

∞
∑

m=m2

log
m

m− 1
= ∞.

Lemma 2.8 [16] Let f be a solution of equation (1.1) where the coefficients

Aj (z) (j = 0, · · · , k − 1) are analytic functions in the disc ∆R = {z ∈ C : |z| < R} ,
0 < R ≤ ∞. Let nc ∈ {1, · · · , k} be the number of nonzero coefficients Aj (z)
(j = 0, · · · , k − 1) , and let θ ∈ [0, 2π[ and ε > 0. If zθ = νeiθ ∈ ∆R is such that

Aj (zθ) 6= 0 for some j = 0, · · · , k − 1, then for all ν < r < R,

∣

∣f
(

reiθ
)∣

∣ ≤ C exp



nc

r
∫

ν

max
j=0,··· ,k−1

∣

∣Aj

(

teiθ
)∣

∣

1

k−j dt



 , (2.4)
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where C > 0 is a constant satisfying

C ≤ (1 + ε) max
j=0,··· ,k−1







∣

∣f (j) (zθ)
∣

∣

(nc)
j

max
n=0,··· ,k−1

|An (zθ)|
j

k−n






.

Lemma 2.9 [1, 14] Let g : (0, 1) → R and h : (0, 1) → R be monotone increasing

functions such that g (r) ≤ h (r) holds outside of an exceptional set E4 ⊂ [0, 1) for

which
∫

E4

dr
1−r

< ∞. Then there exists a constant d ∈ (0, 1) such that if s (r) =

1− d (1− r) , then g (r) ≤ h (s (r)) for all r ∈ [0, 1).

Lemma 2.10 Let A1 (z) and A0 (z) be analytic functions in ∆ such that ρp (A0) = ρ

(0 < ρ <∞) , τp (A0) = τ (0 < τ <∞), and let ρp (A1) < ρp (A0) and τp (A1) <
τp (A0) if ρp (A1) = ρp (A0) . If f 6≡ 0 is a solution of (1.8) then ρp (f) = ∞,

ρp+1 (f) = ρp (A0) if p > 1, while

ρp (f) = ∞, ρp (A0) ≤ ρp+1 (f) ≤ max {ρM (Aj) , (j = 0, 1)}

if p = 1.

Proof. If ρp (A1) < ρp (A0) then the result can easily deduced by Lemma 2.3. We
prove only the case when ρp (A0) = ρp (A1) = ρ and τp (A1) < τp (A0) . Since f 6≡ 0,
then by (1.8) we have

A0 = −

(

f ′′

f
+A1

f ′

f

)

. (2.5)

Suppose that f is of finite p−iterated order, then by Lemma 2.6

T (r, A0) ≤ T (r, A1) +O

(

expp−2

(

log
1

1− r

)β+ε
)

(ρp (f) = β <∞) (2.6)

which implies the contradiction

τp (A0) ≤ τp (A1) .

Hence ρp (f) = ∞. By using inequality (2.4), we have

ρp+1 (f) ≤ max {ρp (A1) , ρp (A0)} = ρp (A0) . (2.7)

On the other hand, by Lemma 2.5

T (r, A0) ≤ T (r, A1) +O

(

log+ T (r, f) + log
1

1− r

)

(2.8)

holds possibly outside a set E1 ⊂ [0, 1) with
∫

E1

dr
1−r

< ∞. By τp (A1) < τp (A0) we

choose α0, α1 satisfying τp (A1) < α1 < α0 < τp (A0) such that for r → 1−, we have

T (r, A1) ≤ expp−1

{

α1

(

1

1− r

)ρ}

. (2.9)
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By Lemma 2.7, there exists a subset E2 ⊂ [0, 1) of infinite logarithmic measure such
that

T (r, A0) > expp−1

{

α0

(

1

1− r

)ρ}

. (2.10)

By (2.8)− (2.10) we obtain for all r ∈ E2 − E1

(1− o (1)) expp−1

{

α0

(

1

1− r

)ρ}

≤ O

(

log+ T (r, f) + log
1

1− r

)

. (2.11)

By using (2.11) and Lemma 2.9, we obtain

ρp+1 (f) ≥ ρp (A0) . (2.12)

From (2.7) and (2.12) we get ρp (f) = ∞ and ρp+1 (f) = ρp (A0) .

3 Proof of the Theorems and the Corollaries

Proof of Theorem 1.1 Suppose that f is an infinite iterated p-ordder meromorphic
solution in ∆ of (1.1) . By (1.1) , we have

f (k) = −

k−1
∑

i=0

Aif
(i) (3.1)

which implies
gk = dkf

(k) + dk−1f
(k−1) + · · ·+ d0f

=

k−1
∑

i=0

(di − dkAi) f
(i). (3.2)

We can write (3.2) as

gk =
k−1
∑

i=0

αi,0f
(i), (3.3)

where αi,0 are defined in (1.4) . Differentiating both sides of equation (3.3) and re-

placing f (k) with f (k) = −
k−1
∑

i=0

Aif
(i), we obtain

g′k =

k−1
∑

i=0

α′
i,0f

(i) +

k−1
∑

i=0

αi,0f
(i+1) =

k−1
∑

i=0

α′
i,0f

(i) +

k
∑

i=1

αi−1,0f
(i)

= α′
0,0f +

k−1
∑

i=1

α′
i,0f

(i) +

k−1
∑

i=1

αi−1,0f
(i) + αk−1,0f

(k)

= α′
0,0f +

k−1
∑

i=1

α′
i,0f

(i) +

k−1
∑

i=1

αi−1,0f
(i) −

k−1
∑

i=0

αk−1,0Aif
(i)
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=
(

α′
0,0 − αk−1,0A0

)

f +

k−1
∑

i=1

(

α′
i,0 + αi−1,0 − αk−1,0Ai

)

f (i). (3.4)

We can rewrite (3.4) as

g′k =

k−1
∑

i=0

αi,1f
(i), (3.5)

where

αi,1 =

{

α′
i,0 + αi−1,0 − αk−1,0Ai, for all i = 1, · · · , k − 1,

α′
0,0 −A0αk−1,0, for i = 0.

(3.6)

Differentiating both sides of equation (3.5) and replacing f (k) with f (k) = −
k−1
∑

i=0

Aif
(i),

we obtain

g′′k =
k−1
∑

i=0

α′
i,1f

(i) +
k−1
∑

i=0

αi,1f
(i+1) =

k−1
∑

i=0

α′
i,1f

(i) +
k
∑

i=1

αi−1,1f
(i)

= α′
0,1f +

k−1
∑

i=1

α′
i,1f

(i) +
k−1
∑

i=1

αi−1,1f
(i) + αk−1,1f

(k)

= α′
0,1f +

k−1
∑

i=1

α′
i,1f

(i) +
k−1
∑

i=1

αi−1,1f
(i) −

k−1
∑

i=0

Aiαk−1,1f
(i)

=
(

α′
0,1 − αk−1,1A0

)

f +
k−1
∑

i=1

(

α′
i,1 + αi−1,1 −Aiαk−1,1

)

f (i) (3.7)

which implies that

g′′k =
k−1
∑

i=0

αi,2f
(i), (3.8)

where

αi,2 =

{

α′
i,1 + αi−1,1 −Aiαk−1,1, for all i = 1, · · · , k − 1,

α′
0,1 −A0αk−1,1, for i = 0.

(3.9)

By using the same method as above we can easily deduce that

g
(j)
f =

k−1
∑

i=0

αi,jf
(i), j = 0, 1, · · · , k − 1, (3.10)

where

αi,j =

{

α′
i,j−1 + αi−1,j−1 −Aiαk−1,j−1, for all i = 1, · · · , k − 1,

α′
0,j−1 −A0αk−1,j−1, for i = 0

(3.11)
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and
αi,0 = di − dkAi, for all i = 0, 1, · · · , k − 1. (3.12)

By (3.3)− (3.12) we obtain the system of equations























gk = α0,0f + α1,0f
′ + · · ·+ αk−1,0f

(k−1),

g′k = α0,1f + α1,1f
′ + · · ·+ αk−1,1f

(k−1),

g′′k = α0,2f + α1,2f
′ + · · ·+ αk−1,2f

(k−1),

· · ·

g
(k−1)
k = α0,k−1f + α1,k−1f

′ + · · ·+ αk−1,k−1f
(k−1).

(3.13)

By Cramer’s rule, and since hk 6≡ 0 we have

f =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

gk α1,0 . . αk−1,0

g′k α1,1 . . αk−1,1

. . . . .

. . . . .

g
(k−1)
k α1,k−1 . . αk−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h
. (3.14)

Then
f = C0gk + C1g

′
k + · · ·+ Ck−1g

(k−1)
k , (3.15)

where Cj are finite iterated p−order meromorphic functions in ∆ depending on αi,j ,
where αi,j is defined in (3.11) .

If ρp (gk) < +∞, then by (3.15) we obtain ρp (f) < +∞, and this is a contradic-
tion. Hence ρp (gk) = ρp (f) = +∞.

Now, we prove that ρp+1 (gk) = ρp+1 (f) = ρ. By (3.2), we get ρp+1 (gk) ≤
ρp+1 (f) and by (3.15) we have ρp+1 (f) ≤ ρp+1 (gk). This yield ρp+1 (gk) = ρp+1 (f) =
ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution in ∆ of equa-
tion (1.1) such that

ρp (f) > max {ρp (Ai) (i = 0, · · · , k − 1) , ρp (dj) (j = 0, 1, · · · , k)} , (3.16)

then
ρp (f) > max {ρp (αi,j) : i = 0, · · · , k − 1, j = 0, · · · , k − 1} . (3.17)

By (3.2) and (3.16) we have ρp (gk) ≤ ρp (f) . Now, we prove ρp (gk) = ρp (f) . If
ρp (gk) < ρp (f) , then by (3.15) and (3.17) we get

ρp (f) ≤ max {ρp (Cj) (j = 0, · · · , k − 1) , ρp (gk)} < ρp (f)

and this is a contradiction. Hence ρp (gk) = ρp (f) .

Remark 3.1 From (3.13) , it follows that the condition h 6≡ 0 is equivalent to the

condition gk, g
′
k, · · · , g

(k−1)
k are linearly independent over the field of meromorphic

functions of finite iterated p−order.
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Proof of Theorem 1.2 Suppose that f is an infinite iterated p−order meromorphic
solution in ∆ of equation (1.1) with ρp+1 (f) = ρ. Set w (z) = gk−ϕ. Since ρp (ϕ) <∞,

then by Theorem 1.1 we have ρp (w) = ρp (gk) = ∞ and ρp+1 (w) = ρp+1 (gk) = ρ.

To prove λp (gk − ϕ) = λp (gk − ϕ) = ∞ and λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρ we
need to prove λp (w) = λp (w) = ∞ and λp+1 (w) = λp+1 (w) = ρ. By gk = w + ϕ,

and using (3.15) , we get

f = C0w + C1w
′ + · · ·+ Ck−1w

(k−1) + ψk (z) , (3.18)

where
ψk (z) = C0ϕ+ C1ϕ

′ + · · ·+ Ck−1ϕ
(k−1). (3.19)

Substituting (3.18) into (1.1) , we obtain

Ck−1w
(2k−1) +

2k−2
∑

j=0

φjw
(j) = −

(

ψ
(k)
k +Ak−1 (z)ψ

(k−1)
k + · · ·+A (z)ψk

)

= H,

(3.20)
where Ck−1, φj (j = 0, · · · , 2k − 1) are meromorphic functions in ∆ with finite iter-
ated p−order. Since ψk (z) is not a solution of (1.1) , it follows that H 6≡ 0. Then
by Lemma 2.2, we obtain λp (w) = λp (w) = ∞ and λp+1 (w) = λp+1 (w) = ρ, i. e.,
λp (gk − ϕ) = λp (gk − ϕ) = ∞ and λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρ.

Suppose that f is a finite iterated p−order meromorphic solution in ∆ of equation
(1.1) such that (1.6) holds. Set w (z) = gk−ϕ. Since ρp (ϕ) < ρp (f) , then by Theorem
1.1 we have ρp (w) = ρp (gk) = ρp (f) . To prove λp (gk − ϕ) = λp (gk − ϕ) = ρp (f)
we need to prove λp (w) = λp (w) = ρp (f) . Using the same reasoning as above, we
get

Ck−1w
(2k−1) +

2k−2
∑

j=0

φjw
(j) = −

(

ψ
(k)
k +Ak−1 (z)ψ

(k−1)
k + · · ·+A (z)ψk

)

= F,

where Ck−1, φj (j = 0, · · · , 2k − 1) are meromorphic functions in ∆ with finite iter-
ated p−order ρp (Ck−1) < ρp (f) , ρp (φj) < ρp (f) (j = 0, · · · , 2k − 1) , and

ψk (z) = C0ϕ+ C1ϕ
′ + · · ·+ Ck−1ϕ

(k−1), ρp (F ) < ρp (f) .

Since ψk (z) is not a solution of (1.1) , it follows that F 6≡ 0. Then by Lemma 2.1, we
obtain λp (w) = λp (w) = ρp (f) , i. e., λp (gk − ϕ) = λp (gk − ϕ) = ρp (f) .

Proof of Corollary 1.3 Suppose that f is a nontrivial solution of (1.8). Then by
Lemma 2.3, we have

ρp (A0) ≤ ρp+1 (f) ≤ max {ρM,p (Aj) (j = 0, 1)} (p ≥ 1) .

By the same reasoning as before we obtain that
{

g2 = α0,0f + α1,0f
′,

g′2 = α0,1f + α1,1f
′,
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where

α0,0 = d0 − d2A0, α1,1 = d2A
2
1 − (d2A1)

′
− d1A1 − d2A0 + d0 + d′1

and

α0,1 = d2A0A1 − (d2A0)
′ − d1A0 + d′0, α1,0 = d1 − d2A1.

First, we suppose that d2 6≡ 0. We have

h2 =

∣

∣

∣

∣

α1,0 α0,0

α1,1 α0,1

∣

∣

∣

∣

= −d22A
2
0 − d0d2A

2
1 +

(

−d2d1 + d′1d2 + 2d0d2 − d21
)

A0

+(d′2d0 − d2d
′
0 + d0d1)A1 + d1d2A0A1 − d1d2A

′
0 + d0d2A

′
1

+d22A
′
0A1 − d22A0A

′
1 + d′0d1 − d0d

′
1 − d20.

By d2 6≡ 0, A0 6≡ 0 and Lemma 2.4, we have ρp (h) = ρp (A0). Hence h 6≡ 0. Now
suppose d2 ≡ 0, d1 6≡ 0 or d2 ≡ 0, d1 ≡ 0 and d0 6≡ 0, then by using a similar reasoning
as above we get h 6≡ 0, and we obtain

f =
α1,0g

′
f − α1,1gf

h2
. (3.21)

It is clear that ρp (g2) ≤ ρp (f) (ρp+1 (g2) ≤ ρp+1 (f)) and by (3.21) we have ρp (f) ≤
ρp (g2) (ρp+1 (f) ≤ ρp+1 (g2)). Hence ρp (g2) = ρp (f) (ρp+1 (g2) = ρp+1 (f)).

Proof of Corollary 1.4 Set w (z) = d2f
′′ + d1f

′ + d0f − ϕ. Then, by ρp (ϕ) < ∞,

we have ρp (w) = ρp (g2) = ρp (f) and ρp+1 (w) = ρp+1 (g2) = ρp+1 (f). In order to
prove λp+1 (g2 − ϕ) = λp+1 (g2 − ϕ) = ρp+1 (f), we need to prove only λp+1 (w) =
λp+1 (w) = ρp+1 (f) . Using g2 = w + ϕ, we get from (3.21)

f =
α1,0w

′ − α1,1w

h2
+ ψ2, (3.22)

where

ψ2 (z) =
α1,0ϕ

′ − α1,1ϕ

h2
. (3.23)

Substituting (3.22) into equation (1.8) , we obtain

α1,0

h2
w

′′′

+ φ2w
′′

+ φ1w
′

+ φ0w

= −
(

ψ
′′

2 +A1 (z)ψ
′

2 +A0 (z)ψ2

)

= A, (3.24)

where φj (j = 0, 1, 2) are meromorphic functions in ∆ with ρp (φj) <∞ (j = 0, 1, 2).
First, we prove that ψ2 6≡ 0. Suppose that ψ2 ≡ 0, then by (3.23) we obtain

α1,1 = α1,0
ϕ′

ϕ
. (3.25)
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It follows that by using Lemma 2.6

m(r, α1,1) ≤ m(r, α1,0) +O

(

expp−2

(

log
1

1− r

)β+ε
)

, ρp(ϕ) = β <∞. (3.26)

(i) If d2 6≡ 0, then by using Lemma 2.4 we obtain the contradiction
{

ρp (A0) ≤ ρp (A1) , if ρp (A0) > ρp (A1) ,
τp (A0) ≤ τp (A1) , if ρp (A0) = ρp (A1) .

(ii) If d2 ≡ 0 and d1 6≡ 0, we obtain the contradiction

ρp (A1) ≤ ρp (d1) .

(iii) If d2 = d1 ≡ 0 and d0 6≡ 0, we have by (3.25)

d0 = α1,1 = α1,0
ϕ′

ϕ
= 0×

ϕ′

ϕ
≡ 0,

which is a contradiction. Hence ψ2 6≡ 0. It is clear now that ψ2 6≡ 0 cannot be a
solution of (1.8) because ρp (ψ2) <∞. Then, by Lemma 2.1, we obtain λp+1 (g2 − ϕ) =
λp+1 (g2 − ϕ) = ρp+1 (f), i. e., λp+1 (w) = λp+1 (w) = ρp+1 (f).
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differential equations in the unit disc, Results Math. 49 (2006), no. 3-4, 265–278.

[16] J. Heittokangas, R. Korhonen and J. Rättyä, Growth estimates for solutions of
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