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Partial sums of a certain harmonic
univalent meromorphic functions

M.K. Aouf, R.M. El-Ashwah,

J.Dziok, J. Stankiewicz

Abstract: In the present paper we determine sharp lower bounds of
the real part of the ratios of harmonic univalent meromorphic functions
to their sequences of partial sums.
Let ΣH denote the class of functions f that are harmonic univalent and
sense-preserving in U∗ =, {z : |z| > 1} which are of the form

f(z) = h(z) + g(z) ,

where

h(z) = z +

∞∑
n=1

anz
−n , g(z) =

∞∑
n=1

bnz
−n.

Now, we define the sequences of partial sums of functions f of the form

fs(z) = z +

s∑
n=1

anz
−n + g(z),

f̃r(z) = g(z) +

r∑
n=1

bnz−n,

fs,r(z) = z +

s∑
n=1

anz
−n +

r∑
n=1

bnz−n.

In the present paper we will determine sharp lower bounds for Re
{
f(z)
fs(z)

}
,

Re
{
fs(z)
f(z)

}
, Re

{
f(z)

f̃r(z)

}
, Re

{
f̃r(z)
f(z)

}
, Re

{
f(z)
fs,r(z)

}
, Re

{
fs,r(z)
f(z)

}
.

AMS Subject Classification: 30C45, 30C50
Keywords and Phrases: Harmonic function, meromorphic, univalent, sense-preser-
ving.
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1 Introduction

A continuous function f = u + iv is a complex valued harmonic function in a
simply connected complex domain D ⊂ C if both u and v are real harmonic in
D. It was shown by Clunie and Sheil-Small [4] that such harmonic function can
be represented by f = h + g, where h and g are analytic in D. Also, a necessary
and sufficient condition for f to be locally univalent and sense preserving in D is

that
∣∣∣h′

(z)
∣∣∣ > ∣∣∣g′

(z)
∣∣∣. There are numerous papers on univalent harmonic functions

defined in a domain U = {z ∈ C : |z| < 1} (see [6,7], [14] and [15]). Hergartner
and Schober [10] investigated functions harmonic in the exterior of the unit disc i.e
U∗ = {z ∈ C : |z| > 1}. They showed that a complex valued, harmonic, sense
preserving univalent function f , defined on U∗ and satisfying f(∞) =∞ must admit
the represntation

f(z) = h(z) + g(z) +A log |z| (A ∈ C), (1.1)

where

h(z) = αz +

∞∑
n=1

anz
−n, g(z) = βz +

∞∑
n=1

bnz
−n (z ∈ U∗, 0 ≤ |β| < |α|), (1.2)

and a = fz/fz is analytic and satisfy |a(z)| < 1 for z ∈ U∗.
Let us denote by ΣH the class of functions f that are harmonic univalent and sense-
preserving in U∗, which are of the form

f(z) = h(z) + g(z) (z ∈ U∗) , (1.3)

where

h(z) = z +

∞∑
n=1

anz
−n , g(z) =

∞∑
n=1

bnz
−n.

Now, we introduce a class ΣH(cn, dn, δ) consisting of functions of the form (1.3) such
that

∞∑
n=1

cn |an|+
∞∑
n=1

dn |bn| < δ (dn ≥ cn ≥ c2 > 0; δ > 0). (1.4)

It is easy to see that various subclasses of ΣH consisting of functions f(z)
of the form (1.3) can be represented as ΣH(cn, dn, δ) for suitable choices of
cn, dn and δ studies earlier by various authors.

• ΣH(n, n, 1) = H∗0 (see Jahangiri and Silverman. [8]);

• ΣH(n+ γ, n− γ, 1− γ) = Σ∗H(γ)(0 ≤ γ < 1, n ≥ 1) (see Jahangiri [5]);
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• ΣH(|(n+ 1)λ− 1| , |(n− 1)λ+ 1| , 1 − α) = ΣHR(α, λ)(0 ≤ α < 1, λ ≥ 0, n ≥
1) (see Ahuja and Jahangiri [1]);

• ΣH(n+ α− αλ(n+ 1), n− α− αλ(n− 1), 1− α) = ΣHS
∗(α, λ)(0 ≤ α < 1, 0 ≤

λ ≤ 1, n ≥ 1) (see Janteng and Halim [9]),

• ΣH(n(n+ 2)m, n(n− 2)m, 1) = MH∗(m)(m ∈ N0 = N∪ {0},N = {1, 2, ...}, n ≥
1) (see Bostanci and Ozturk [2]);

• ΣH((n + γ)(n + 2)m, (n − γ)(n − 2)m, 1 − γ) = MH∗(m, γ)(0 ≤ γ < 1,m ∈
N0, n ≥ 1) (see Bostanci and Ozturk [3]).

Silvia [17] studied the partial sums of the convex functions of order α, later on
Silverman [16] studied partial sum for starlike and convex functions. Very recentaly,
Porwal [12], Porwal and Dixit [13] and Porwal [11] studied analogues interesting results
on the partial sums of certain harmonic univalent functions.

Since to a certain extent the work in the harmonic univalent meromorphic func-
tions case has paralleled that of the harmonic analytic univalent case, one is tempted
to search results analogous to those of Porwal [11] for meromorphic harmonic univa-
lent functions in U∗.

Now, we define the sequences of partial sums of functions f of the form (1.3) by

fs(z) = z +

s∑
n=1

anz
−n +

∞∑
n=1

bnz−n,

f̃r(z) = z +

∞∑
n=1

anz
−n +

r∑
n=1

bnz−n, (1.5)

fs,r(z) = z +

s∑
n=1

anz
−n +

r∑
n=1

bnz−n,

when the coefficients of f are sufficiently small to satisfy the condition (1.4).
In the present paper, motivated essentially by the work of Silverman [16] and

Porwal [11], we will determine sharp lower bounds for Re

{
f(z)

fs(z)

}
,

Re

{
fs(z)

f(z)

}
, Re

{
f(z)

f̃r(z)

}
, Re

{
f̃r(z)

f(z)

}
, Re

{
f(z)

fs,r(z)

}
and Re

{
fs,r(z)

f(z)

}
.

2 Main Results

Theorem 1. Let s ∈ N and let f(z) = h(z) + g(z) ∈ ΣH . Then

(i) Re

{
f(z)

fs(z)

}
> 1− δ

cs+1
(z ∈ U), (2.1)

and

(ii) Re

{
fs(z)

f(z)

}
>

cs+1

δ + cs+1
(z ∈ U), (2.2)
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whenever

cn ≥
{
δ, n = 2, 3, ..., s,
cs+1, n = s+ 1, s+ 2, ....

(2.3)

The estimates in (2.1) and (2.2) are sharp for the function given by

f(z) = z +
δ

cs+1
z−s−1 (z ∈ U∗) . (2.4)

Proof. (i) To obtain the sharp lower bound given by (2.1), let us put

g1(z) =
cs+1

δ

{
f(z)

fs(z)
− (1− δ

cs+1
)

}

= 1 +

cs+1

δ

∞∑
n=s+1

anz
−n

z +

s∑
n=1

anz−n +

∞∑
n=1

bnz−n

. (2.5)

Then, it is sufficient to show that Re g1 (z) > 0 (z ∈ U∗) or equivalently∣∣∣∣g1(z)− 1

g1(z) + 1

∣∣∣∣ ≤ 1 (z ∈ U∗) .

Since ∣∣∣∣g1(z)− 1

g1(z) + 1

∣∣∣∣ ≤
cs+1

δ

∞∑
n=s+1

|an|

2− 2

(
s∑

n=1

|an|+
∞∑
n=1

|bn|

)
− cs+1

δ

∞∑
n=s+1

|an|
, (2.6)

the last expression is bounded above by 1, if and only if

s∑
n=1

|an|+
∞∑
n=1

|bn|+
cs+1

δ

∞∑
n=s+1

|an| ≤ 1. (2.7)

Then, it is sufficient to show that L.H.S. of (2.7) is bounded above by

∞∑
n=1

cn
δ
|an|+

∞∑
n=1

dn
δ
|bn| ,

which is equivalent to the true inequality

s∑
n=1

cn − δ
δ
|an|+

∞∑
n=1

dn − δ
δ
|bn|+

∞∑
n=s+1

cn − cs+1

δ
|an| ≥ 0. (2.8)

If we take

f(z) = z +
δ

cs+1
z−s−1, (2.9)
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with z = re
iπ
s+2 and let r → 1+, we obtain

f(z)

fs(z)
= 1 +

δz−s−2

cs+1
→ 1− δ

cs+1
,

which shows that the bound in (2.1) is best possible.
(ii) Similarly, if we put

g
2
(z) =

(
δ + cs+1

δ

)(
fs(z)

f(z)
− cs+1

δ + cs+1

)

= 1−

(
δ + cs+1

δ

)( ∞∑
n=s+1

|an| zn +

∞∑
n=1

bnz−n

)

z +
∞∑
n=1
|an| zn +

∞∑
n=1

bnz−n

,

and make use of (2.3), we can deduce that

∣∣∣∣g2(z)− 1

g2(z) + 1

∣∣∣∣ ≤
cs+1 + δ

δ

 ∞∑
n=s+1

|an|+
∞∑

n=1

|bn|


2−2

 ∞∑
n=1
|an|+

∞∑
n=1

|bn|

−
cs+1 − δ

δ

 ∞∑
n=s+1

|an|+
∞∑

n=1

|bn|

 . (2.10)

This last expression is bounded above by 1, if and only if

s∑
n=1

|an|+
∞∑
n=1

|bn|+
(cs+1

δ

) ∞∑
n=s+1

|an| ≤ 1. (2.11)

Since L.H.S. of (2.11) is bounded above by

∞∑
n=1

cn
δ
|an|+

∞∑
n=1

dn
δ
|bn| ,

the bound in (2.2) follows and is sharp with the extremal function f(z) given by (2.4).
The proof of Theorem 1 is now complete.

Employing the techinques used in Theorem 1, we can prove the following theorems.

Theorem 2. Let r ∈ N and let f(z) = h(z) + g(z) ∈ ΣH . Then

(i) Re

{
f(z)

f̃r(z)

}
> 1− δ

dr+1
(z ∈ U), (2.12)

and

(ii) Re

{
f̃r(z)

f(z)

}
>

dr+1

δ + dr+1
(z ∈ U), (2.13)
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whenever

dn ≥
{
δ, n = 2, 3, ..., r,
dr+1, n = r + 1, r + 2, ....

The estimates in (2.12) and (2.13) are sharp for the function given by

f(z) = z +
δ

dr+1
z−r−1 (z ∈ U∗). (2.14)

Theorem 3. Let s, r ∈ N and let f(z) = h(z) + g(z) ∈ ΣH . Then

(i) Re

{
f(z)

fs,r(z)

}
> 1− δ

cs+1
(z ∈ U), (2.15)

and

(ii) Re

{
fs,r(z)

f(z)

}
>

cs+1

δ + cs+1
(z ∈ U), (2.16)

whenever

cn ≥
{
δ, n = 2, 3, ..., s,
cs+1, n = s+ 1, s+ 2, ...,

(2.17)

dn ≥
{
δ, n = 2, 3, ..., s,
cs+1, n = s+ 1, s+ 2, ....

Also,

(i) Re

{
f(z)

fs,r(z)

}
> 1− δ

dr+1
(z ∈ U), (2.18)

and

(ii) Re

{
fs,r(z)

f(z)

}
>

dr+1

δ + dr+1
(z ∈ U), (2.19)

whenever

cn ≥
{
δ, n = 2, 3, ..., r,
dr+1, n = r + 1, r + 2, ...,

(2.20)

dn ≥
{
δ, n = 2, 3, ..., r,
dr+1, n = r + 1, r + 2, ....

The estimates in (2.15), (2.16), (2.18) and (2.19) respectively, are sharp for the func-
tion given by (2.4) and (2.14), respectively.

Remark. By specializing the coefficients cn, dn and the parameters δ we obtain
corresponding results for various subclasses mentioned in the introduction.
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Abstract: This paper is devoted to the study of some structural
properties of bounded and involutory BE–algebras and investigate the
relationship between them. We construct a commutative monoid by def-
inition of proper operation in an involutory BE–algebra. Some rules of
calculus for BE–algebras with a semi-lattice structure are provided. Many
results related to the natural order of a BE–algebras were found. Finally,
we show that an involutory bounded BE–algebra X is semi-simple.
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Keywords and Phrases: (bounded, involutory)BE–algebra, involution, semi-lattice,
lattice, semi-simple.

1 Introduction and Preliminaries

The study of BCK/BCI–algebras was initiated by K. Iséki in 1966 as a generalization
of propositional logic. There exist several generalization of BCK/BCI–algebras, such
as BCH–algebras, d–algebras, B–algebras, BH–algebras, etc.

Especially, the notion of BE–algebras was introduced by H. S. Kim and Y. H.
Kim [7], in which was deeply studied by S. S. Ahn and et. al., in [1, 2, 3], Wal-
endziak in [15], A. Rezaei and et. al., in [12, 13, 14]. Lattice-valued logic is becoming
a research filed strongly influences the development of Algebraic Logic, Computer
Science and Artificial Intelligence Technology. BE–algebras are important tools for
certain investigations in algebraic logic since they can be consider as fragments of
any propositional logic containing a logical connective implication and the constant 1
which is considered as the logical value ”true”. In this paper, we develop the theory
BE–algebras with define a new structure as bounded and involutory BE–algebras
and investigate the relationship between them and proved some theorems.

The paper has been organized in tree sections. In section 1, we give some defi-
nitions and some previous results and in section 2 we define bounded BE–algebras
and define a congruence relation on this algebra with respect to a filter which this
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congruence relation allowed us to define a quotient algebra is also a bounded BE–
algebra. In section 3 we discus on involutory BE–algebra because it is well known this
structure has an important and vital role in investigating the structure of a logical
system. Since quotient algebra is a basic tool for exploring the structures of algebras
and there are close contacts among congruences and quotient algebras, we introduce
a new congruence relation on X and construct quotient algebra via this congruence
relation.

Definition 1.1. [7] An algebra (X; ∗, 1) of type (2, 0) is called a BE–algebra if fol-
lowing axioms hold:

(BE1) x ∗ x = 1,

(BE2) x ∗ 1 = 1,

(BE3) 1 ∗ x = x,

(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.

We introduce a relation ” ≤ ” on X by x ≤ y if and only if x ∗ y = 1.

Proposition 1.2. [7] Let X be a BE–algebra. Then

(i) x ∗ (y ∗ x) = 1,

(ii) y ∗ ((y ∗ x) ∗ x) = 1, for all x, y ∈ X.

From now on, in this paper X is a BE–algebra, unless otherwise is stated.
A subset F of X is called a filter of X if (F1) 1 ∈ F and (F2) x ∈ F and x ∗ y ∈ F
imply y ∈ F . We denote By F (X) the set of all filters of X and Max(X) the set of
all maximal filters of X. Let A be a non-empty subset of X, then the set

< A >=
⋂
{G ∈ F (X)| A ⊆ G}

is called the filter generated by A, written < A >. If A = {a}, we will denote < {a} >,
briefly by < a >, and we call it a principal filter of X. For F ∈ F (X) and a ∈ X,
we denote by Fa the filter generated by F ∪ {a}. X is said to be self distributive if
x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X, (Example 8., [7]).

In a self distributive BE–algebra X, Fa = {x ∈ X : a ∗ x ∈ F},([3]). X is said
to be transitive if y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X, [1]. We say that X is
commutative if (x∗y)∗y = (y ∗x)∗x, for all x, y ∈ X. In [15], A. Walendziak, showed
that every dual BCK–algebra is a BE–algebra and any commutative BE–algebra is
a dual BCK–algebra.

We note that ”≤” is reflexive by (BE1). If X is self distributive, then relation
”≤” is a transitive order set on X. Because if x ≤ y and y ≤ z, then

x ∗ z = 1 ∗ (x ∗ z) = (x ∗ y) ∗ (x ∗ z) = x ∗ (y ∗ z) = x ∗ 1 = 1
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and so x ≤ z. If X is commutative, then by Proposition 3.3, [15], relation ”≤” is
antisymmetric. Hence if X is a commutative self distributive BE–algebra, then ”≤”
is a partial order set on X, (Example 3.4., [3]). We show that if I be an obstinate
ideal of a self distributive BE–algebra X, then (X/I; ∗, C1) is also a BE-algebra,
which is called to be the quotient algebra via I, and C1 = I, (see Theorem 3.13, [12]).

Proposition 1.3. [12] Let X be self distributive. If x ≤ y, then

(i) z ∗ x ≤ z ∗ y and y ∗ z ≤ x ∗ z,

(ii) y ∗ z ≤ (z ∗ x) ∗ (y ∗ x), for all x, y, z ∈ X.

Theorem 1.4. [13] A dual BCK–algebra X is commutative if and only if (X;≤) is
an upper semi-lattice with x ∨ y = (y ∗ x) ∗ x, for all x, y ∈ X.

Proposition 1.5. [13] Let X be a commutative BE–algebra. Then

(i) for each a ∈ X, the mapping fa : x → x ∗ a is an anti-tone involution on the
section [a, 1].

(ii) (A,≤) is a near-lattice with section anti-tone involutions and for every a ∈ X,
the anti-tone involutions fa on [a, 1] is given by fa(x) = x ∗ a.

Theorem 1.6. [15, 13] Let X be commutative. Then it is a semi-lattice with respect
to ∨.

Definition 1.7. [4] A filter F of X is called an obstinate filter if x, y /∈ F imply
x ∗ y ∈ F and y ∗ x ∈ F .

Theorem 1.8. [5] Let X be self distributive. F ∈ F (X) and F 6= X. Then the
following are equivalent:

(i) F is an obstinate filter,

(ii) if x /∈ F , then x ∗ y ∈ F, for all y ∈ F.

2 On Bounded BE-algebras

Definition 2.1. X is called bounded if there exists the smallest element 0 of X (i.e.,
0 ∗ x = 1, for all x ∈ X).

Example 2.2. (i). The interval [0, 1] of real numbers with the operation ” ∗ ” defined
by

x ∗ y = min{1− x+ y, 1}, for all x, y ∈ X

is a bounded BE–algebra.
(ii). Let (X; ∗, 1) be a BE–algebra, 0 /∈ X and X̄ = X ∪ {0}. If we extensively

define
0 ∗ x = 0 ∗ 0 = 1 and x ∗ 0 = 0 for all x ∈ X.
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Then (X̄; ∗, 0, 1) is a bounded BE–algebra with 0 as the smallest element.
(iii). Let X := {0, a, b, 1} be a set with the following table.

∗ 0 a b 1
0 1 1 1 1
a a 1 b 1
b b a 1 1
1 0 a b 1

Then (X; ∗, 0, 1) is a bounded BE–algebra with 0 as the smallest element.
(iv). Let X := {0, a, b, c, 1} be a set with the following table.

∗ 0 a b c 1
0 1 1 1 1 1
a 0 1 b c 1
b 0 a 1 c 1
c 0 1 b 1 1
1 0 a b c 1

Then (X; ∗, 0, 1) is a bounded BE–algebra with 0 as the smallest element.
(v). Let (X;∨,∧,¬, 0, 1) be a Boolean-lattice. Then (X; ∗, 1) is a bounded BE–

algebra, where operation ” ∗ ” is defined by x ∗ y = (¬x) ∨ y, for all x, y ∈ X.

Remark. The following example shows that the bounded BE–algebra is not
a dual BCK–algebra and Hilbert algebra in general (see Definition 2.3, [15] and
Definition 3.1, [14]).

Example 2.3. Let X := {0, a, b, 1} be a set with the following table.

∗ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 1 1 1
1 0 a b 1

Then (X; ∗, 0, 1) is a bounded BE–algebra with 0 as the smallest element but it is not
a dual BCK–algebra, Hilbert algebra. Because

a ∗ b = b ∗ a = 1 while a 6= b.

Also, it is not an implication algebra. Because

(a ∗ b) ∗ b = 1 ∗ b = b 6= (b ∗ a) ∗ a = 1 ∗ a = a.

Given a bounded BE–algebra X with 0 as the smallest element, we denote x ∗ 0
by Nx, then N can be regarded as a unary operation on X.

Proposition 2.4. Let X be bounded with the smallest element 0. Then the following
hold:
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(i) N0 = 1 and N1 = 0,

(ii) x ≤ NNx,

(iii) x ∗Ny = y ∗Nx, for all x, y ∈ X.

Proof. (i). By (BE1) and (BE2) we have N0 = 0 ∗ 0 = 1 and N1 = 1 ∗ 0 = 0.
(ii). Since x ∗ (Nxx) = x ∗ ((x ∗ 0) ∗ 0) = (x ∗ 0) ∗ (x ∗ 0) = 1, then x ≤ NNx.
(iii). By (BE4) we have x ∗Ny = x ∗ (y ∗ 0) = y ∗ (x ∗ 0) = y ∗Nx.

Proposition 2.5. Let X be a self distributive and bounded. Then

(i) y ∗ x ≤ Nx ∗Ny,

(ii) x ≤ y, implies Ny ≤ Nx, for all x, y ∈ X.

Proof. (i). We have

(y ∗ x) ∗ (Nx ∗Ny) = Nx ∗ ((y ∗ x) ∗Ny) = (x ∗ 0) ∗ ((y ∗ x) ∗ (y ∗ 0))

= (x ∗ 0) ∗ (y ∗ (x ∗ 0))

= y ∗ ((x ∗ 0) ∗ (x ∗ 0))

= y ∗ 1 = 1.

Hence y ∗ x ≤ Nx ∗Ny.
(ii). By (BE3) and assumption we have

Ny ∗Nx = (y ∗ 0) ∗ (x ∗ 0) = (y ∗ 0) ∗ (1 ∗ (x ∗ 0))

= (y ∗ 0) ∗ ((x ∗ y) ∗ (x ∗ 0))

= (y ∗ 0) ∗ (x ∗ (y ∗ 0))

= x ∗ ((y ∗ 0) ∗ (y ∗ 0))

= x ∗ 1 = 1.

Hence Ny ≤ Nx.

In the following example we show that the self-distributivity condition in the above
theorem is necessary.

Example 2.6. Example 2.2(iii), is a bounded BE–algebra with 0 as the smallest
element, while it is not self-distributive. Because

b ∗ (0 ∗ a) = 2 ∗ 1 = 1 6= (b ∗ 0) ∗ (b ∗ a) = b ∗ a = a.

We can seen easily that, b = a ∗ b 
 Nb ∗Na = b ∗ a = a.

Proposition 2.7. Let X be bounded implicative self distributive. Then the following
hold:

(i) X is commutative,
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(ii) x = Nx ∗ x,

(iii) x ∨ y = y ∨ x = Nx ∗ y, for all x, y ∈ X.

Proof. (i). See proof of Theorem 3.12([14]).
(ii). Assume that X is a bounded implicative. Then Nx ∗ x = (x ∗ 0) ∗ x = x.
(iii). Let X be bounded implicative self distributive and x, y ∈ X. then by Propo-

sition 1.3, 0 ≤ y and x ∗ 0 ≤ x ∗ y. Furthermore, by Propositions 1.2 and 1.3, we
get

x ≤ (x ∗ y) ∗ y ≤ (x ∗ 0) ∗ y = Nx ∗ y
Since by Proposition 1.2, y ≤ Nx ∗ y, then Nx ∗ y is an upper bound of x and y.
Hence x ∨ y ≤ Nx ∗ y. Also, we have

Nx ∗ y ≤ (y ∗ x) ∗ (Nx ∗ x) = (y ∗ x) ∗ x.

Since X is commutative, then by Theorem 1.6, we have (y ∗ x) ∗ x = x ∨ y = y ∨ x
and so by Proposition 3.3([15]), the proof is complete.

Corollary 2.8. Let X be self distributive, F ∈ F (X) and F 6= X. Then the following
are equivalent:

(i) F is an obstinate filter,

(ii) if x /∈ F , then Nx ∈ F.

Definition 2.9. Let X and Y be bounded. A homomorphism from X to Y is a
function f : X → Y such that

(i) f(x ∗ y) = f(x) ∗ f(y),

(ii) f(Nx) = N(f(x)),

(iii) f(0) = 0, for all x, y ∈ X.

Example 2.10. Consider X as Example 2.2(iii) and Y as Example 2.3. Define f :
X → Y such that f(1) = f(a) = f(b) = 1 and f(0) = 0. Then f is a homomorphism.

Theorem 2.11. Let f : X → Y be a homomorphism. Then ker(f) = {x ∈ X : f(x) =
1} is a filter in X. Moreover, if f(x) = f(y), then x ∗ y ∈ ker(f) and y ∗ x ∈ ker(f),
for all x, y ∈ X. If Y is commutative, then the converse is valid.

Proof. We have f(1) = f(x ∗ x) = f(x) ∗ f(x) = 1. Hence 1 ∈ ker(f). Now, let
x ∈ ker(f) and x∗y ∈ ker(f). Then f(x) = f(x∗y) = 1. But f(x∗y) = f(x)∗f(y) = 1.
Hence f(y) = 1 ∗ f(y) = 1. Therefore, y ∈ ker(f).

Now, let f(x) = f(y). By using (BE1), f(x) ∗ f(y) = 1 and f(y) ∗ f(x) = 1. But
1 = f(x) ∗ f(y) = f(x ∗ y) and 1 = f(y) ∗ f(x) = f(y ∗ x) implies x ∗ y ∈ ker(f) and
y ∗ x ∈ ker(f).

Assume that Y is commutative, x∗y ∈ ker(f) and y ∗x ∈ ker(f). Then f(x∗y) =
f(y ∗ x) = 1 which implies that f(x) ∗ f(y) = f(y) ∗ f(x) = 1. Hence by Proposition
3.3([15]), f(x) = f(y).
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Theorem 2.12. Let X be bounded transitive, F be a filter and X/F be the corre-
sponding quotient algebra. Then the map f : X → X/F which is defined by f(a) = [a],
for all a ∈ X, is a homomorphism and ker(f) = F.

Proof. By Propositions 5.4 and 5.7([11]), X/F is a quotient BE–algebra. Now, we
have f(0) = [0] and

f(Nx) = f(x ∗ 0) = f(x) ∗ f(0) = f(x) ∗ [0] = N(f(x)).

Now, let x ∈ ker(f). Then f(x) = [x] = [1] if and only if 1 = x ∗ 1 ∈ F and
x = 1 ∗ x ∈ F if and only if 1 ∈ F and x ∈ F. Therefore, ker(f) = F.

3 Involutory BE–algebras

If NNx = x, then x is called an involution of X. The smallest element 0 and the
greatest element 1 are two involutions of X, because

NN0 = N(0 ∗ 0) = N1 = 1 ∗ 0 = 0,

NN1 = N(1 ∗ 0) = N0 = 0 ∗ 0 = 1.

Definition 3.1. A bounded BE–algebra X is called involutory if any element of X
is involution.

Example 3.2. (i). Examples 2.2(i), (iii), (v), are involutory.
(ii). Let X := {0, a, b, 1} be a set with the following table.

∗ 0 a b 1
0 1 1 1 1
a 0 1 b 1
b 0 a 1 1
1 0 a b 1

Then (X; ∗, 0, 1) is a bounded BE–algebra but it is not an involutory. Because

NNb = N(b ∗ 0) = N0 = 0 ∗ 0 = 1 6= b.

(iii). Let X := {0, a, b, 1} be a set with the following table.

∗ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a 1 1 1
1 0 a b 1

Then (X; ∗, 0, 1) is an involutory BE–algebra but it is not an involutory dual BCK–
algebra and involutory Hilbert algebra. Because

a ∗ b = 1 and b ∗ a = 1 while, a 6= b.
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Also, it is not an involutory implication algebra. Because

(a ∗ b) ∗ b = 1 ∗ b = b 6= (b ∗ a) ∗ a = 1 ∗ a = a.

Proposition 3.3. If X is a bounded commutative, then X is an involutory.

Proof. By using the commutativity we get

NNx = (x ∗ 0) ∗ 0 = (0 ∗ x) ∗ x = 1 ∗ x = x.

Hence X is an involutory.

In the following example we show that the commutativity condition in the above
theorem is necessary.

Example 3.4. Example 3.2(ii), is not an involutory. Because it is not commutative.

Proposition 3.5. If X is an involutory, then

(i) x ∗ y = Ny ∗Nx,

(ii) x ≤ Ny implies y ≤ Nx, for all x, y ∈ X.

Proof. (i). Since X is an involutory, then we have NNx = x, for all x, y ∈ X. Hence
by Proposition 2.4(iii), x ∗ y = x ∗NNy = Ny ∗Nx.

(ii). Since x ≤ Ny, we get x∗Ny = 1. Hence by Proposition 2.4(iii), 1 = x∗Ny =
y ∗Nx. So, y ≤ Nx.

Lemma 3.6. Let X be bounded self distributive and x, y ∈ X.

(i) if the smallest upper bound x∨y of x and y exists, then the greatest lower bound
Nx ∧Ny of Nx and Ny exists and Nx ∧Ny = N(x ∨ y).

(ii) if X is involutory and the greatest lower bound x∧y exists, then the least upper
bound Nx ∨Ny exists and Nx ∨Ny = N(x ∧ y).

Proof. (i). Assume that the smallest upper bound x ∨ y of x and y exists. Since
x ≤ x ∨ y, then by Proposition 1.3, (x ∨ y) ∗ 0 ≤ x ∗ 0, (i.e., N(x ∨ y) ≤ Nx).
By the similar way N(x ∨ y) ≤ Ny. Hence N(x ∨ y) is a lower bound of Nx and
Ny. Also, assume that u is any lower bound of Nx and Ny. Then u ≤ Nx and
u ≤ Ny. Hence by (BE4), we have x ∗ (u ∗ 0) = u ∗ (x ∗ 0) = u ∗ Nx = 1. Hence
x ≤ Nu and by the similar way y ≤ Nu. So, x ∨ y ≤ Nu. Now, by (BE4), we have
(x∨ y) ∗ (u ∗ 0) = u ∗ ((x∨ y) ∗ 0) = 1. So, u ≤ N(x∨ y). Hence N(x∨ y) is a greatest
lower bound of Nx and Ny. Therefore, the greatest lower bound Nx∧Ny of Nx and
Ny exists, and Nx ∧Ny = N(x ∨ y).

(ii). Assume that x∧ y exists. Since x∧ y ≤ x and x∧ y ≤ y, then by Proposition
2.5, we have N(x) ≤ N(x∧y) and N(y) ≤ N(x∧y). Hence N(x∧y) is an upper bound
of Nx and Ny. Also, let u be any upper bound of Nx and Ny. Then Nx ≤ u and
Ny ≤ u. Since X is involutory, then by Proposition 2.5, we derive Nu ≤ NNx = x
and Nu ≤ NNy = y. So, Nu ≤ x ∧ y. By Proposition 2.5, we have N(x ∧ y) ≤
NNu = u. Hence N(x ∧ y) is the smallest upper bound of Nx and Ny. Then the
least upper bound Nx ∨Ny exists, and Nx ∨Ny = N(x ∧ y).
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Theorem 3.7. Let X be involutory self distributive. Then the following are equiva-
lent:

(i) (X;≤) is an upper semi-lattice,

(ii) (X;≤) is a lower semi-lattice,

(iii) (X;≤) is a lattice.

Moreover, if (X;≤) is a lattice, then the following identities hold:

x ∧ y = N(Nx ∨Ny) and x ∨ y = N(Nx ∧Ny).

Proof. (i) ⇒ (ii). Since (X;≤) is an upper semi-lattice, then Nx ∨Ny exists for all
x, y ∈ X. By the first half part of Lemma 3.6, NNx ∧NNy exists. Also, since X is
involutory, we have NNx ∧ NNy = x ∧ y. Then x ∧ y exists. So, (X;≤) is a lower
semi-lattice.

(ii) ⇒ (iii). Since (X;≤) is a lower semi-lattice, Nx ∧ Ny exists and using the
second half part of Lemma 3.6, NNx∨NNy exists, for all x, y ∈ X. Also, since X is
involutory, we have NNx ∨NNy = x ∨ y. Then x ∨ y exists. So, (X;≤) is an upper
semi-lattice.

(iii)⇒ (i). The proof is obvious.

Now, let (X;≤) is a lattice. Since by Lemma 3.6, X is involutory, then we have

x ∧ y = NNx ∧NNy = N(Nx ∨Ny),

x ∨ y = NNx ∨NNy = N(Nx ∧Ny).

Theorem 3.8. Let I be an obstinate ideal of involutory(bounded) self-distributive X.
Then (X/I; ∗, C1) is involutory(bounded) self-distributive, too.

Proof. By Theorems 3.13 and 3.16([12]), (X/I; ∗, C1) is a self-distributive BE–
algebra. Let x ∈ X. Then C0∗Cx = C0∗x = C1. Hence X/I is a bounded BE–algebra.
Now,

NNCx = (Cx ∗ C0) ∗ C0 = Cx∗0 ∗ C0 = C(x∗0)∗0 = CNNx = Cx.

Therefore, X/I is an involutory BE–algebra.

Proposition 3.9. Let X be involutory and operation ” ◦ ” is defined on X by x ◦ y =
Nx ∗ y, for all x, y ∈ X. Then (X; ◦, 0) is a commutative monoid.

Proof. By Proposition 2.4(iii),

x ◦ y = Nx ∗ y = Nx ∗NNy = Ny ∗NNx = Ny ∗ x = y ◦ x
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and so X is commutative. Now, by Proposition 2.4(iii), and (BE4) we have

x ◦ (y ◦ z) = Nx ∗ (y ◦ z) = Nx ∗ (z ◦ y)

= Nx ∗ (Nz ∗ y)

= Nz ∗ (Nx ∗ y)

= z ◦ (Nx ∗ y)

= (Nx ∗ y) ◦ z
= (x ◦ y) ◦ z.

Hence ” ◦ ” is associative operation on X. Moreover, for any x ∈ X

x ◦ 0 = Nx ∗ 0 = NNx = x and 0 ◦ x = N0 ∗ x = 1 ∗ x = x.

In the following example we show that the converse of the Proposition 3.9, is not
valid in general.

Example 3.10. Let X := {0, a, b, 1} be a set with the following table.

∗ 1 a
1 1 a
a a a

Then (X; ∗, 1) is a commutative monoid, but it is not a BE–algebra. Because a ∗ a =
a 6= 1 and a ∗ 1 = a 6= 1, (i.e., conditions (BE1) and (BE2) are not holds).

Lemma 3.11. Let X be bounded. Then

(i) filter F of X is proper if and only if 0 /∈ F .

(ii) each proper filter F is contained in a maximal filter.

Proof. (i). Let F be a proper filter of X and 0 ∈ F. If x ∈ X, since 0 ∗ x = 1 ∈ F,
which implies x ∈ F. Hence X = F , which is a contradiction. The converse is clear.
(ii). The proof is obvious.

Theorem 3.12. Every bounded BE–algebra contains at least one maximal filter.

Proof. Let X be a bounded BE–algebra. Since {1} is a proper filter of X, then the
proof is clear by Lemma 3.11.

Definition 3.13. Let X be bounded. Then the radical of X, written Rad(X), is
defined by

Rad(X) = ∩{F : F ∈Max(X)}.

In view of Theorem 3.12, Rad(X) always exists for a bounded algebraX. Following
a standard terminology in the contemporary algebra, we shall call an algebra X semi-
simple if Rad(X) = {1}.
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Example 3.14. In Example 2.2(iv), F1 = {1}, F2 = {1, a}, F3 = {1, a, b, c} and X
are filters in X and F3 is only maximal filter of X. Hence Rad(X) = F3.

Example 3.15. In Example 2.2(iii), F1 = {1}, F2 = {1, a}, F3 = {1, b} and X
are filters in X and F2, F3 are maximal filters of X, also F2 ∩ F3 = {1}. Hence
Rad(X) = {1} and therefore X is semi-simple.

Lemma 3.16. Let X be an involutory bounded BE–algebra. Then for every x ∈ X
with x 6= 1, there exists a maximal filter F of X such that x /∈ F.

Proof. Let 1 6= x ∈ X. We claim that < Nx > is a proper filter of X. By contrary, if
it is not, then < Nx >= X. Hence 0 ∈< Nx > and therefore Nx ∗ 0 = NNx = 1.
Since X is involutory, then x = NNx = 1, which is a contradiction. By Lemma
3.11(ii), there is a maximal filter F of X such that < Nx >⊆ F, and x /∈ F. Suppose
x ∈ F . Since Nx = x ∗ 0 ∈ F , then 0 ∈ F, which is contrary by Lemma 3.11(i).

Theorem 3.17. Let X be involutory and bounded. Then X is a semi-simple.

Proof. By Lemma 3.16, the proof is clear.

In this section we define a congruence relation ”θ” on involutory bounded BE–
algebra X and construct quotient algebra (X/θ; ∗, θ0, θ1) induced by the congruence
relation ”θ”, where, we denote θx for the equivalence class [x] containing x. Since
”θ” is a congruence on X, then the operation ” ∗ ” on X/θ given by θx ∗ θy = θx∗y is
well-defined, because ”θ” satisfied of the substitution property. Then (X/θ; ∗, θ0, θ1)
is an algebra of type (2, 0, 0) where,

θ0 = {x : N0 = Nx} = {x : Nx = 1}

is the zero equivalence class containing 0 and

θ1 = {x : N1 = Nx} = {x : Nx = 0}

is the one equivalence class containing 1. Now, in the following theorem define and
prove this results.

Theorem 3.18. Let X be involutory and bounded. The relation ”θ” defined on X
by:

(x, y) ∈ θ if and only if Nx = Ny

is a congruence relation on X and the quotient algebra (X/θ; ∗, θ0, θ1) is an involutory
bounded BE–algebra.

Proof. It is clear that ”θ” is an equivalence relation on X. Now, Let (x, y) ∈ θ and
(u, v) ∈ θ. Then Nx = Ny and Nu = Nv. Hence,

Nx ∗Nu = (x ∗ 0) ∗ (u ∗ 0) = u ∗ ((x ∗ 0) ∗ 0) = u ∗NNx = u ∗ x.

Thus N(u ∗x) = N(Nx ∗Nu) = N(Ny ∗Nv) = N(v ∗ y), and so (u ∗x, v ∗ y) ∈ θ. By
the similarly way we have (x ∗ u, y ∗ v) ∈ θ. Hence ”θ” is a congruence relation on X.
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Let θx, θy, θz ∈ X/θ. Then
(BE1) θx ∗ θx = θx∗x = θ1,
(BE2) θx ∗ θ1 = θx∗1 = θ1,
(BE3) θ1 ∗ θx = θ1∗x = θx,
(BE4) θx ∗ (θy ∗ θz) = θx ∗ θy∗z = θx∗(y∗z) = θy∗(x∗z) = θy ∗ θx∗z = θy ∗ (θx ∗ θz).

Now, since θ0 ∗ θx = θ0∗x = θ1. Hence θ0 is as the smallest element of X/θ. Also,

NNθx = (θx ∗ θ0) ∗ θ0 = θx∗0 ∗ θ0 = θ(x∗0)∗0 = θNNx = θx.

Therefore, (X/θ; ∗, θ0, θ1) is an involutory bounded BE–algebra.

Example 3.19. Consider Example 2.2(iv), θ0 = {0} and θa = θb = θc = θ1 =
{a, b, c, 1}. Then X/θ = {θ0, θ1}. Thus (X/θ; ∗, θ0, θ1) is an involutory bounded BE–
algebra.

Corollary 3.20. Let X be an involutory bounded BE–algebra and X0 := {Nx : x ∈
X}. Then (X0; ∗, N0) is a BE–algebra.

Example 3.21. In Example 2.2(ii), (iv), respectively, X0 = {0, 1} and X0 =
{0, a, b, 1}.

Proposition 3.22. Let X be involutory, bounded and self-distributive(commutative).
Then X/θ is involutory, bounded and self-distributive(commutative), too.

4 Conclusion and future research

In this paper, we introduced the notion of bounded and involutory BE–algebras and
get some results. In addition, we have defined a congruence relation on involutory
bounded BE–algebras and construct the quotient BE–algebra via this relations. In
[10], J. Meng proved that implication algebras are dual to implicative BCK–algebras.
Also R. Halaŝ in [9], showed commutative Hilbert algebras are implication algebras
and A. Digo in [6], proved implication algebras areHilbert algebras. Recently, A. Wal-
endziak in [15], showed that an implication algebra is a BE–algebra and commutative
BE–algebras are dual BCK–algebras. In [14], we showed that every Hilbert algebra
is a self distributive BE–algebra and commutative self distributive BE–algebra is
a Hilbert algebra. Then in the following diagram we summarize the results of this
paper and we give the relations among such structures of involutory algebras.

”A→ B,” means that A conclude B.

invo-BE–algebra

imp-com

��

self-com

**com

tt
invo-dual BCK–algebra

imp //

44

invo-implication algebra

OO

//oo invo- Hilbert algebra
com
oo

jj



Involutory BE–algebras 25

We think such results are very useful for study in this structure. In the future work
we try assemble of calculus relative to different kinds of BE–algebras, as example,
latticeal structure and Boolean lattices.

Acknowledgments: The authors wish to thank the reviewers for their excellent
suggestions that have been incorporated into this paper.
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1 Introduction and Preliminaries

Good and Hughes[5] introduced the notion of bi-ideals and Steinfeld [2] intro-
duced the notion of quasi-ideals in semigroups. In [1], Sioson studied the concept of
quasi-ideals in ternary semigroups. He also introduced the notion of regular ternary
semigroups and characterised them by using the notion of quasi-ideals. In [7], Dixit
and Dewan studied about the quasi-ideals and bi-ideals of ternary semigroups.

A nonempty set S with a ternary operation S × S × S 7−→ S, written as
(x1, x2, x3) 7−→ [x1x2x3] is called a ternary semigroup if it satisfies the follow-
ing associative law: [[x1x2x3]x4x5] = [x1[x2x3x4]x5] = [x1x2[x3x4x5]] for any
x1, x2, x3, x4, x5 ∈ S. In this paper, we denote [x1x2x3] by x1x2x3.

A non-empty subset T of a ternary semigroup S is called a ternary subsemigroup
if t1t2t3 ∈ T for all t1, t2, t3 ∈ T. A ternary subsemigroup I of a ternary semigroup
S is called a left ideal of S if SSI ⊆ I, a lateral ideal if SIS ⊆ I, a right ideal of S
if ISS ⊆ I, a two-sided ideal of S if I is both left and right ideal of S, and an ideal
of S if I is a left, a right and a lateral ideal of S. An ideal I of a ternary semigroup
S is called a proper ideal if I 6= S. Let S be a ternary semigroup. If there exists
an element 0 ∈ S such that 0xy = x0y = xy0 = 0 for all x, y ∈ S, then “0” is
called the zero element or simply the zero of the ternary semigroup S. In this case
S ∪ {0} becomes a ternary semigroup with zero. For example, the set of all non-
positive integers Z−10 forms a ternary semigroup with usual ternary multiplication
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and ′0′ forms a ternary semigroup with zero element and also the zero element satisfy
(SS)0S = S0SS0 = S(SS)0 = S. Throughout this paper S will always denote a
ternary semigroup with zero. A ternary subsemigroup Q of a ternary semigroup S
is called a quasi-ideal of S if QSS ∩ (SQS ∪ SSQSS) ∩ SSQ ⊆ Q and a ternary
subsemigroup B of a ternary semigroup S is called a bi-ideal of S if BSBSB ⊆ B.
It is easy to see that every quasi-ideal in a ternary semigroup is a bi-ideal of S. An
element a in a ternary semigroup S is called regular if there exists an element x in
S such that axa = a. A ternary semigroup is called regular if all of its elements are
regular. A ternary semigroup S is regular if and only if R∩M ∩L = RML for every
right ideal R, lateral ideal M and left ideal L of S.

2 Generalised Quasi-ideals in Ternary Semigroup

In this section, we introduce the concept of generalised quasi-ideals in ternary
semigroups and prove some results related to the same.

Definition 2.1. A ternary subsemigroup Q of a ternary semigroup S is called a gen-
eralised quasi-ideal or (m, (p, q), n)-quasi-ideal of S if Q(SS)m∩(SpQSq∪SpSQSSq)∩
(SS)nQ ⊆ Q, where m,n, p, q are positive integers greater than 0 and p + q = even.

Remark 2.1. Every quasi-ideal of a ternary semigroup S is (1, (1, 1), 1)-quasi-ideal
of S. But (m, (p, q), n)-quasi-ideal of a ternary semigroup S need not be a quasi-ideal
of S.

Example 1. Let Z− \ {−1} be the set of all negative integers excluding {0}. Then
Z− \ {−1} is a ternary semigroup with usual ternary multiplication. Consider Q =
{−3}∪{k ∈ Z− : k ≤ −14}. Clearly Q is a non-empty ternary subsemigroup of S and
also Q is (2, (1, 1), 3)-quasi-ideal of S. Now, {−12} ∈ QSS∩(SQS∪SSQSS)∩SSQ.
But {−12} 6∈ Q. Therefore QSS ∩ (SQS ∪ SSQSS) ∩ SSQ 6⊆ Q. Hence Q is not
quasi-ideal of Z− \ {−1}.

Lemma 2.1. Non-empty intersection of arbitrary collection of ternary subsemigroups
of a ternary semigroup S is a ternary subsemigroup of S.

Proof. Let Ti be a ternary subsemigroup of S for all i ∈ I such that
⋂
i∈I

Ti 6= ∅. Let

t1, t2, t3 ∈
⋂
i∈I

Ti. Then t1, t2, t3 ∈ Ti for all i ∈ I. Since Ti is a ternary subsemigroup

of S for all i ∈ I, therefore t1t2t3 ∈ Ti for all i ∈ I. Therefore t1t2t3 ∈
⋂
i∈I

Ti. Hence⋂
i∈I

Ti is a ternary subsemigroup of S.

Theorem 2.1. Let S be a ternary semigroup and Qi be an (m, (p, q), n)-quasi-ideal
of S such that

⋂
i∈I

Qi 6= ∅. Then
⋂
i∈I

Qi is an (m, (p, q), n)-quasi-ideal of S.

Proof. Clearly
⋂
i∈I

Qi is a ternary subsemigroup of S (by Lemma 2.1).

Let x ∈
[ ⋂
i∈I

Qi(SS)m
]
∩
[
Sp
⋂
i∈I

QiS
q ∪ SpS

⋂
i∈I

QiSS
q

]
∩
[
(SS)n

⋂
i∈I

Qi

]
. Then x ∈
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i∈I

Qi(SS)m, x ∈ Sp
⋂
i∈I

QiS
q ∪ SpS

⋂
i∈I

QiSS
q and x ∈ (SS)n

⋂
i∈I

Qi. This implies

x ∈ Qi(SS)m, x ∈ [SpQiS
q ∪ SpSQiSS

q] and x ∈ (SS)nQi for all i ∈ I. Therefore
x ∈ [Qi(SS)m] ∩ [SpQiS

q ∪ SpSQiSS
q] ∩ [(SS)nQi] ⊆ Qi for all i ∈ I, since Qi is an

(m, (p, q), n)-quasi-ideal of S. Thus x ∈ Qi for all i ∈ I. Therefore x ∈
⋂
i∈I

Qi. Hence⋂
i∈I

Qi is an (m, (p, q), n)-quasi-ideal of S.

Remark 2.2. Let Z− be the set of all negative integers under ternary multiplication
and Qi = {k ∈ Z− : k ≤ −i} for all i ∈ I. Then Qi is an (2, (1, 1), 3)-quasi-ideal of
Z− for all i ∈ I. But

⋂
i∈I

Qi = ∅. So condition
⋂
i∈I

Qi 6= ∅ is necessary.

Definition 2.2. Let S be a ternary semigroup. Then a ternary subsemigroup

(i) R of S is called an m-right ideal of S if R(SS)m ⊆ R.

(ii) M of S is called an (p, q)-lateral ideal of S if SpMSq ∪ SpSMSSq ⊆M ,

(iii) L of S is called an n-left ideal of S if (SS)nL ⊆ L,

where m,n, p, q are positive integers and p + q is an even positive integer.

Theorem 2.2. Every m-right, (p, q)-lateral and n-left ideal of a ternary semigroup
S is an (m, (p, q), n)-quasi-ideal of S. But converse need not be true.

Proof. One way is straight forward. Conversely, let S = M2(Z−0 ) be the ternary

semigroup of 2 × 2 square matrices over Z−0 . Consider Q =

{(
a 0
0 0

)
: a ∈ Z−0

}
.

Then Q is an (2, (1, 1), 3)-quasi-ideal of S. But it is not 2-right ideal, (1, 1)-lateral
ideal and 3-left ideal of S.

Theorem 2.3. Let S be a ternary semigroup. Then the following statements hold:

(i) Let Ri be an m-right ideal of S such that
⋂
i∈I

Ri 6= ∅. Then
⋂
i∈I

Ri is an m-right

ideal of S.

(ii) Let Mi be an (p, q)-lateral ideal of S such that
⋂
i∈I

Mi 6= ∅. Then
⋂
i∈I

Mi is an

(p, q)-lateral ideal of S.

(iii) Let Li be an n-left ideal of S such that
⋂
i∈I

Li 6= ∅. Then
⋂
i∈I

Li is an n-left ideal

of S.

Proof. Similar to the proof of Theorem 2.1

Theorem 2.4. Let R be an m-right ideal, M be an (p, q)-lateral ideal and L be an
n-left ideal of a ternary semigroup S. Then R∩M ∩L is an (m, (p, q), n)-quasi-ideal
of S.

Proof. Suppose Q = R ∩M ∩ L. Since every m-right, (p, q)-lateral and n-left ideal
of ternary semigroup S is an (m, (p, q), n)-quasi-ideal of S, therefore R,M and L are
(m, (p, q), n)-quasi-ideals of S. Clearly, R∩M ∩L is non-empty. By Theorem 2.1, we
have Q = R ∩M ∩ L is an (m, (p, q), n)-quasi-ideal of S.
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Lemma 2.2. Let Q be an (m, (p, q), n)-quasi-ideal of a ternary semigroup S. Then

(i) R = Q ∪Q(SS)m is an m-right ideal of S.

(ii) M = Q ∪ (SpQSq ∪ SpSQSSq) is an (p, q)-lateral ideal of S.

(iii) L = Q ∪ (SS)nQ is an n-left ideal of S.

Proof. It is easy to show that R is ternary subsemigroup of S. Now to show that R
is an m-right ideal of S.

R(SS)m = [(Q ∪Q(SS)m](SS)m

= Q(SS)m ∪Q(SS)m(SS)m

= Q(SS)m ∪Q(SSSS)m

⊆ Q(SS)m ∪Q(SS)m

= Q(SS)m ⊆ R.

Therefore R is an m-right ideal of S. Similarly, we can show that M is an (p, q)-lateral
ideal of S and L is an n-left ideal of S.

Theorem 2.5. Every (m, (p, q), n)-quasi-ideal in a regular ternary semigroup S is
the intersection of m-right, (p, q)-lateral and n-left ideal of S.

Proof. Let S be regular ternary semigroup and Q be an (m, (p, q), n)-quasi-ideal of
S. Then R = Q ∪ Q(SS)m, M = Q ∪ (SpQSq ∪ SpSQSSq) and L = Q ∪ (SS)nQ
are m-right, (p, q)- lateral and n-left ideal of S respectively. Clearly Q ⊆ R, Q ⊆ M
and Q ⊆ L implies Q ⊆ R ∩ M ∩ L. Since S is regular therefore Q ⊆ Q(SS)m,
Q ⊆ SpQSq ∪ SpSQSSq and Q ⊆ (SS)nQ.
Thus R = Q(SS)m, M = SpQSq ∪ SpSQSSq and L = (SS)nQ. Now

R ∩M ∩ L = Q(SS)m ∩ (SpQSq ∪ SpSQSSq) ∩ (SS)nQ ⊆ Q

Hence, Q = R ∩M ∩ L.

3 Generalised Minimal Quasi-ideals

In this section, we study the concept of generalised minimal quasi-ideal or minimal
(m, (p, q), n)-quasi-ideals of ternary semigroup S.

An (m, (p, q), n)-quasi-ideal Q of a ternary semigroup S is called minimal
(m, (p, q), n)-quasi-ideal of S if Q does not properly contain any (m, (p, q), n)-quasi-
ideal of S. Similarly, we can define minimal m-right ideals, minimal (p, q)-lateral
ideals and minimal n-left ideals of a ternary semigroup.

Lemma 3.1. Let S be a ternary semigroup and a ∈ S. Then the following statements
hold:

(i) a(SS)m is an m-right ideal of S.

(ii) (SpaSq ∪ SpSaSSq) is an (p, q)-lateral ideal of S.
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(iii) (SS)na is an n-left ideal of S.

(iv) a(SS)m ∩ (SpaSq ∪ SpSaSSq) ∩ (SS)na is an (m, (p, q), n)-quasi-ideal of S.

Proof. (i), (ii) and (iii) are obvious. (iv) follows from (i), (ii), (iii) and Theorem 2.4.

Theorem 3.1. Let S be a ternary semigroup and Q be an (m, (p, q), n)-quasi-ideal
of S. Then Q is minimal iff Q is the intersection of some minimal m-right ideal R,
minimal (p, q)-lateral ideal M and minimal n-left ideal L of S.

Proof. Suppose Q is minimal (m, (p, q), n)-quasi-ideal of S. Let a ∈ Q. Then by above
Lemma, we have a(SS)m is an m-right ideal, (SpaSq ∪SpSaSSq) is an (p, q)-lateral
ideal, (SS)na is an n-left ideal and a(SS)m ∩ (SpaSq ∪ SpSaSSq) ∩ (SS)na is an
(m, (p, q), n)-quasi-ideal of S. Now,

a(SS)m ∩ (SpaSq ∪ SpSaSSq) ∩ (SS)na

⊆ Q(SS)m ∩ (SpQSq ∪ SpSQSSq) ∩ (SS)nQ

⊆ Q.

Since Q is minimal therefore a(SS)m ∩ (SpaSq ∪ SpSaSSq) ∩ (SS)na = Q.
Now, to show that a(SS)m is minimal m-right ideal of S. Let R be an m-right ideal
of S contained in a(SS)m. Then

R ∩ (SpaSq ∪ SpSaSSq) ∩ (SS)na

⊆ a(SS)m ∩ (SpaSq ∪ SpSaSSq) ∩ (SS)na

= Q .

Since R ∩ (SpaSq ∪ SpSaSSq) ∩ (SS)na is an (m, (p, q), n)-quasi-ideal of S and Q is
minimal, therefore R ∩ (SpaSq ∪ SpSaSSq) ∩ (SS)na = Q. This implies Q ⊆ R and
therefore

a(SS)m ⊆ Q(SS)m ⊆ R(SS)m ⊆ R

implies R = a(SS)m. Thus m-right ideal a(SS)m is minimal. Similarly, we can prove
that (SpaSq ∪ SpSaSSq) is minimal (p, q)-lateral ideal of S and (SS)na is minimal
n-left ideal of S.
Conversely, assume that Q = R ∩M ∩ L for some minimal m-right ideal R, minimal
(p, q)-lateral ideal M and minimal n-left ideal L. So, Q ⊆ R,Q ⊆M and Q ⊆ L. Let
Q′ be an (m, (p, q), n)-quasi-ideal of S contained in Q. Then Q′(SS)m ⊆ Q(SS)m ⊆
R(SS)m ⊆ R. Similarly, (SpQ′Sq ∪ SpSQ′SSq)⊆M and (SS)nQ′ ⊆ (SS)nQ ⊆ L.
Now Q′(SS)m is an m-right ideal of S, as Q′(SS)m(SS)m ⊆ Q′(SS)m. Similarly,
(SpQ′Sq∪SpSQ′SSq) is an (p, q)-lateral ideal of S and (SS)nQ′ is an n-left ideal of S.
Since R,M and L are minimal m-right ideal, minimal (p, q)-lateral ideal and minimal
n-left ideal of S respectively, therefore Q′(SS)m = R,SpQ′Sq ∪ SpSQ′SSq = M and
(SS)nQ′ = L.
Thus Q = R ∩M ∩ L = Q′(SS)m ∩ (SpQ′Sq ∪ SpSQ′SSq) ∩ (SS)nQ′ ⊆ Q′. Hence
Q = Q′. Thus Q is minimal (m, (p, q), n)-quasi-ideal of S.
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Note. A ternary semigroup S need not contains a minimal (m, (p, q), n)-quasi-ideal
of S.
For example, let Z− be the set of all negative integers. Then Z− is a ternary semi-
group with usual ternary multiplication. Let Q = {−2,−3,−4, . . .}. Then Q is an
(2, (1, 1), 3)-quasi-ideal of Z−. Suppose Q is minimal (2, (1, 1), 3)-quasi-ideal of Z−.
Let Q′ = Q \ {−2}. Then we can easily show that Q′ is an (2, (1, 1), 3)-quasi-ideal of
Z−. But Q′ is proper subset of Q. This is contradiction. Hence, Z− does not contain
a minimal (m, (p, q), n)-quasi-ideal.

Theorem 3.2. Let S be a ternary semigroup. Then the following holds:

(i) An m-right ideal R is minimal iff a(SS)m = R for all a ∈ R.

(ii) An (p, q)-lateral ideal M is minimal iff (SpaSq ∪SpSaSSq) = M for all a ∈M .

(iii) An n-left ideal L is minimal iff (SS)na = L for all a ∈ L.

(iv) An (m, (p, q), n)-quasi-ideal Q is minimal iff a(SS)m ∩ (SpaSq ∪ SpSaSSq) ∩
(SS)na = Q for all a ∈ Q.

Proof. (i) Suppose m-right ideal R is minimal. Let a ∈ R. Then a(SS)m ⊆ R(SS)m ⊆
R. By Lemma 3.1, we have a(SS)m is an m-right ideal of S. Since R is minimal m-
right ideal of S therefore a(SS)m = R.
Conversely, Suppose that a(SS)m = R for all a ∈ R. Let R′ be an m-right ideal of S
contained in R. Let x ∈ R′. Then x ∈ R. By assumption, we have x(SS)m = R for all
x ∈ R. R = x(SS)m ⊆ R′(SS)m ⊆ R′. This implies R ⊆ R′. Thus, R = R′. Hence,
R is minimal m-right ideal.
Similarly we can prove (ii), (iii) and (iv).

4 Generalised Bi-ideals in Ternary Semigroup

In this section, we define generalised bi-ideals in a ternary semigroup and give
their characterizations.

Definition 4.1. A ternary subsemigroup B of a ternary semigroup S is called a
generalised bi-ideal or (m, (p, q), n) bi-ideal of S if B(SS)m−1SpBSq(SS)n−1B ⊆ B,
where m,n, p, q are positive integers greater than zero and p and q are odd.

Remark. Every bi-ideal of a ternary semigroup S is (1, (1, 1), 1)-bi-ideal of S. But
every (m, (p, q), n)-bi-ideal of a ternary semigroup S need not be a bi-ideal of S which
is illustrated by the following example.

Example 2. Let Z− \ {−1} be the set of all negative integers excluding {0}. Then
Z− \ {−1} is a ternary semigroup with usual ternary multiplication. Consider B =
{−3,−27} ∪ {k ∈ Z− : k ≤ −110}. Clearly B is a non-empty ternary subsemigroup
of S and also B is (3, (1, 1), 4)-bi-ideal of S. Now −108 ∈ BSBSB. But −108 6∈ B.
Therefore BSBSB * B. Hence B is not a bi-ideal of Z− \ {−1}.

Theorem 4.1. Let S be a ternary semigroup and Bi be an (m, (p, q), n)-bi-ideals of
S such that

⋂
i∈I

Bi 6= ∅. Then
⋂
i∈I

Bi is an (m, (p, q), n) bi-ideal of S.
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Proof. It is straight forward.

Remark. Let Z− be the set of all negative integers. Then Z− is a ternary semigroup
under usual ternary multiplication and Bi = {k ∈ Z− : k ≤ −i} for all i ∈ I. Then Bi

is an (3, (1, 1), 4)-bi-ideal of Z− for all i ∈ I. But
⋂
i∈I

Bi = ∅. So condition
⋂
i∈I

Bi 6= ∅

is necessary.

Theorem 4.2. Every (m, (p, q), n)-quasi-ideal of a ternary semigroup S is an
(m, (p, q), n)-bi-ideal of S.

Proof. Let Q be an (m, (p, q), n)-quasi-ideal of S. Then

Q(SS)m−1SpQSq(SS)n−1Q ⊆ Q(SS)m−1SpSSq(SS)n−1S ⊆ Q(SS)m.

Similarly,

Q(SS)m−1SpQSq(SS)n−1Q ⊆ S(SS)m−1(SpQSq)(SS)n−1S ⊆ Sp+1QSq+1.

Again {0} ⊆ SpQSq. So

Q(SS)m−1SpQSq(SS)n−1Q ⊆ SpQSq ∪ Sp+1QSq+1.

Also,

Q(SS)m−1SpQSq(SS)n−1Q ⊆ S(SS)m−1SpSSq(SS)n−1Q ⊆ (SS)nQ.

Consequently,

Q(SS)m−1SpQSq(SS)n−1Q ⊆ Q(SS)m ∩ (SpQSq ∪ Sp+1QSq+1) ∩ (SS)nQ ⊆ Q.

Hence Q is an (m, (p, q), n)-bi-ideal of S.

Remark. Every (m, (p, q), n)-bi-ideal need not be an (m, (p, q), n)-quasi-ideal of S
which is illustrated by the following example.

Example 3. Consider the ternary semigroup S=Z− \ {−1} with usual ternary
multiplication and let B = {−3,−27} ∪ {k ∈ Z− : k ≤ −194}. Clearly, B
is non-empty ternary subsemigroup of S and also B is (2, (1, 1), 3)-bi-ideal of S.
Now, −192 ∈ B(SS)2 ∩ (SBS ∪ SSBSS) ∩ (SS)3B. But −192 /∈ B. Therefore
B(SS)2 ∩ (SBS ∪ SSBSS)∩ (SS)3B * B. Hence B is not (2, (1, 1), 3)-quasi-ideal of
S.

Theorem 4.3. A ternary subsemigroup B of a regular ternary semigroup S is an
(m, (p, q), n)-bi-ideal of S if and only if B = BSB.

Proof. Suppose B is an (m, (p, q), n)-bi-ideal of a regular ternary semigroup S. Let
b ∈ B. Then there exists x ∈ S such that b = bxb. This implies that b ∈ BSB. Hence
B ⊆ BSB. Now,

BSB ⊆ BSBSBSBSB ⊆ B(SS)(SBS)(SS)B ⊆ B.
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Therefore B = BSB.
Conversely, if B = BSB, then

B(SS)m−1SpBSq(SS)n−1B ⊆ B(SS)m−1SpSSq(SS)n−1B ⊆ BSB = B.

Hence B is an (m, (p, q), n)-bi-ideal of S.

Theorem 4.4. Let S be a regular ternary semigroup. Then every (m, (p, q), n)-bi-
ideal of S is an (m, (p, q), n)-quasi-ideal of S.

Proof. Let B be an (m, (p, q), n)-bi-ideal of S. Let a ∈ B(SS)m ∩ (SpBSq ∪
SpSBSSq)∩ (SS)nB. Then a ∈ B(SS)m, a ∈ (SpBSq ∪SpSBSSq) and a ∈ (SS)nB.
Thus a = b(SS)m = Spb′Sq ∪ SpSb′′SSq = (SS)nb′′′ for some b, b′, b′′, b′′′ ∈ B. Since
S is regular, therefore for a ∈ S there exists an element x in S such that a = axa.
Then

a = axa = axaxa

= b(SS)mx(Spb′Sq ∪ SpSb′′SSq)x(SS)nb′′′

∈ B(SS)mS(SpBSq ∪ SpSBSSq)S(SS)nB

= [B(SS)mSSpBSqS(SS)nB] ∪ [B(SS)mSSpSBSSqS(SS)nB]

⊆ B[(SS)mSSpSSqS(SS)n]B ∪B[(SS)mSSpSSSSqS(SS)n]B

⊆ BSB ∪BSB = B ∪B = B.

Thus a ∈ B. Therefore B(SS)m ∩ (SpBSq ∪ SpSBSSq) ∩ (SS)nB ⊆ B. Hence B is
an (m, (p, q), n)-quasi-ideal of S.

It is easy to prove the following propositions:

Proposition 4.5. The intersection of an (m, (p, q), n)-bi-ideal B of a ternary semi-
group S with a ternary subsemigroup T of S is either empty or an (m, (p, q), n)-bi-ideal
of T .

Proposition 4.6. Let B be an (m, (p, q), n)-bi-ideal of a ternary semigroup S and
T1, T2 are two ternary subsemigroups of S. Then BT1T2, T1BT2 and T1T2B are
(m, (p, q), n)-bi-ideals of S.

Proposition 4.7. Let B1, B2 and B3 are three (m, (p, q), n)-bi-ideals of a ternary
semigroup S. Then B1B2B3 is an (m, (p, q), n)-bi-ideal of S.

Proposition 4.8. Let Q1, Q2 and Q3 are three (m, (p, q), n)-quasi-ideals of a ternary
semigroup S. Then Q1Q2Q3 is an (m, (p, q), n)-bi-ideal of S.

Proposition 4.9. Let R be an m-right, M be an (p, q)-lateral and L be an n-left
ideal of a ternary semigroup S. Then the ternary subsemigroup B = RML of S is an
(m, (p, q), n)-bi-ideal of S.

Theorem 4.10. Let S be a regular ternary semigroup. If B is an (m, (p, q), n)-bi-ideal
of S, then B(SS)m−1SpBSq(SS)n−1B = B.
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Proof. Let B be an (m, (p, q), n)-bi-ideal of S. Let a ∈ B. Then a ∈ S. Since S is regu-
lar, therefore there exists x ∈ S such that a = axa. Now a = axa = a(xa)(xax)(ax)a ∈
B(SS)(SBS)(SS)B. Similarly, by property of regularity it is easy to show that
a ∈ B(SS)m−1SpBSq(SS)n−1B. Thus, B ⊆ B(SS)m−1SpBSq(SS)n−1B. Since B
is an (m, (p, q), n)-bi-ideal of S, therefore B(SS)m−1SpBSq(SS)n−1B ⊆ B. Hence
B(SS)m−1SpBSq(SS)n−1B = B

Corollary 4.1. Let S be a regular ternary semigroup. If Q is an (m, (p, q), n)-quasi-
ideal of S, then Q(SS)m−1SpQSq(SS)n−1Q = Q.

Proof. Since every (m, (p, q), n)-quasi-ideal of S is an (m, (p, q), n)-bi-ideal of S, there-
fore result follows directly.

5 Generalised Minimal Bi-ideals

In this section, we introduce the concept of generalised minimal bi-ideal or minimal
(m, (p, q), n)-bi-ideals in ternary semigroups.

Definition 5.1. An (m, (p, q), n)-bi-ideal B of a ternary semigroup S is called mini-
mal (m, (p, q), n)-bi-ideal of S if B does not properly contain any (m, (p, q), n)-bi-ideal
of S.

Lemma 5.1. Let S be a ternary semigroup and a ∈ S. Then the following holds:

(i) a(SS)m−1 is an m-right ideal of S.

(ii) SpaSq is an (p, q)-lateral ideal of S.

(iii) (SS)n−1a is an n-left ideal of S.

(iv) a(SS)m−1SpaSq (SS)n−1a is an (m, (p, q), n)-bi-ideal.

Proof. (i), (ii) and (iii) are obvious and (iv) follows from (i), (ii), (iii).

Theorem 5.1. Let S be a ternary semigroup and B be an (m, (p, q), n)-bi-ideal of S.
Then B is minimal if and only if B is the product of some minimal m-right ideal R,
minimal (p, q)-lateral ideal M and minimal n-left ideal L of S.

Proof. Suppose B is minimal (m, (p, q), n)-bi-ideal of S. Let a ∈ B. Then by above
Lemma, a(SS)m−1 is an m-right ideal, SpaSq is an (p, q)-lateral ideal, (SS)n−1a is
an n-left ideal and a(SS)m−1SpaSq(SS)n−1a is an (m, (p, q), n)-bi-ideal of S. Now
a(SS)m−1SpaSq(SS)n−1a ⊆ B(SS)m−1SpB Sq(SS)n−1B ⊆ B. Since B is minimal,
therefore a(SS)m−1SpaSq(SS)n−1a = B. Now to show that a(SS)m−1 is minimal
m-right ideal of S. Let R be an m-right ideal of S contained in a(SS)m−1. Then
R(SpaSq)(SS)n−1a ⊆ a(SS)m−1(SpaSq)(SS)n−1a = B. Since R SpaSq(SS)n−1a is
an (m, (p, q), n)-bi-ideal of S and B is minimal, therefore R(SpaSq)(SS)n−1a = B.
This implies B ⊆ R. Therefore a(SS)m−1 ⊆ B(SS)m−1 ⊆ R(SS)m−1 ⊆ R. Thus
a(SS)m−1 is minimal. Similarly we can prove that SpaSq is minimal (p, q)-lateral
ideal of S and (SS)n−1a is minimal n-left ideal of S.
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Conversely, assume that B = RML for some minimal m-right ideal R, minimal
(p, q)-lateral ideal M and minimal n-left ideal L. So B ⊆ R, B ⊆M and B ⊆ L. Let
B′ be an (m, (p, q), n)-bi-ideal of S contained in B. Then B′(SS)m−1 ⊆ B(SS)m−1 ⊆
R(SS)m−1 ⊆ R. Similarly, SpB′Sq ⊆ SpBSq ⊆ SpMSq ⊆ M and (SS)n−1B′ ⊆
(SS)n−1B ⊆ (SS)n−1L ⊆ L. Now, B′(SS)m−1(SS)m ⊆ B′(SS)m−1. So B′(SS)m−1

is an m-right ideal of S. Similarly SpB′Sq is an (p, q)-lateral ideal and (SS)n−1B′ is an
n-left ideal of S. Since R, M and L are minimal m-right ideal, minimal (p, q)-lateral
ideal and minimal n-left ideal of S respectively, therefore B′(SS)m−1 = R, SpB′Sq =
M and (SS)n−1B′ = L. Thus B = RML = B′(SS)m−1SpB′Sq(SS)n−1B′ ⊆ B′.
Hence B = B′. Consequently, B is minimal (m, (p, q), n)-bi-ideal of S.

Definition 5.2. Let S be a ternary semigroup. Then S is called a bi-simple ternary
semigroup if S is the unique (m, (p, q), n)-bi-ideal of S.

Theorem 5.2. Let S be a ternary semigroup and B be an (m, (p, q), n)-bi-ideal of
S. Then B is a minimal (m, (p, q), n)-bi-ideal of S if and if B is a bi-simple ternary
semigroup.

Proof. Suppose B is a minimal (m, (p, q), n)-bi-ideal of S. Let C be an (m, (p, q), n)-
bi-ideal of B. Then C(BB)m−1BpCBq(BB)n−1C ⊆ C ⊆ B. By Proposition 4.9,
BCC is an (m, (p, q), n)-bi-ideal of S. Therefore

(BCC)(SS)m−1Sp(BCC)Sq(SS)n−1BCC ⊆ BCC ⊆ BBB ⊆ B. Since B is
minimal, therefore BCC = B. It is easy to show that C(BB)m−1BpCBq(BB)n−1C
is an (m, (p, q), n)-bi-ideal of S.

Since B is minimal, therefore C(BB)m−1BpCBq(BB)n−1C = B. This implies
B = C(BB)m−1BpCBq(BB)n−1C ⊆ C. Hence C = B. Consequently, B is a bi-
simple ternary semigroup.

Conversely, suppose B is a bi-simple ternary semigroup. Let C be an (m, (p, q), n)-
bi-ideal of S such that C ⊆ B. Then

C(BB)m−1BpCBq(BB)n−1C ⊆ C(SS)m−1SpCSq(SS)n−1C ⊆ C
which implies that C is an (m, (p, q), n)-bi-ideal of B. Since B is bi-simple ternary
semigroup, therefore C = B. Hence B is minimal.
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Remarkable identities

Jan Górowski, Jerzy Żabowski

Abstract: In the paper a number of identities involving even powers
of the values of functions tangent, cotangent, secans and cosecans are
proved. Namely, the following relations are shown:

m−1∑
j=1

f2n
(
πj

2m

)
= wf (m),

m−1∑
j=0

f2n
(

2j + 1

4m
π

)
= vf (m),

m∑
j=1

f2n
(

πj

2m+ 1

)
= w̃f (m),

where m, n are positive integers, f is one of the functions: tangent, cotan-
gent, secans or cosecans and wf (x), vf (x), w̃f (x) are some polynomials
from Q[x].

One of the remarkable identities is the following:

m−1∑
j=0

sin−2
(2j + 1)π

2m
= m2, provided m ≥ 1.

Some of these identities are used to find, by elementary means, the
sums of the series of the form

∑∞
j=1

1
j2n , where n is a fixed positive in-

teger. One can also notice that Bernoulli numbers appear in the leading
coefficients of the polynomials wf (x), vf (x) and w̃f (x).

AMS Subject Classification: 11M06, 11Y60, 10H10
Keywords and Phrases: trigonometric identity, zeta function

In [7] the following formulas have been proved

m∑
j=1

cot2
πj

2m+ 1
=
m(2m− 1)

3
,

m∑
j=1

sin−2
πj

2m+ 1
=

2m(m+ 1)

3
, (1)
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where m ∈ N1. By Nk for a positive integer k we mean N \ {0, 1, 2 . . . , k − 1}. The

above identities were then used in an elementary proof of the formula
∑∞
k=1

1
k2 = π2

6 .
In this paper we develop the ideas from [7] to prove more generalized identities

than (1). Next we use some of them to find the sum of
∑∞
k=1

1
k2n , where n ∈ N1.

The general identities given in this article yield, in particular, the following identity
of uncommon beauty

m−1∑
j=0

sin−2
2j + 1

2m
π = m2, m ∈ N1.

Some elementary methods of finding the sums of the series of the form
∑∞
j=1

1
j2n may

be found for example in [1], [3], [5], [6], [8].
We start by recalling some basic facts on symmetric polynomials in m variables.

Put

σn =

m∑
j=1

xnj for n ∈ N1,

τk =
∑

1≤j1<j2<···<jk≤m

xj1xj2 · · ·xjk for k ∈ {1, 2, . . . ,m}.

Moreover, for the convenience set τk = 0 for k > m.
The following lemma comes from [2].

Lemma 1 (Newton). Let n ∈ N1, then

σn − τ1σn−1 + τ2σn−2 − · · ·+ (−1)n−1τn−1σ1 + (−1)nnτn = 0. (2)

In view of Lemma 1 we have

σn = det



(−1)n+1nτn −τ1 τ2 . . . (−1)n−2τn−2 (−1)n−1τn−1
(−1)n(n− 1)τn−1 1 −τ1 . . . (−1)n−3τn−3 (−1)n−2τn−2

(−1)n−1(n− 2)τn−2 0 1 . . . (−1)n−4τn−4 (−1)n−3τn−3
...

...
. . .

. . .
...

...
−2τ2 0 0 . . . 1 −τ1
τ1 0 0 . . . 0 1


(3)

for every n ∈ N1. Indeed, putting in (2) instead of n respectively n − 1, n − 2, . . . , 1
we get, together with (2), the system of n equations in n variables: σ1, . . . , σn. Such
a system is a Cramer’s system and by the Cramer’s rule we get (3).

From now on by Dtan and Dcot we denote the domains of the trigonometric func-
tions tangent and cotangent, respectively.

Lemma 2. The following identities hold true:

(A) sin 2mx
cos2m x cotx =

∑m
j=0

(
2m
2j+1

)
(−1)j tan2j x, (m,x) ∈ N× (Dtan ∩Dcot);

(B) cos 2mx
cos2m x =

∑m
j=0

(
2m
2j

)
(−1)j tan2j x, (m,x) ∈ N×Dtan;
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(C) sin (2m+1)x
cos2m+1 x cotx =

∑m
j=0

(
2m+1
2j+1

)
(−1)j tan2j x, (m,x) ∈ N× (Dtan ∩Dcot);

(D) sin (2m+1)x
sin2m+1 x

=
∑m
j=0

(
2m+1
2j+1

)
(−1)j cot2m−2j x, (m,x) ∈ N×Dcot;

(E) cos (2m+1)x
cos2m+1 x =

∑m
j=0

(
2m+1
2j

)
(−1)j tan2j x, (m,x) ∈ N×Dtan;

(F) cos (2m+1)x
sin2m+1 x

tanx =
∑m
j=0

(
2m+1
2j

)
(−1)j cot2m−2j x, (m,x) ∈ N × (Dtan ∩

Dcot).

Proof. It is a known fact that

k∑
j=0

(
k

j

)
cosk−j x(i sinx)j = (cosx+ i sinx)k = cos kx+ i sin kx

for k ∈ N and x ∈ R. Putting k = 2m in the above equation and comparing real and
imaginary parts of the both sides we obtain (A) and (B). Similarly, with k = 2m+ 1
we get (C), (D), (E) and (F).

Now we prove the following result.

Theorem 1. For every m ∈ N2 and any n ∈ N1,

σn,m(A) =

m−1∑
j=1

tan2n πj

2m
=

m−1∑
j=1

cot2n
πj

2m
,

where σn,m(A) denotes the determinant given by (3) in which τj =
( 2m
2j+1)
2m for j ∈

{1, 2, . . . , n}.

Proof. Replace in the identity (A) of Lemma 2, tan2 x by t and set

wA(t) =

m∑
j=0

(
2m

2j + 1

)
(−1)jtj , (4)

then wA(t) is a polynomial of order m− 1 in the real variable t.
On the other hand, substituting πl

2m , where l ∈ {1, 2, . . . ,m− 1}, for x in (A) we
get

0 =

m∑
j=0

(
2m

2j + 1

)
(−1)j tan2j πl

2m
, l ∈ {1, 2, . . . ,m− 1}.

Hence and by (4) we obtain

wA(t) = (−1)m−1
(

2m

2m− 1

)m−1∏
j=1

(
t− tan2 πj

2m

)
= (−1)m−12m

m−1∏
j=1

(
t− tan2 πj

2m

)
.
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This and the Vieta’s formulas give

∑
1≤k1<k2<···<kj≤m−1

tan2 πk1
2m

tan2 πk2
2m
· · · tan2 πkj

2m
=

(
2m
2j+1

)
2m

and in view of (3) we have

σn,m(A) =

m−1∑
j=1

tan2n πj

2m
.

As tan πj
2m = cot π(m−j)2m for j ∈ {1, 2, . . . ,m− 1} we get

m−1∑
j=1

tan2n πj

2m
=

m−1∑
j=1

cot2n
π(m− j)

2m
=

m−1∑
j=1

cot2n
πj

2m
,

which completes the proof.

Theorem 2. For every m,n ∈ N1 the following identity holds true:

σn,m(B) =

m−1∑
j=0

tan2n 2j + 1

4m
π =

m−1∑
j=0

cot2n
2j + 1

4m
π,

where σn,m(B) denotes the determinant given by (3) in which τj =
(
2m
2j

)
for j ∈

{1, 2, . . . , n}.

Proof. Similarly as in the proof of Theorem 1, replace in the right hand side of the
identity (B) of Lemma 2, tan2 x by t and set

wB(t) =

m∑
j=0

(
2m

2j

)
(−1)jtj .

Next, substitute 2l+1
4m π, where l ∈ {0, 1, . . . ,m− 1}, for x in (B). This yields

0 =

m∑
j=0

(
2m

2j

)
(−1)j tan2j 2l + 1

4m
π, l ∈ {0, 1, . . . ,m− 1}.

Hence and by the definition of wB(t) we get

wB(t) = (−1)m
m−1∏
j=0

(
t− tan2 2j + 1

4m
π

)
,

which in view of the Vieta’s formulas gives∑
1≤k1<k2<···<kj≤m−1

tan2 2k1 + 1

4m
tan2 2k2 + 1

4m
· · · tan2 2kj + 1

4m
=

(
2m

2j

)
.
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By this and (3),

σn,m(B) =

m−1∑
j=0

tan2n 2j + 1

4m
π.

Using the same argument as in the proof of Theorem 1 we get

m−1∑
j=0

tan2n 2j + 1

2m
π =

m−1∑
j=0

cot2n
2j + 1

4m
π

and the proof is completed.

Using identities (C) and (D) of Lemma 2 and the same method as in proofs of
Theorems 1 and 2 one may obtain

Theorem 3. For every m,n ∈ N1 the following identity holds true:

σn,m(C) =

m∑
j=1

tan2n πj

2m+ 1
,

where σn,m(C) denotes the determinant given by (3) in which τj =
(
2m+1
2j

)
for j ∈

{1, 2, . . . , n}.

Theorem 4. For every m,n ∈ N1 the following identity holds true:

σn,m(D) =

m∑
j=1

cot2n
πj

2m+ 1
,

where σn,m(D) denotes the determinant given by (3) in which τj = 1
2m+1

(
2m+1
2j+1

)
for

j ∈ {1, 2, . . . , n}.

Finally, applying the same reasoning as in the proof of Theorem 1 from (E) and
(F) of Lemma 2 we have

Theorem 5. For every m,n ∈ N1 the following identity holds true:

σn,m(E) =

m−1∑
j=0

tan2n 2j + 1

2(2m+ 1)
π,

where σn,m(E) denotes the determinant given by (3) in which τj = 1
2m+1

(
2m+1
2j+1

)
for

j ∈ {1, 2, . . . , n}.

Theorem 6. For every m,n ∈ N1 the following identity holds true:

σn,m(F ) =

m−1∑
j=0

cot2n
2j + 1

2(2m+ 1)
π,

where σn,m(F ) denotes the determinant given by (3) in which τj =
(
2m+1
2j

)
for j ∈

{1, 2, . . . , n}.
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The following formulas

cot2n x =

(
1− sin2 x

sin2 x

)n
, tan2n x =

(
1− cos2 x

cos2 x

)n
yield

Lemma 3. The following identities hold true:

(G)
∑n−1
j=0

(
n
j

)
(−1)j sin2j−2n x = (−1)n−1 + cot2n x, (n, x) ∈ N1 ×Dcot;

(H)
∑n−1
j=0

(
n
j

)
(−1)j cos2j−2n x = (−1)n−1 + tan2n x, (m,x) ∈ N1 ×Dtan.

Lemma 4. Assume that n ∈ N1 and x ∈ Dcot, then

1

sin2n x
= det



(−1)n−1 + cot2n x −
(
n
1

) (
n
2

)
−
(
n
3

)
. . . (−1)n−1

(
n

n−1

)
(−1)n−2 + cot2n−2 x 1 −

(
n−1
1

) (
n−1
2

)
. . . (−1)n−2

(
n−1
n−2

)
(−1)n−3 + cot2n−4 x 0 1 −

(
n−2
1

)
. . . (−1)n−3

(
n−2
n−3

)
...

...
...

...
...

...

1 + cot2 x 0 0 0 . . . 1


.

Proof. Replacing n in (G) (Lemma 3) by n − 1, n − 2, . . . , 1, respectively we get,
together with (G), the system of n equations in n variables:

1

sin2n x
,

1

sin2n−2 x
, . . . ,

1

sin2 x
.

Such a system is a Cramer’s system and the assertion follows by the Cramer’s rule.

Using (H) in the same manner as in Lemma 4 we obtain

Lemma 5. Let n ∈ N1 and x ∈ Dtan, then

1

cos2n x
= det



(−1)n−1 + tan2n x −
(
n
1

) (
n
2

)
−
(
n
3

)
. . . (−1)n−1

(
n

n−1

)
(−1)n−2 + tan2n−2 x 1 −

(
n−1
1

) (
n−1
2

)
. . . (−1)n−2

(
n−1
n−2

)
(−1)n−3 + tan2n−4 x 0 1 −

(
n−2
1

)
. . . (−1)n−3

(
n−2
n−3

)
...

...
...

...
...

...

1 + tan2 x 0 0 0 . . . 1


.

To shorten notation from now on we set

µ(an, an−1, . . . , a1) = det



an −
(
n
1

) (
n
2

)
−
(
n
3

)
. . . (−1)n−1

(
n

n−1

)
an−1 1 −

(
n−1
1

) (
n−1
2

)
. . . (−1)n−2

(
n−1
n−2

)
an−2 0 1 −

(
n−2
1

)
. . . (−1)n−3

(
n−2
n−3

)
...

...
...

...
...

...

a1 0 0 0 . . . 1


,
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thus the identities of Lemmas 4 and 5 can be written as

1

sin2n x
= µ

(
(−1)n−1 + cot2n x, (−1)n−2 + cot2n−2 x, . . . , 1 + cot2 x

)
(5)

and

1

cos2n x
= µ

(
(−1)n−1 + tan2n x, (−1)n−2 + tan2n−2 x, . . . , 1 + tan2 x

)
, (6)

respectively.

Theorem 7. For every m ∈ N2 and each n ∈ N1 the following identity holds true:

m−1∑
j=1

sin−2n
πj

2m
=

m−1∑
j=1

cos−2n
πj

2m
(7)

= µ
(
(−1)n−1(m− 1) + σn,m(A), (−1)n−2(m− 1) + σn−1,m(A) ,

. . . , (m− 1) + σ1,m(A)) ,

where the numbers σk,m(A) for k ∈ {1, 2, . . . , n} are defined in Theorem 1.

Proof. In view of (5) we can write

sin−2n
πj

2m
= µ

(
(−1)n−1 + cot2n

πj

2m
, (−1)n−2 + cot2n−2

πj

2m
, . . . , 1 + cot2

πj

2m

)
for j ∈ {1, 2, . . . ,m− 1}. This by the definition of µ, properties od determinants and
Theorem 1 gives

m−1∑
j=1

sin−2n
πj

2m

= µ

m−1∑
j=1

(
(−1)n−1 + cot2n

πj

2m

)
,

m−1∑
j=1

(
(−1)n−2 + cot2n−2

πj

2m

)
,

. . . ,

m−1∑
j=1

(
1 + cot2

πj

2m

)
= µ

(
(−1)n−1(m− 1) + σn,m(A), (−1)n−2(m− 1) + σn−1,m(A) ,

. . . , (m− 1) + σ1,m(A)) .

The same reasoning applies to the second identity.

Analysis similar to that in the proof of Theorem 7 and the use of Theorems 2 – 6
give
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Theorem 8. For every n,m ∈ N1 the following identities holds true:

m−1∑
j=0

sin−2n
2j + 1

4m
π =

m−1∑
j=0

cos−2n
2j + 1

4m
π (8)

= µ
(
(−1)n−1m+ σn,m(B), (−1)n−2m+ σn−1,m(B), . . . ,m+ σ1,m(B)

)
,

m∑
j=1

sin−2n
πj

2m+ 1
(9)

= µ
(
(−1)n−1m+ σn,m(D), (−1)n−2m+ σn−1,m(D), . . . ,m+ σ1,m(D)

)
,

m∑
j=1

cos−2n
πj

2m+ 1
(10)

= µ
(
(−1)n−1m+ σn,m(C), (−1)n−2m+ σn−1,m(C), . . . ,m+ σ1,m(C)

)
,

m−1∑
j=0

sin−2n
(2j + 1)π

2(2m+ 1)
(11)

= µ
(
(−1)n−1m+ σn,m(F ), (−1)n−2m+ σn−1,m(F ), . . . ,m+ σ1,m(F )

)
,

m−1∑
j=0

cos−2n
(2j + 1)π

2(2m+ 1)
(12)

= µ
(
(−1)n−1m+ σn,m(E), (−1)n−2m+ σn−1,m(E), . . . ,m+ σ1,m(E)

)
,

where σk,m(B), σk,m(C), σk,m(D), σk,m(E), σk,m(F ) for k ∈ {1, 2, . . . , n} are defined
in Theorems 2 – 6.

Now we show that the general identities from Theorems 1 – 8 yield some particular
equalities, including the one considered by the authors as remarkable.

Theorem 9. If m ∈ N, then

m−1∑
j=1

sin−2
πj

m
=
m2 − 1

3
, provided m ≥ 2, (13)

m−1∑
j=1

cot2
πj

m
=

(m− 1)(m− 2)

3
, provided m ≥ 2, (14)

m−1∑
j=0

sin−2
(2j + 1)π

2m
= m2, provided m ≥ 1, (15)
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Proof. According to Theorem 1 we have

m−1∑
j=1

tan2 πj

2m
=

m−1∑
j=1

cot2
πj

2m
=

1

2m

(
2m

3

)
. (16)

On the other hand, in view of

tan2 x+ cot2 x =
4

sin2 2x
− 2

we get
m−1∑
j=1

tan2n πj

2m
+

m−1∑
j=1

cot2n
πj

2m
= 4

m−1∑
j=1

sin−2
πj

m
− 2(m− 1).

Combining this with (16) gives

m−1∑
j=1

sin−2
πj

m
=
m2 − 1

3

for m ≥ 2. This proves (13).
To prove (14) notice that the identity

cot2 x− 1

sin2 x
= −1

yields
m−1∑
j=1

cot2
πj

m
−
m−1∑
j=1

sin−2
πj

m
= −(m− 1), m ≥ 2.

Thus by (13) we obtain (14).
Finally we show the remarkable (15). Theorem 8 leads to

m−1∑
j=0

sin−2
(2j + 1)π

4m
=

m−1∑
j=0

cos−2
(2j + 1)π

4m
= m+

(
2m

2

)
= 2m2 (17)

for m ≥ 1. Since
1

sin2 x
+

1

cos2 x
=

4

sin2 2x

we have

m−1∑
j=0

sin−2
(2j + 1)π

4m
+

m−1∑
j=0

cos−2
(2j + 1)π

4m
= 4

m−1∑
j=0

sin−2
(2j + 1)π

2m
, m ≥ 1,

which by (17) implies (15), and the theorem follows.

Next we use the the identities proved here to find the sums of the series of the
form

∑∞
k=1

1
k2n , where n ∈ N1. We begin with the following lemma.
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Lemma 6. Let n ∈ N1, then expression σn,m(A), defined in Theorem 1, is a value of
some polynomial from Q[x], where x = m. The order of such a polynomial does not
exceed 2n.

Proof. The proof is by induction on n. For n = 1 we have

σ1,m(A) =
1

2m

(
2m

3

)
=

2

3
m2 −m− 1

3
,

and the assertion follows. Fix n ≥ 2 Assuming Lemma 6 to hold for any k ∈ N1,
k ≤ n− 1 we prove it for n. By (2),

σn,m(A) =

n−1∑
j=1

(−1)j−1τjσn−j,m(A)− (−1)nnτn,

where τj = 1
2m

(
2m
2j+1

)
for j ∈ {1, 2, . . . , n}. Hence by the inductive assumption

σn,m(A) is a value of some polynomial from Q[x] of order not greater than 2n with
x = m, as claimed.

Theorem 10. For every n ∈ N1,

∞∑
j=1

1

j2n
= lim
m→∞

π2nσn,m(A)

(2m)2n
,

where σn,m(A) is defined in Theorem 1.

Proof. Observe that

0 < cotx <
1

x
<

1

sinx
x ∈

(
0,
π

2

)
,

thus

cot2n
πj

2m
<

(
2m

πj

)2n

<
1

sin2n πj
2m

and in consequence

m−1∑
j=1

cot2n
πj

2m
<

(
2m

π

)2n m−1∑
j=1

1

j2n
<

m−1∑
j=1

1

sin2n πj
2m

for n ∈ N1, m ∈ N2 and j ∈ {1, 2, . . . , n}. By the definitions of σn,m(A) and the
function µ we have

π2nσn,m(A)

(2m)2n
<

m−1∑
j=1

1

j2n
<

π2n

(2m)2n
µ((−1)n−1(m− 1) + σn,m(A),

(−1)n−2(m− 1) + σn−1,m(A), (18)

. . . ,m− 1 + σ1,m(A)).
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The formula for µ and the properties of determinants give

µ
(
(−1)n−1(m− 1) + σn,m(A), (−1)n−2(m− 1) + σn−1,m(A), . . . ,m− 1 + σ1,m(A)

)
= (m− 1)µ((−1)n−1, (−1)n−2, . . . , (−1)n−n) + µ(σn,m(A), σn−1,m(A), . . . , σ1,m(A))

= (m− 1)C1 + σn,m(A) + C2σn−1,m(A) + . . .+ Cnσ1,m(A),

where C1, . . . , Cn are constants depending on n. Hence by Lemma 6 and inequality
(18) we obtain

lim
m→∞

π2nσn,m(A)

(2m)2n
≤
∞∑
j=1

1

j2n
≤ lim
m→∞

π2nσn,m(A)

(2m)2n
,

which establishes the formula.

Remark 1. Note that in the proof Theorem 10 (the last step of the proof) we have
actually proved more, namely that the order of the polynomial from Lemma 6 equals
exactly 2n. Indeed, if it was not true, we would have

lim
m→∞

π2nσn,m(A)

(2m)2n
= 0

and consequently
∞∑
j=1

1

j2n
≤ 0,

which is impossible.

Remark 2. Treating σn,m(A) as a polynomial in m of order 2n we have

lim
m→∞

π2nσn,m(A)

(2m)2n
= a2n

π2n

4n
,

where a2n denotes the leading coefficient of σn,m(A). On the other hand,

B2n
22n−1π2n

(2n)!
(−1)n−1 =

∞∑
j=1

1

j2n
, n ∈ N1,

where B2n stands for the 2n-th Bernoulli number (see [4], p.320). Thus we get the
following relation between Bernoulli numbers and the coefficients of σn,m(A)

a2n = B2n
24n−1

(2n)!
(−1)n−1, n ∈ N1.

Remark 3. Similarly as Theorem 10 one can show that

∞∑
j=1

1

j2n
= lim
m→∞

π2nσn,m(B)

(2m)2n
= lim
m→∞

π2nσn,m(D)

(2m)2n
= lim
m→∞

π2nσn,m(F )

(2m)2n
, n ∈ N1.

where σn,m(B), σn,m(D) and σn,m(F ) are defined in Theorems 2, 4 and 6, respectively.
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On the zeros of an analytic function

V.K. Jain

Abstract: Kuniyeda, Montel and Toya had shown that the polyno-
mial p(z) =

∑n
k=0 akz

k; a0 6= 0, of degree n, does not vanish in

|z| ≤ {1 + (

n∑
j=1

|aj/a0|p)q/p}−1/q,

where p > 1, q > 1, (1/p) + (1/q) = 1 and we had proved that p(z) does
not vanish in |z| ≤ α1/q, where

α = unique root in (0, 1) of Dnx
3 −DnSx

2 + (1 +DnS)x− 1 = 0,

Dn = (

n∑
j=1

|aj/a0|p)q/p,

S = (|a1|+ |a2|)q(|a1|p + |a2|p)−(q−1),

a refinement of Kuniyeda et al.’s result under the assumption

Dn < (2− S)/(S − 1).

Now we have obtained a generalization of our old result and proved that
the function

f(z) =

∞∑
k=0

akz
k, (6≡ aconstant); a0 6= 0,

analytic in |z| ≤ 1, does not vanish in |z| < α
1/q
m , where

αm = unique root in (0, 1) of Dxm+1 −DMmx
2 + (1 +DMm)x− 1 = 0,

D = (

∞∑
k=1

|ak/a0|p)q/p,

Mm = (

m∑
k=1

|ak|)q(

m∑
k=1

|ak|p)−q/p,

m = any positive integer with the characteristic that there

exists a positive integer k(≤ m) with ak 6= 0.
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AMS Subject Classification: Primary 30C15, Secondary 30C10
Keywords and Phrases: zeros, polynomial, function analytic in |z| ≤ 1, generalization,
Hölder’s inequality.

1 Introduction and statement of results

Let
P (z) = b0 + b1z + . . .+ bnz

n

be a polynomial of degree n. Then according to a classical result of Kuniyeda, Montel
and Toya [3, p. 124] on the location of zeros of a polynomial we have

Theorem A. All the zeros of the polynomial P (z) lie in

|z| < {1 + (

n−1∑
j=0

|bj/bn|p)q/p}1/q,

where
p > 1, q > 1, (1/p) + (1/q) = 1. (1.1)

On applying Theorem A to the polynomial znp(1/z), we have the following equiv-
alent formulation of Theorem A.

Theorem B. The polynomial

p(z) = a0 + a1z + a2z
2 + . . .+ anz

n; a0 6= 0, (1.2)

of degree n does not vanish in

|z| ≤ (1 +Dn)−1/q, (1.3)

where p, q are given in (1.1) and

Dn = (

n∑
j=1

|aj/a0|p)q/p. (1.4)

We [2] had obtained

Theorem C. All the zeros of P (z) lie in

|z| < χ1/q,

where χ is the unique root of the equation

x3 − (1 + LM)x2 + LMx− L = 0,

in (1,∞),

L = (

n−1∑
j=0

|bj/bn|p)q/p,

M = (|bn−1|+ |bn−2|)q(|bn−1|p + |bn−2|p)−(q−1).
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Theorem C is a refinement of Theorem A, under the assumption

L < (2−M)/(M − 1).

The equivalent formulation of Theorem C, (similar to the formulation of Theorem B
from Theorem A) is

Theorem D. The polynomial

p(z) = a0 + a1z + . . .+ anz
n; a0 6= 0,

of degree n does not vanish in
|z| ≤ α1/q,

where α is the unique root of the equation

Dnx
3 −DnSx

2 + (1 +DnS)x− 1 = 0,

in (0, 1),
S = (|a1|+ |a2|)q(|a1|p + |a2|p)−(q−1),

and Dn is as in Theorem B.

Theorem D is a refinememnt of Theorem B, under the assumption

Dn < (2− S)/(S − 1).

In this paper we have obtained a generalization of Theorem D for the functions,
analytic in |z| ≤ 1. More precisely we have proved

Theorem 1. Let

f(z) =

∞∑
k=0

akz
k, (6≡ aconstant); a0 6= 0, (1.5)

be analytic in |z| ≤ 1. Then f(z) does not vanish in

|z| < α1/q
m , (1.6)

where

q > 1, p > 1, (1/p) + (1/q) = 1,

m = any positive integer with the characteristic that (1.7)

there exists a positive integer k(≤ m) with ak 6= 0,

αm = unique root in (0, 1), of

{g(x) ≡}, Dxm+1 −DMmx
2 + (1 +DMm)x− 1 = 0, (1.8)

D = (

∞∑
k=1

|ak/a0|p)q/p, (> 0,by(1.5)), (1.9)

Mm = (

m∑
k=1

|ak|)q(

m∑
k=1

|ak|p)−q/p, (> 0,by(1.7)). (1.10)
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From Theorem 1 we easily get

Corollary 1. Under the same hypothesis as in Theorem 1, f(z) does not vanish
in

|z| < sup
m≥M,q>1

αm
1/q,

where

M = least positive integer k such that ak 6= 0.

2 Lemmas

For the proof of the theorem, we require the following lemmas.

Lemma 1. Let

αj > 0, βj > 0, for j = 1, 2, . . . , n,

q > 1, p > 1, (1/p) + (1/q) = 1,

1 ≤ m < n.

Then

n∑
j=1

αjβj ≤ ((

n∑
j=1

βp
j )1/p(

m∑
j=1

βp
j )−1/p)

(

m∑
j=1

αjβj)
q+ ((

m∑
j=1

βp
j )q−1)(

n∑
j=m+1

αq
j)


1/q

.

(2.1)

This lemma is due to Beckenbach [1].
From Lemma 1 we easily obtain

Lemma 2. Inequality (2.1) is true even if

αj ≥ 0, j = 1, 2, . . . , n,

βj ≥ 0, j = 1, 2, . . . , n,

with

βj 6= 0, foratleastonej, 1 ≤ j ≤ m.

Lemma 3. The equation

Dxm+1 −DMmx
2 + (1 +DMm)x− 1 = 0 (2.2)

has a unique root αm in (0, 1) where m, D and Mm are as in Theorem 1.

Proof of Lemma 3. We firstly assume that

m > 1.
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Now we consider the transformation

x = 1/t

in equation (2.2), thereby giving the transformed equation

tm+1 − (1 +DMm)tm +DMmt
m−1 −D = 0, (2.3)

and then the transformation
t = 1 + y

in (2.3), thereby giving the transformed equation

(1 + y)m+1 − (1 +DMm)(1 + y)m +DMm(1 + y)m−1 −D = 0, (2.4)

i.e.

ym+1 + ym((m/1)−DMm) + ((m− 1)/1!)((m/2)−DMm)ym−1

+ ((m− 1)(m− 2)/2!)((m/3)−DMm)ym−2 + . . .

+ ((m− 1)(m− 2) . . . (m− j + 1)/(j − 1)!)((m/j)−DMm)ym+1−j + . . .

+ ((m− 1)(m− 2) . . . (m−m+ 1)/(m− 1)!)((m/m)−DMm)y −D
=0. (2.5)

By using Déscarte’s rule of signs we can say that equation (2.5) (i.e. equation (2.4))
will have a unique positive root and accordingly the equation (2.3) will have a unique
root in (1,∞). Hence the equation (2.2) will have a unique root αm, (say), in (0, 1),
thereby proving Lemma 3 for the possibility under consideration.

For the possibility
m = 1,

the transformed equation, similar to equation (2.5), (i.e. equation (2.4)), is

y2 + y(1−DMm)−D = 0.

Now Lemma 3 follows for this possibility, by using arguments similar to those used
for proving Lemma 3 for the possibility

m > 1.

This completes the proof of Lemma 3.

3 Proof of Theorem 1

Let

fn(z) =

n∑
k=0

akz
k, n = 1, 2, 3, . . . .
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Then for |z| < 1 and n > m

|fn(z)| ≥ |a0| −
n∑

k=1

|z|k|ak|,

≥ |a0| −

{
(

n∑
k=1

|ak|p)1/p(

m∑
k=1

|ak|p)−1/p

}[
(

m∑
k=1

|z|k|ak|)q

+

{
(

m∑
k=1

|ak|p)q−1

}
(

n∑
k=m+1

|z|kq)

]1/q

, (by Lemma 2),

≥ |a0| − (

n∑
k=1

|ak|p)1/p

[
(

m∑
k=1

|ak||z|k)q(

m∑
k=1

|ak|p)−q/p

+(

n∑
k=m+1

|z|kq)

]1/q

, (by 1.1)),

≥ |a0| − (
n∑

k=1

|ak|p)1/p

[
Mm|z|q + (

n∑
k=m+1

|z|kq)

]1/q

, (by 1.10)),

which, by making
n→∞,

implies that

|f(z)| ≥ |a0| − (

∞∑
k=1

|ak|p)1/p

[
Mm|z|q + (

∞∑
k=m+1

|z|kq)

]1/q

, (

∞∑
k=1

|ak|p will converge

as

∞∑
k=1

|ak| converges and (

n∑
k=1

|ak|p)1/p ≤
n∑

k=1

|ak|, n = 1, 2, . . .),

= |a0|
[
1− {D(Mm|z|q + (|z|(m+1)q/(1− |z|q)))}1/q

]
, (by 1.9)),

> 0, (3.1)

if
D|z|(m+1)q −DMm|z|2q + (1 +DMm)|z|q − 1 < 0. (3.2)

Now as
g(0) = −1, (by(1.8)),

we can say by Lemma 3, (3.1) and (3.2) that

|f(z)| > 0,

if
|z|q < αm,

thereby proving Theorem 1.
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Remark 1. Theorem 1 gives better bound than that given by the result, that f(z)
does not vanish in

|z| < {1/(1 +D)}1/q,

obtained by using Hölder’s inequality instead of Lemma 2 and following the method of
proof of Theorem 1, provided

m = 1 & Mm < m,

m ≥ 2 & Mm ≤ 1, (3.3)

m ≥ 2, 1 < Mm < m and D < D0,

where D0 is the unique positive root of the equation

(Mm − 1)Dm−1 + (m− 1)(Mm − (m/(m− 1)))Dm−2

+ ((m− 1)(m− 2)/2)(Mm − (m/(m− 2)))Dm−3

+ . . .+ (m− 1)(Mm − (m/2))D + (Mm −m)

= 0, (m ≥ 2&1 < Mm < m),

as for m = 1&Mm < m
g(1/(1 +D)) < 0,

and for m ≥ 2
g(1/(1 +D)) < 0,

is equivalent to

(Mm − 1)Dm−1 + (m− 1)(Mm − (m/(m− 1)))Dm−2

+ ((m− 1)(m− 2)/2)(Mm − (m/(m− 2)))Dm−3

+ . . .+ (m− 1)(Mm − (m/2))D + (Mm −m)

< 0.

The function

f(z) = 1 + z + (z/(2i))3 + (z/(2i))4 + (z/(2i))5 + . . .

satisfies (3.3) with
p = q = m = 2

and the corresponding α
1/q
m is .752.
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On circularly symmetric functions

Leopold Koczan, Pawe l Zaprawa

Abstract: Let D ⊂ C and 0 ∈ D. A set D is circularly symmetric
if for each % ∈ R+ a set D ∩ {ζ ∈ C : |ζ| = %} is one of three forms:
an empty set, a whole circle, a curve symmetric with respect to the real
axis containing %. A function f ∈ A is circularly symmetric if f(∆) is a
circularly symmetric set. The class of all such functions we denote by X.
The above definitions were given by Jenkins in [2].

In this paper besides X we also consider some of its subclasses: X(λ)
and Y ∩ S∗ consisting of functions in X with the second coefficient fixed
and univalent starlike functions respectively. According to the suggestion,
in Abstract we add one more paragraph at the end of the section:

For X(λ) we find the radii of starlikeness, starlikeness of order α,
univalence and local univalence. We also obtain some distortion results.
For Y ∩S∗ we discuss some coefficient problems, among others the Fekete-
Szegö ineqalities.

AMS Subject Classification: 30C45
Keywords and Phrases: symmetric function, radius of starlikeness, zeros of polinomi-
als

1 The class of circularly symmetric functions and
some its subclasses.

Let Ã denote the class of all functions analytic in ∆ ≡ {ζ ∈ C : |ζ| < 1} and let A
denote the class of all functions analytic in ∆ normalized by f(0) = f ′(0) − 1 = 0.
Similar notation is applied to the class of typically real functions, i.e. functions
satisfying the following condition: Im z Im f(z) ≥ 0 for z ∈ ∆. The set of all analytic
and typically real functions is denoted by T̃ ; the subset of T̃ consisting of normalized
functions is denoted by T . Hence T = T̃ ∩ A. It follows from the definition of a
typically real function that z ∈ ∆+ ⇔ f(z) ∈ C+ and z ∈ ∆− ⇔ f(z) ∈ C−. The
symbols ∆+, ∆−, C+, C− mean the following open sets: the upper and the lower half
of the unit disk ∆ and the upper and the lower halfplane.
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In this paper we focus on so called circularly symmetric functions, which were
defined by Jenkins in [2]. Let us start with the following definitions.

Let D ⊂ C and 0 ∈ D.

Definition 1. A set D is circularly symmetric if for each % ∈ R+ a set D ∩ {ζ ∈ C :
|ζ| = %} is one of three forms: an empty set, a whole circle, a curve symmetric with
respect to the real axis containing %.

Definition 2. A function f ∈ A is circularly symmetric if f(∆) is a circularly sym-
metric set. The class of all such functions we denote by X.

In fact, Jenkins claimed more than it was stated in the above definition. He consid-
ered only these circularly symmetric functions which are univalent. This assumption
is rather restrictive. Furthermore, there are no objections to reject it. The number
of interesting problems appear while discussing non-univalent circularly symmetric
functions. For these reasons we decided to define a circularly symmetric function as
in Definition 2. In order to distinguish the classes of non-univalent and univalent
circularly symmetric functions we will denote the latter by Y .

Besides X we will also consider some of its subclasses: X(λ) and Y ∩S∗ consisting
of functions in X with the fixed second coefficient of the Taylor series expansion and
univalent starlike functions respectively. As it was shown in [2], for all r ∈ (0, 1)
and for a circularly symmetric function f the expression |f(reiϕ)| is a nonincreasing
function for ϕ ∈ (0, π) and a nondecreasing function for ϕ ∈ (π, 2π). From this fact
and the equality

− ∂

∂ϕ

(
log |f(reiϕ)|

)
= Im

(
reiϕ

f ′(reiϕ)

f(reiϕ)

)
it follows that on the circle |z| = r there is

Im
zf ′(z)

f(z)
≥ 0 if and only if Im z ≥ 0 .

Hence

Theorem 1. [2]

f ∈ X ⇔ zf ′(z)

f(z)
∈ T̃ .

The condition zf ′(z)
f(z) ∈ T̃ is not sufficient for univalence of f . We have only

Theorem 2. If f ∈ Y then zf ′(z)
f(z) ∈ T̃ .

According to Theorem 1, all coefficients of the Taylor expansion of f ∈ X are real.
Some other results concerning Y one can find in [1] and [4].
Similar, but more general, functions were discussed by Libera in [3]. He considered

so called disk-like functions. The functions f of this class have the property: there
exists a number % depending on f that for each fixed r, r ∈ (%, 1], there exist numbers
ϕ1, ϕ2 depending on r that |f(reiϕ)| is decreasing if ϕ increases in some interval
I1 = (ϕ1, ϕ2) and increasing in I2 = (ϕ2, ϕ1 +2π). The class of these functions Libera
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denoted by D. In particular, if f has real coefficients and |f(reiϕ)| is increasing on
the lower half of the circle |z| = r and is decreasing on the upper half of this circle,
then f is a circularly symmetric function. Although D is more general than X, some
of the results of the paper [3] are still valid for the class X.

Let us assume that f is of the form f(z) = z + λz2 + . . .. From Theorem 1 it
follows that a function

1

λ

(
zf ′(z)

f(z)
− 1

)
is in T ; let us denote it by h(z). Hence

(1) f(z) = z exp

(
λ

∫ z

0

h(ζ)

ζ
dζ

)
.

Applying the very well known relation between T and CV R(i) consisting of functions
with real coefficients g which are convex in the direction of the imaginary axis and
normalized by g(0) = g′(0)− 1 = 0, we obtain

Corollary 1.

(2) f ∈ X ⇔ f(z) = z exp {λg(z)} , g ∈ CV R(i) , λ > 0 .

The conclusion similar to the above corollary one can find in the paper of Libera
(corollary on page 253).

Basing on the equivalence (2) we can define the subclass of X containing these
circularly symmetric functions for which the second coefficient is fixed and equal to
λ ≥ 0. We denote this class by X(λ). For λ = 0 the set X(0) has only one element -
the identity function. We shall present the properties of X(λ) in next section.

2 Properties of X(λ).

Theorem 3. The radius of starlikeness for X(λ) is equal to rS∗(X(λ)) = rλ, where

rλ = 1
4

(√
λ+ 4−

√
λ
)2

. The extremal function is fλ(z) = z exp (λ z
1+z ).

Proof

It follows from (1) that zf ′(z)
f(z) = 1 + λzg′(z) = 1 + λh(z), where g ∈ CV R(i), h ∈ T .

The well-known estimate of the real part of a typically real function leads to

Re
zf ′(z)

f(z)
≥ 1− λ r

(1− r)2
.

Therefore, Re zf
′(z)

f(z) ≥ 0 if and only if r ≤ 2
2+λ+

√
λ2+4λ

, or equivalently, if r ≤ rλ.

Equality in the above estimate holds for h(z) = z
(1+z)2 and z = −r. It means that

the extremal function is fλ. �
The result of Theorem 3 can be generalized in order to finding the radius of

starlikeness of order α, α ∈ [0, 1). It sufficies to replace the inequality 1−λ r
(1−r)2 ≥ 0

by 1− λ r
(1−r)2 ≥ α. Hence
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Theorem 4. The radius of starlikeness of order α, α ∈ [0, 1) for X(λ) is equal

to rS∗(α)(X(λ)) = 1
4

(√
λ

1−α + 4−
√

λ
1−α

)2
. The extremal function is fλ(z) =

z exp (λ z
1+z ).

Observe that for all f ∈ X(λ) the condition zf ′(z)
f(z) 6= 0 holds if only z ∈ ∆rλ .

Moreover, for fλ and z = −rλ there is

zf ′(z)

f(z)

∣∣∣∣
z=−rλ

=

(
1 + λ

z

(1 + z)2

)∣∣∣∣
z=−rλ

= 1− λ rλ
(1− rλ)2

= 0 .

This results in

Theorem 5. The radius of local univalence for X(λ) is equal to rLU (X(λ)) = rλ.

Because of rS∗ ≤ rS ≤ rLU , which is true for any class of analytic functions, we
obtain

Corollary 2. The radius of univalence for X(λ) is equal to rS(X(λ)) = rλ.

It is known that the second coefficients of the Taylor expansion of functions in
the following subclasses of A consisting of: convex functions, univalent functions and
locally univalent functions have the upper bounds: 1, 2, 4 respectively. For this reason
it is worth observing that

rS(X(1)) =
1

2
(3−

√
5) , rS(X(2)) = 2−

√
3 , rS(X(4)) = (

√
2− 1)2 .

Theorem 6. If f ∈ X(λ) and r = |z| ∈ (0, 1) then

(3) r exp

(
−λr
1− r

)
≤ |f(z)| ≤ r exp

(
λr

1− r

)
,

Equalities in the above estimates hold for f(z) = z exp
(
λz
1+z

)
, z = −r and f(z) =

z exp
(
λz
1−z

)
, z = r respectively.

Proof
For g ∈ CV R(i) the exact estimate holds (see for example [5])

(4) |Re g(z)| ≤ r

1− r
,

with equality for g(z) = z
1+z , z = −r and g(z) = z

1−z , z = r respectively. From
Corollary 1 it follows that

|f(z)| = |z| exp (λRe g(z)) .

Combining it with (4) completes the proof. �
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Theorem 7. If f ∈ X(λ) and r = |z| ∈ (0, 1) then

(5) |f ′(z)| ≤
(

1 + λ
r

(1− r)2

)
exp

(
λr

1− r

)
,

Equality in the above estimate holds for f(z) = z exp
(
λz
1−z

)
and z = r.

Proof
From Corollary 1 and (1) we have

|f ′(z)| =
∣∣∣∣f(z)

z

∣∣∣∣ |1 + λh(z)| ,

where h ∈ T . Applying Theorem 6 and the estimate of the modulus of a function in
T in the above equality leads to the assertion. �

According to Theorems 6 and 7, both |f(z)| and |f ′(z)| can be arbitrarily large
while considering functions in the whole class X, not only functions with the second
coefficient fixed.

3 Properties of Y ∩ S∗.
In the paper of Szapiel [4] one can find the relation between the class of circurally
symmetric functions which are starlike with the class of typically real functions T :

Theorem 8.

f ∈ Y ∩ S∗ ⇔ zf ′(z)

f(z)
∈ T̃ ∩ PR .

Szapiel also proved the representation formula for functions in the class R2 = {q ∈
A : q = p2, p ∈ T̃ ∩ PR}. Namely, q ∈ R2 if and only if

(6) q(z) =

∫ 1

−1

(1 + z)2

1− 2zt+ z2
dµ(t) .

From this formula one can establish the relationship between R2 and T :

(7) q ∈ R2 ⇔ g ∈ T ,

where

q(z) = (1 + z)2
g(z)

z
.

From the above we get

Corollary 3.

(8) f ∈ Y ∩ S∗ ⇔ zf ′(z)

f(z)
= (1 + z)

√
g(z)

z
, g ∈ T.
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Examples. Putting functions of the class T into (8) we obtain associated functions
from Y ∩ S∗:
1. If g(z) = z, then zf ′(z)

f(z) = 1 + z and hence f(z) = zez.

2. If g(z) = z
(1+z)2 , then zf ′(z)

f(z) = 1 and hence f(z) = z.

3. If g(z) = z
(1−z)2 , then zf ′(z)

f(z) = 1+z
1−z and hence f(z) = z

(1−z)2 .

Many of the properties of Y ∩S∗ follow directly from obvious inclusion Y ∩S∗ ⊂ S∗
and the fact that the Koebe function f(z) = z

(1−z)2 , which is starlike, belongs also to

Y ∩ S∗. This observation gives us the following sharp results:

1. If f ∈ Y ∩ S∗ and f(z) =
∑∞
n=1 anz

n, then |an| ≤ n.

2. If f ∈ Y ∩ S∗ and r = |z| ∈ (0, 1), then r
(1+r)2 ≤ |f(z)| ≤ r

(1−r)2 .

3. If f ∈ Y ∩ S∗ and r = |z| ∈ (0, 1), then 1−r
(1+r)3 ≤ |f

′(z)| ≤ 1+r
(1−r)3 .

4. Every function in Y ∩ S∗ is convex in the disk |z| < 2−
√

3.

5. Every function in Y ∩S∗ is strongly starlike of order α in the disk |z| < tan(απ4 ).

Now we shall find the lower bounds of the second and the third coefficients in
Y ∩ S∗. Let f(z) = z +

∑∞
n=2 anz

n ∈ Y ∩ S∗ and g(z) = z +
∑∞
n=2 bnz

n ∈ T . From
(8) we conclude

2a2 = b2 + 2 ,(9)

4a3 − a22 = b3 + 2b2 + 1 .(10)

Let us denote by A2,3(A) a set {(a2(f), a3(f)) : f ∈ A}. This set for T is known:
A2,3(T ) = {(x, y) : −2 ≤ x ≤ 2, x2 − 1 ≤ y ≤ 3}. This results in the following bound
for a function in Y ∩ S∗:

(11) 0 ≤ a2 ≤ 2 .

Taking into account (9) and (10) in A2,3(T ) we obtain

Theorem 9.

A2,3(Y ∩ S∗) =

{
(x, y) : 0 ≤ x ≤ 2,

1

4

(
5x2 − 4x

)
≤ y ≤ 1

4

(
x2 + 4x

)}
.

Consequently

Corollary 4. Let f ∈ Y ∩S∗ have the Taylor series expansion f(z) = z+
∑∞
n=2 anz

n.
Then − 1

5 ≤ a3 ≤ 3 .

From (10) and A2,3(T ) it follows that

4a3 − a22 = b3 + 2b2 + 1 ≥ b22 + 2b2 ≥ −1

and
4a3 − a22 = b3 + 2b2 + 1 ≤ b22 + 4 ≤ 8 .

Hence
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Theorem 10. Let f ∈ Y ∩S∗ have the Taylor series expansion f(z) = z+
∑∞
n=2 anz

n.
Then − 1

4 ≤ a3 −
1
4a2

2 ≤ 2 .

The points of intersection of two parabolas from Theorem 9 coincide with two pairs
of coefficients (a2, a3) of the functions f1(z) = z and f2(z) = z

(1−z)2 . From Theorem

10 it follows that the class Y ∩ S∗ is not a convex set because the set A2,3(Y ∩ S∗) is
not convex.

Basing on Theorem 9 one can derive so called the Fekete-Szegö ineqalities for
Y ∩ S∗.

Theorem 11. Let f ∈ Y ∩ S∗ be of the form f(z) = z +
∑∞
n=2 anz

n. Then{
1

4µ−5 µ ≤ 1

3− 4µ µ ≥ 1
≤ a3 − µa22 ≤

{
3− 4µ µ ≤ 1

2
1

4µ−1 µ ≥ 1
2 .

Proof
Assume that f(z) = z +

∑∞
n=2 anz

n ∈ Y ∩ S∗. Let us denote by Q a function
Q(a2, a3) = a3−µa22. With a fixed µ ∈ R the function Q achieves its extremal value
on the boundary of the set A2,3(Y ∩ S∗).

Let us consider two functions

Q1(x) = Q(x,
1

4
x2 + x) = x2

(
1

4
− µ

)
+ x

and

Q2(x) = Q(x,
5

4
x2 − x) = x2

(
5

4
− µ

)
− x .

For x ∈ [0, 2] the inequality
Q1(x) ≥ Q2(x)

holds; hence

(12) max{Q : f ∈ Y ∩ S∗}
= max{Q(x, y) : (x, y) ∈ A2,3(Y ∩ S∗)}

= max{Q1(x) : x ∈ [0, 2]}

and

(13) min{Q : f ∈ Y ∩ S∗}
= min{Q(x, y) : (x, y) ∈ A2,3(Y ∩ S∗)}

= min{Q2(x) : x ∈ [0, 2]} .

The function Q1 for µ ≤ 1
2 is strictly increasing in [0, 2]; thus max{Q1(x) : x ∈

[0, 2]} = Q1(2). For µ > 1
2 the function Q1 increases in (0, x1) and decreases in (x1, 2),

where x1 = 2
4µ−1 . This results in max{Q1(x) : x ∈ [0, 2]} = Q1(x1).
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Similarly, the function Q2 for µ < 1 decreases in (0, x2) and increases in (x2, 2),
where x2 = 2

5−4µ . Hence min{Q2(x) : x ∈ [0, 2]} = Q2(x2). For µ ≥ 1 the function

Q2 is strictly decreasing in [0, 2], so min{Q2(x) : x ∈ [0, 2]} = Q2(2). �
Taking µ = 0 or µ = 1

4 we obtain previously obtained results from Corollary 4
and from Theorem 10.
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Properties of higher order differential

polynomials generated by solutions

of complex differential equations

in the unit disc

Zinelâabidine Latreuch, Benharrat Beläıdi

Abstract: The main purpose of this paper is to study the controlla-
bility of solutions of the differential equation

f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = 0.

In fact, we study the growth and oscillation of higher order differen-
tial polynomial with meromorphic coefficients in the unit disc ∆ =
{z : |z| < 1} generated by solutions of the above kth order differential
equation.

AMS Subject Classification: 34M10, 30D35.

Keywords and Phrases: Iterated p-order, Linear differential equations, Iterated expo-

nent of convergence of the sequence of distinct zeros, Unit disc.

1 Introduction and main results

Throughout this paper, we assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna’s value distribution theory on
the complex plane and in the unit disc ∆ = {z : |z| < 1} (see [13] , [14] , [18] , [20]). We
need to give some definitions and discussions. Firstly, let us give two definitions about
the degree of small growth order of functions in ∆ as polynomials on the complex
plane C. There are many types of definitions of small growth order of functions in ∆
(see [10] , [11]) .

Definition 1.1 ([10] , [11]) Let f be a meromorphic function in ∆, and

D (f) := lim sup
r→1−

T (r, f)

log 1
1−r

= b.
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If b < ∞, we say that f is of finite b degree (or is non-admissible). If b = ∞, we say
that f is of infinite degree (or is admissible), both defined by characteristic function
T (r, f).

Definition 1.2 ([10] , [11]) Let f be an analytic function in ∆, and

DM (f) := lim sup
r→1−

log+M (r, f)

log 1
1−r

= a <∞ (or a = ∞) ,

then we say that f is a function of finite a degree (or of infinite degree) defined by
maximum modulus function M(r, f) = max

|z|=r
|f (z)| .

Now we give the definitions of iterated order and growth index to classify generally
the functions of fast growth in ∆ as those in C (see [4] , [17] , [18]) . Let us define
inductively, for r ∈ [0, 1) , exp1 r = er and expp+1 r = exp

(

expp r
)

, p ∈ N. We also

define for all r sufficiently large in (0, 1) , log1 r = log r and logp+1 r = log
(

logp r
)

, p ∈
N. Moreover, we denote by exp0 r = r, log0 r = r, exp−1 r = log1 r, log−1 r = exp1 r.

Definition 1.3 [5, 6] The iterated p−order of a meromorphic function f in ∆ is
defined by

ρp (f) = lim sup
r→1−

log+p T (r, f)

log 1
1−r

(p ≥ 1) .

For an analytic function f in ∆, we also define

ρM,p (f) = lim sup
r→1−

log+p+1M (r, f)

log 1
1−r

(p ≥ 1) .

Remark 1.1 It follows by M. Tsuji in [25] that if f is an analytic function in ∆, then

ρ1 (f) ≤ ρM,1 (f) ≤ ρ1 (f) + 1.

However, it follows by Proposition 2.2.2 in [18]

ρM,p (f) = ρp (f) , (p ≥ 2) .

Definition 1.4 [5] The growth index of the iterated order of a meromorphic function
f(z) in ∆ is defined by

i (f) =







0, if f is non-admissible,
min {j ∈ N, ρj (f) <∞} , if f is admissible,

+∞, if ρj (f) = ∞ for all j ∈ N.

For an analytic functionf in ∆, we also define

iM (f) =







0, if f is non-admissible,
min {j ∈ N, ρM,j (f) <∞} , if f is admissible,

+∞, if ρM,j (f) = ∞ for all j ∈ N.
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Definition 1.5 [3, 15, 20] The iterated p−type of a meromorphic function f of iterated
p−order ρ (0 < ρ <∞) in ∆ is defined by

τp (f) = lim sup
r→1−

(1− r)
ρp(f) log+p−1 T (r, f) .

Definition 1.6 [7] Let f be a meromorphic function in ∆. Then the iterated p−con-
vergence exponent of the sequence of zeros of f (z) is defined by

λp (f) = lim sup
r→1−

log+p N
(

r, 1
f

)

log 1
1−r

,

where N
(

r, 1
f

)

is the counting function of zeros of f (z) in {z ∈ C : |z| ≤ r}.

Similarly, the iterated p−convergence exponent of the sequence of distinct zeros of
f (z) is defined by

λp (f) = lim sup
r→1−

log+p N
(

r, 1
f

)

log 1
1−r

,

where N
(

r, 1
f

)

is the counting function of distinct zeros of f (z) in {z ∈ C : |z| ≤ r}.

Definition 1.7 [7] The growth index of the convergence exponent of the sequence of
the zeros of f(z) in ∆ is defined by

iλ (f) =











0, if N
(

r, 1
f

)

= O
(

log 1
1−r

)

,

min {j ∈ N, λj (f) <∞} , if some j ∈ N with λj (f) <∞,

+∞, if λj (f) = ∞ for all j ∈ N.

Similarly, we can define the growth index of the convergence exponent of the
sequence of distinct zeros iλ(f) of f(z) in ∆.

Consider the complex differential equation

f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = 0 (1.1)

and the kth order differential polynomial

gk = dkf
(k) + dk−1f

(k−1) + · · ·+ d0f, (1.2)

where Aj (j = 0, 1, · · · , k − 1) and di (i = 0, 1, · · · , k) are meromorphic functions in
∆.

Let L (G) denote a differential subfield of the field M (G) of meromorphic functions
in a domain G ⊂ C. If G = ∆, we simply denote L instead of L (∆) . Special case of
such differential subfield

Lp+1,ρ = {g meromorphic: ρp+1 (g) < ρ} ,
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where ρ is a positive constant. In [7] , T. B. Cao, H. Y. Xu and C. X. Zhu studied
the complex oscillation of differential polynomial generated meromorphic solutions of
second order linear differential equations with meromorphic coefficients and obtained
the following results.

Theorem A [7] Let A be an admissible meromorphic function of finite iterated order

ρp (A) = ρ > 0 (1 ≤ p <∞) in the unit disc ∆ such that δ (∞, A) = lim inf
r→1−

m(r,A)
T (r,A) =

δ > 0, and let f be a non-zero meromorphic solution of the differential equation

f ′′ +A (z) f = 0,

such that δ (∞, f) > 0. Moreover, let

P [f ] =

k
∑

j=0

pjf
(j)

be a linear differential polynomial with coefficients pj ∈ Lp+1,ρ, assuming that at least

one of the coefficients pj does not vanish identically. If ϕ ∈ Lp+1,ρ is a non-zero

meromorphic function in ∆, and neither P [f ] nor P [f ] − ϕ vanishes identically,

then we have

i (f) = iλ (P [f ]− ϕ) = p+ 1

and

λp (P [f ]− ϕ) = ρp+1 (f) = ρp (A) = ρ

if p > 1, while

ρp (A) ≤ λp+1 (P [f ]− ϕ) ≤ ρp+1 (f) ≤ ρp (A) + 1

if p = 1.

Remark 1.2 The idea of the proofs of Theorem A is borrowed from the paper of
Laine, Rieppo [19] with the modifications reflecting the change from the complex
plane C to the unit disc ∆.

Before we state our results, we define the sequence of meromorphic functions αi,j

(j = 0, · · · , k − 1) in ∆ by

αi,j =

{

α′
i,j−1 + αi−1,j−1 −Aiαk−1,j−1, for all i = 1, · · · , k − 1,

α′
0,j−1 −A0αk−1,j−1, for i = 0

(1.3)

and
αi,0 = di − dkAi, for i = 0, · · · , k − 1 (1.4)

we define also hk by

hk =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α0,0 α1,0 . . αk−1,0

α0,1 α1,1 . . αk−1,1

. . . . .

. . . . .

α0,k−1 α1,k−1 . . αk−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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and ψk (z) by
ψk (z) = C0ϕ+ C1ϕ

′ + · · ·+ Ck−1ϕ
(k−1),

where Cj (j = 0, · · · , k − 1) are finite iterated p−order meromorphic functions in ∆
depending on αi,j , and ϕ 6≡ 0 is a meromorphic function in ∆ with ρp (ϕ) <∞.

The main purpose of this paper is to study the controllability of solutions of the differ-
ential equation (1.1) . In the fact we study the growth and oscillation of higher order
differential polynomial with meromorphic coefficients in the unit disc ∆ generated by
solutions of equation (1.1).

Theorem 1.1 Let Ai (z) (i = 0, 1, · · · , k − 1) be meromorphic functions in ∆ of finite

iterated p−order. Let dj (z) (j = 0, 1, · · · , k) be finite iterated p−order meromorphic

functions in ∆ that are not all vanishing identically such that h 6≡ 0. If f (z) is an

infinite iterated p−order meromorphic solution in ∆ of (1.1) with ρp+1 (f) = ρ, then

the differential polynomial (1.2) satisfies

ρp (gk) = ρp (f) = ∞

and

ρp+1 (gk) = ρp+1 (f) = ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution in ∆ such that

ρp (f) > max {ρp (Ai) (i = 0, 1, · · · , k − 1) , ρp (dj) (j = 0, 1, · · · , k)} , (1.5)

then

ρp (gk) = ρp (f) .

Remark 1.3 In Theorem 1.1, if we do not have the condition h 6≡ 0, then the
conclusions of Theorem 1.1 cannot hold. For example, if we take di = dkAi

(i = 0, · · · , k − 1) , then h ≡ 0. It follows that gk ≡ 0 and ρp (gk) = 0. So, if f (z) is an
infinite iterated p−order meromorphic solution of (1.1) , then ρp (gk) = 0 < ρp (f) =
∞, and if f is a finite iterated p−order meromorphic solution of (1.1) such that (1.5)
holds, then ρp (gk) = 0 < ρp (f).

Theorem 1.2 Under the hypotheses of Theorem 1.1, let ϕ (z) 6≡ 0 be a meromorphic

function in ∆ with finite iterated p−order such that ψk (z) is not a solution of (1.1) .
If f (z) is an infinite iterated p−order meromorphic solution in ∆ of (1.1) with

ρp+1 (f) = ρ, then the differential polynomial (1.2) satisfies

λp (gk − ϕ) = λp (gk − ϕ) = ρp (f) = ∞

and

λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution in ∆ such that

ρp (f) > max {ρp (Ai) (i = 0, 1, · · · , k − 1) , ρp (dj) (j = 0, 1, · · · , k) , ρp (ϕ)} , (1.6)
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then

λp (gk − ϕ) = λp (gk − ϕ) = ρp (f) .

From Theorems 1-2, we obtain the following corollaries which have been proved
in [23] .

Corollary 1.1 [23] Suppose that A (z) is admissible meromorphic function in ∆ such

that i (A) = p (1 ≤ p <∞) and δ (∞, A) = δ > 0. Let dj (z) (j = 0, 1, · · · , k) be finite

iterated p−order meromorphic functions in ∆ that are not all vanishing identically

such that h 6≡ 0, and let f be a nonzero meromorphic solution of

f (k) +A (z) f = 0. (1.7)

If δ (∞, f) > 0, then the differential polynomial gk satisfies i (gk) = p + 1 and

ρp+1 (gk) = ρp+1 (f) = ρp (A) if p > 1, while

ρp (A) ≤ ρp+1 (gk) = ρp+1 (f) ≤ ρp (A) + 1

if p = 1.

Corollary 1.2 [23] Under the hypotheses of Corollary 1.1, let ϕ (z) 6≡ 0 be mero-

morphic function in ∆ with finite iterated p−order such that ψk (z) 6≡ 0. Then the

differential polynomial (1.2) satisfies

λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρp+1 (f) = ρp (A)

if p > 1, while

ρp (A) ≤ λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρp+1 (f) ≤ ρp (A) + 1

if p = 1.

Remark 1.4 The present article may be understood as an extension and improvement
of the recent article of the authors [23] from equation (1.7) to equation (1.1). The
method used in the proofs of our theorems is simple and quite different from the
method used in the papers of Laine and Rieppo [19] and Cao, Xu and Zhu [7] .

We consider now the differential equation

f ′′ +A1 (z) f
′ +A0 (z) f = 0, (1.8)

where A1 (z) , A0 (z) are analytic functions of finite iterated p−order in the unit disc
∆. In the following we will give sufficient conditions on A1 and A0 which satisfied
the results of Theorem 1.1 and Theorem 1.2 without the conditions ” hk 6≡ 0 ” and ”
ψk (z) is not a solution of (1.1) ” where k = 2.

Corollary 1.3 Let A1 (z) , A0 (z) (6≡ 0) be analytic functions in ∆ such that ρp (A0) =
ρ (0 < ρ <∞) , τp (A0) = τ (0 < τ <∞) , and let ρp (A1) < ρp (A0) or τp (A1) <



Properties of higher order differential polynomials ... 73

τp (A0) if ρp (A0) = ρp (A1) . Let d2, d1, d0 be analytic functions in ∆ such that at

least one of d2, d1, d0 does not vanish identically with max {ρp (dj) (j = 0, 1, 2)} <
ρp (A0) . If f 6≡ 0 is a solution of (1.8) , then the differential polynomial g2 = d2f

′′ +
d1f

′ + d0f satisfies ρp+1 (g2) = ρp+1 (f) = ρp (A0) if p > 1, while

ρp (A0) ≤ ρp+1 (g2) = ρp+1 (f) ≤ max {ρM (Aj) (j = 0, 1)}

if p = 1.

Corollary 1.4 Let A1 (z) , A0 (z) ( 6≡ 0) be analytic functions in ∆ such that ρp (A0) =
ρ (0 < ρ <∞) , τp (A0) = τ (0 < τ <∞) , and let ρp (A1) < ρp (A0) or 2τp (A1) <
τp (A0) if ρp (A0) = ρp (A1) . Let d2, d1, d0 be analytic functions in ∆ such that at

least one of d2, d1, d0 does not vanish identically with max {ρp (dj) (j = 0, 1, 2)} <
ρp (A1), and let ϕ (z) 6≡ 0 be analytic function in ∆ of finite iterated p−order such

that ψ2 (z) 6≡ 0. If f 6≡ 0 is a solution of (1.8) , then the differential polynomial

g2 = d2f
′′ + d1f

′ + d0f satisfies

λp+1 (g2 − ϕ) = λp+1 (g2 − ϕ) = ρp+1 (f) = ρp (A0)

if p > 1, while

ρp (A0) ≤ λp+1 (g2 − ϕ) = λp+1 (g2 − ϕ) = ρp+1 (f) ≤ max {ρM (Aj) (j = 0, 1)}

if p = 1.

Remark 1.5 For some papers related in the complex plane see [19, 22, 24] and in
the unit disc see [7, 9, 12] .

2 Auxiliary lemmas

Lemma 2.1 [8] Let A0, A1, · · · , Ak−1, F 6≡ 0 be meromorphic functions in ∆, and let

f be a meromorphic solution of the differential equation

f (k) +Ak−1 (z) f
(k−1) + · · ·+A1 (z) f

′ +A0 (z) f = F (z) (2.1)

such that i (f) = p (1 ≤ p <∞) . If either

max {i (Aj) (j = 0, 1, · · · , k − 1) , i (F )} < p

or

max {ρp (Aj) (j = 0, 1, · · · , k − 1) , ρp (F )} < ρp (f) ,

then

iλ (f) = iλ (f) = i (f) = p

and

λp (f) = λp (f) = ρp (f) .
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Using the same arguments as in the proof of Lemma 2.1 (see, the proof of Lemma 2.5
in [8]), we easily obtain the following lemma.

Lemma 2.2 Let A0, A1, · · · , Ak−1, F 6≡ 0 be finite iterated p−order meromorphic

functions in the unit disc ∆. If f is a meromorphic solution with ρp (f) = ∞
and ρp+1 (f) = ρ < ∞ of equation (2.1) , then λp (f) = λp (f) = ρp (f) = ∞ and

λp+1 (f) = λp+1 (f) = ρp+1 (f) = ρ.

Lemma 2.3 [5] Let p ≥ 1 be an integer, and let A0(z), · · · , Ak−1(z) be analytic

functions in ∆ such that i (A0) = p. If

max{i (Aj) : j = 1, · · · , k − 1} < p

or

max{ρp (Aj) : j = 1, · · · , k − 1} < ρp (A0) ,

then every solution f 6≡ 0 of equation (1.1) satisfies i (f) = p + 1 and ρp (f) = ∞,

ρp (A0) ≤ ρp+1 (f) = ρM,p+1 (f) ≤ max{ρM,p (Aj) : j = 0, 1, · · · , k − 1}.

Lemma 2.4 [3] Let f and g be meromorphic functions in the unit disc ∆ such that

0 < ρp (f) , ρp (g) <∞ and 0 < τp (f) , τp (g) <∞. Then we have

(i) If ρp (f) > ρp (g) , then we obtain

τp (f + g) = τp (fg) = τp (f) .

(ii) If ρp (f) = ρp (g) and τp (f) 6= τp (g) , then we get

ρp (f + g) = ρp (fg) = ρp (f) = ρp (g) .

Lemma 2.5 ([14]) Let f be a meromorphic function in the unit disc and let k ∈ N.

Then

m

(

r,
f (k)

f

)

= S (r, f) ,

where S (r, f) = O
(

log+ T (r, f) + log
(

1
1−r

))

, possibly outside a set E1 ⊂ [0, 1) with
∫

E1

dr
1−r

<∞. If f is of finite order of growth, then

m

(

r,
f (k)

f

)

= O

(

log

(

1

1− r

))

.

Lemma 2.6 [2] Let f be a meromorphic function in the unit disc for which i (f) =
p ≥ 1 and ρp (f) = β <∞, and let k ∈ N. Then for any ε > 0,

m

(

r,
f (k)

f

)

= O

(

expp−2

(

log
1

1− r

)β+ε
)

for all r outside a set E2 ⊂ [0, 1) with
∫

E2

dr
1−r

<∞.
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Lemma 2.7 Let f be a meromorphic function in ∆ with iterated order ρp (f) = ρ

(0 < ρ <∞) and iterated type τp (f) = τ (0 < τ <∞) . Then for any given β < τ,

there exists a subset E3 of [0, 1) that has an infinite logarithmic measure such that

logp−1 T (r, f) > β
(

1
1−r

)ρ

holds for all r ∈ E3.

Proof . When p = 1, the lemma is proved in [21] . Thus we assume p ≥ 2. By
definitions of iterated order and iterated type, there exists an increasing sequence
{rm}

∞
m=1 ⊂ [0, 1) (rm → 1−) satisfying 1

m
+
(

1− 1
m

)

rm < rm+1 and

lim
m→∞

logp−1 T (rm, f)
(

1
1−rm

)ρ = τp (f) .

Then there exists a positive integer m0 such that for all m > m0 and for any given
0 < ε < τp (f)− β, we have

logp−1 T (rm, f) > (τp (f)− β)

(

1

1− rm

)ρ

. (2.2)

For any given β < τp (f) − ε, there exists a positive integer m1 such that for all
m > m1 we have

(

1−
1

m

)ρ

>
β

τp (f)− ε
. (2.3)

Take m ≥ m2 = max {m0,m1} . By (2.2) and (2.3) , for any r ∈ [rm,
1
m
+
(

1− 1
m

)

rm],
we have

logp−1 T (r, f) ≥ logp−1 T (rm, f) > (τp (f)− β)

(

1

1− rm

)ρ

≥ (τp (f)− β)

(

1−
1

m

)ρ(
1

1− r

)ρ

> β

(

1

1− r

)ρ

.

Set E3 = ∪∞
m=m2

[

rm,
1
m

+
(

1− 1
m

)

rm
]

, then there holds

mlE3 =
∞
∑

m=m2

1

m
+(1− 1

m )rm
∫

rm

dt

1− t
=

∞
∑

m=m2

log
m

m− 1
= ∞.

Lemma 2.8 [16] Let f be a solution of equation (1.1) where the coefficients

Aj (z) (j = 0, · · · , k − 1) are analytic functions in the disc ∆R = {z ∈ C : |z| < R} ,
0 < R ≤ ∞. Let nc ∈ {1, · · · , k} be the number of nonzero coefficients Aj (z)
(j = 0, · · · , k − 1) , and let θ ∈ [0, 2π[ and ε > 0. If zθ = νeiθ ∈ ∆R is such that

Aj (zθ) 6= 0 for some j = 0, · · · , k − 1, then for all ν < r < R,

∣

∣f
(

reiθ
)∣

∣ ≤ C exp



nc

r
∫

ν

max
j=0,··· ,k−1

∣

∣Aj

(

teiθ
)∣

∣

1

k−j dt



 , (2.4)
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where C > 0 is a constant satisfying

C ≤ (1 + ε) max
j=0,··· ,k−1







∣

∣f (j) (zθ)
∣

∣

(nc)
j

max
n=0,··· ,k−1

|An (zθ)|
j

k−n






.

Lemma 2.9 [1, 14] Let g : (0, 1) → R and h : (0, 1) → R be monotone increasing

functions such that g (r) ≤ h (r) holds outside of an exceptional set E4 ⊂ [0, 1) for

which
∫

E4

dr
1−r

< ∞. Then there exists a constant d ∈ (0, 1) such that if s (r) =

1− d (1− r) , then g (r) ≤ h (s (r)) for all r ∈ [0, 1).

Lemma 2.10 Let A1 (z) and A0 (z) be analytic functions in ∆ such that ρp (A0) = ρ

(0 < ρ <∞) , τp (A0) = τ (0 < τ <∞), and let ρp (A1) < ρp (A0) and τp (A1) <
τp (A0) if ρp (A1) = ρp (A0) . If f 6≡ 0 is a solution of (1.8) then ρp (f) = ∞,

ρp+1 (f) = ρp (A0) if p > 1, while

ρp (f) = ∞, ρp (A0) ≤ ρp+1 (f) ≤ max {ρM (Aj) , (j = 0, 1)}

if p = 1.

Proof. If ρp (A1) < ρp (A0) then the result can easily deduced by Lemma 2.3. We
prove only the case when ρp (A0) = ρp (A1) = ρ and τp (A1) < τp (A0) . Since f 6≡ 0,
then by (1.8) we have

A0 = −

(

f ′′

f
+A1

f ′

f

)

. (2.5)

Suppose that f is of finite p−iterated order, then by Lemma 2.6

T (r, A0) ≤ T (r, A1) +O

(

expp−2

(

log
1

1− r

)β+ε
)

(ρp (f) = β <∞) (2.6)

which implies the contradiction

τp (A0) ≤ τp (A1) .

Hence ρp (f) = ∞. By using inequality (2.4), we have

ρp+1 (f) ≤ max {ρp (A1) , ρp (A0)} = ρp (A0) . (2.7)

On the other hand, by Lemma 2.5

T (r, A0) ≤ T (r, A1) +O

(

log+ T (r, f) + log
1

1− r

)

(2.8)

holds possibly outside a set E1 ⊂ [0, 1) with
∫

E1

dr
1−r

< ∞. By τp (A1) < τp (A0) we

choose α0, α1 satisfying τp (A1) < α1 < α0 < τp (A0) such that for r → 1−, we have

T (r, A1) ≤ expp−1

{

α1

(

1

1− r

)ρ}

. (2.9)
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By Lemma 2.7, there exists a subset E2 ⊂ [0, 1) of infinite logarithmic measure such
that

T (r, A0) > expp−1

{

α0

(

1

1− r

)ρ}

. (2.10)

By (2.8)− (2.10) we obtain for all r ∈ E2 − E1

(1− o (1)) expp−1

{

α0

(

1

1− r

)ρ}

≤ O

(

log+ T (r, f) + log
1

1− r

)

. (2.11)

By using (2.11) and Lemma 2.9, we obtain

ρp+1 (f) ≥ ρp (A0) . (2.12)

From (2.7) and (2.12) we get ρp (f) = ∞ and ρp+1 (f) = ρp (A0) .

3 Proof of the Theorems and the Corollaries

Proof of Theorem 1.1 Suppose that f is an infinite iterated p-ordder meromorphic
solution in ∆ of (1.1) . By (1.1) , we have

f (k) = −

k−1
∑

i=0

Aif
(i) (3.1)

which implies
gk = dkf

(k) + dk−1f
(k−1) + · · ·+ d0f

=

k−1
∑

i=0

(di − dkAi) f
(i). (3.2)

We can write (3.2) as

gk =
k−1
∑

i=0

αi,0f
(i), (3.3)

where αi,0 are defined in (1.4) . Differentiating both sides of equation (3.3) and re-

placing f (k) with f (k) = −
k−1
∑

i=0

Aif
(i), we obtain

g′k =

k−1
∑

i=0

α′
i,0f

(i) +

k−1
∑

i=0

αi,0f
(i+1) =

k−1
∑

i=0

α′
i,0f

(i) +

k
∑

i=1

αi−1,0f
(i)

= α′
0,0f +

k−1
∑

i=1

α′
i,0f

(i) +

k−1
∑

i=1

αi−1,0f
(i) + αk−1,0f

(k)

= α′
0,0f +

k−1
∑

i=1

α′
i,0f

(i) +

k−1
∑

i=1

αi−1,0f
(i) −

k−1
∑

i=0

αk−1,0Aif
(i)
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=
(

α′
0,0 − αk−1,0A0

)

f +

k−1
∑

i=1

(

α′
i,0 + αi−1,0 − αk−1,0Ai

)

f (i). (3.4)

We can rewrite (3.4) as

g′k =

k−1
∑

i=0

αi,1f
(i), (3.5)

where

αi,1 =

{

α′
i,0 + αi−1,0 − αk−1,0Ai, for all i = 1, · · · , k − 1,

α′
0,0 −A0αk−1,0, for i = 0.

(3.6)

Differentiating both sides of equation (3.5) and replacing f (k) with f (k) = −
k−1
∑

i=0

Aif
(i),

we obtain

g′′k =
k−1
∑

i=0

α′
i,1f

(i) +
k−1
∑

i=0

αi,1f
(i+1) =

k−1
∑

i=0

α′
i,1f

(i) +
k
∑

i=1

αi−1,1f
(i)

= α′
0,1f +

k−1
∑

i=1

α′
i,1f

(i) +
k−1
∑

i=1

αi−1,1f
(i) + αk−1,1f

(k)

= α′
0,1f +

k−1
∑

i=1

α′
i,1f

(i) +
k−1
∑

i=1

αi−1,1f
(i) −

k−1
∑

i=0

Aiαk−1,1f
(i)

=
(

α′
0,1 − αk−1,1A0

)

f +
k−1
∑

i=1

(

α′
i,1 + αi−1,1 −Aiαk−1,1

)

f (i) (3.7)

which implies that

g′′k =
k−1
∑

i=0

αi,2f
(i), (3.8)

where

αi,2 =

{

α′
i,1 + αi−1,1 −Aiαk−1,1, for all i = 1, · · · , k − 1,

α′
0,1 −A0αk−1,1, for i = 0.

(3.9)

By using the same method as above we can easily deduce that

g
(j)
f =

k−1
∑

i=0

αi,jf
(i), j = 0, 1, · · · , k − 1, (3.10)

where

αi,j =

{

α′
i,j−1 + αi−1,j−1 −Aiαk−1,j−1, for all i = 1, · · · , k − 1,

α′
0,j−1 −A0αk−1,j−1, for i = 0

(3.11)



Properties of higher order differential polynomials ... 79

and
αi,0 = di − dkAi, for all i = 0, 1, · · · , k − 1. (3.12)

By (3.3)− (3.12) we obtain the system of equations























gk = α0,0f + α1,0f
′ + · · ·+ αk−1,0f

(k−1),

g′k = α0,1f + α1,1f
′ + · · ·+ αk−1,1f

(k−1),

g′′k = α0,2f + α1,2f
′ + · · ·+ αk−1,2f

(k−1),

· · ·

g
(k−1)
k = α0,k−1f + α1,k−1f

′ + · · ·+ αk−1,k−1f
(k−1).

(3.13)

By Cramer’s rule, and since hk 6≡ 0 we have

f =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

gk α1,0 . . αk−1,0

g′k α1,1 . . αk−1,1

. . . . .

. . . . .

g
(k−1)
k α1,k−1 . . αk−1,k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h
. (3.14)

Then
f = C0gk + C1g

′
k + · · ·+ Ck−1g

(k−1)
k , (3.15)

where Cj are finite iterated p−order meromorphic functions in ∆ depending on αi,j ,
where αi,j is defined in (3.11) .

If ρp (gk) < +∞, then by (3.15) we obtain ρp (f) < +∞, and this is a contradic-
tion. Hence ρp (gk) = ρp (f) = +∞.

Now, we prove that ρp+1 (gk) = ρp+1 (f) = ρ. By (3.2), we get ρp+1 (gk) ≤
ρp+1 (f) and by (3.15) we have ρp+1 (f) ≤ ρp+1 (gk). This yield ρp+1 (gk) = ρp+1 (f) =
ρ.

Furthermore, if f is a finite iterated p−order meromorphic solution in ∆ of equa-
tion (1.1) such that

ρp (f) > max {ρp (Ai) (i = 0, · · · , k − 1) , ρp (dj) (j = 0, 1, · · · , k)} , (3.16)

then
ρp (f) > max {ρp (αi,j) : i = 0, · · · , k − 1, j = 0, · · · , k − 1} . (3.17)

By (3.2) and (3.16) we have ρp (gk) ≤ ρp (f) . Now, we prove ρp (gk) = ρp (f) . If
ρp (gk) < ρp (f) , then by (3.15) and (3.17) we get

ρp (f) ≤ max {ρp (Cj) (j = 0, · · · , k − 1) , ρp (gk)} < ρp (f)

and this is a contradiction. Hence ρp (gk) = ρp (f) .

Remark 3.1 From (3.13) , it follows that the condition h 6≡ 0 is equivalent to the

condition gk, g
′
k, · · · , g

(k−1)
k are linearly independent over the field of meromorphic

functions of finite iterated p−order.
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Proof of Theorem 1.2 Suppose that f is an infinite iterated p−order meromorphic
solution in ∆ of equation (1.1) with ρp+1 (f) = ρ. Set w (z) = gk−ϕ. Since ρp (ϕ) <∞,

then by Theorem 1.1 we have ρp (w) = ρp (gk) = ∞ and ρp+1 (w) = ρp+1 (gk) = ρ.

To prove λp (gk − ϕ) = λp (gk − ϕ) = ∞ and λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρ we
need to prove λp (w) = λp (w) = ∞ and λp+1 (w) = λp+1 (w) = ρ. By gk = w + ϕ,

and using (3.15) , we get

f = C0w + C1w
′ + · · ·+ Ck−1w

(k−1) + ψk (z) , (3.18)

where
ψk (z) = C0ϕ+ C1ϕ

′ + · · ·+ Ck−1ϕ
(k−1). (3.19)

Substituting (3.18) into (1.1) , we obtain

Ck−1w
(2k−1) +

2k−2
∑

j=0

φjw
(j) = −

(

ψ
(k)
k +Ak−1 (z)ψ

(k−1)
k + · · ·+A (z)ψk

)

= H,

(3.20)
where Ck−1, φj (j = 0, · · · , 2k − 1) are meromorphic functions in ∆ with finite iter-
ated p−order. Since ψk (z) is not a solution of (1.1) , it follows that H 6≡ 0. Then
by Lemma 2.2, we obtain λp (w) = λp (w) = ∞ and λp+1 (w) = λp+1 (w) = ρ, i. e.,
λp (gk − ϕ) = λp (gk − ϕ) = ∞ and λp+1 (gk − ϕ) = λp+1 (gk − ϕ) = ρ.

Suppose that f is a finite iterated p−order meromorphic solution in ∆ of equation
(1.1) such that (1.6) holds. Set w (z) = gk−ϕ. Since ρp (ϕ) < ρp (f) , then by Theorem
1.1 we have ρp (w) = ρp (gk) = ρp (f) . To prove λp (gk − ϕ) = λp (gk − ϕ) = ρp (f)
we need to prove λp (w) = λp (w) = ρp (f) . Using the same reasoning as above, we
get

Ck−1w
(2k−1) +

2k−2
∑

j=0

φjw
(j) = −

(

ψ
(k)
k +Ak−1 (z)ψ

(k−1)
k + · · ·+A (z)ψk

)

= F,

where Ck−1, φj (j = 0, · · · , 2k − 1) are meromorphic functions in ∆ with finite iter-
ated p−order ρp (Ck−1) < ρp (f) , ρp (φj) < ρp (f) (j = 0, · · · , 2k − 1) , and

ψk (z) = C0ϕ+ C1ϕ
′ + · · ·+ Ck−1ϕ

(k−1), ρp (F ) < ρp (f) .

Since ψk (z) is not a solution of (1.1) , it follows that F 6≡ 0. Then by Lemma 2.1, we
obtain λp (w) = λp (w) = ρp (f) , i. e., λp (gk − ϕ) = λp (gk − ϕ) = ρp (f) .

Proof of Corollary 1.3 Suppose that f is a nontrivial solution of (1.8). Then by
Lemma 2.3, we have

ρp (A0) ≤ ρp+1 (f) ≤ max {ρM,p (Aj) (j = 0, 1)} (p ≥ 1) .

By the same reasoning as before we obtain that
{

g2 = α0,0f + α1,0f
′,

g′2 = α0,1f + α1,1f
′,
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where

α0,0 = d0 − d2A0, α1,1 = d2A
2
1 − (d2A1)

′
− d1A1 − d2A0 + d0 + d′1

and

α0,1 = d2A0A1 − (d2A0)
′ − d1A0 + d′0, α1,0 = d1 − d2A1.

First, we suppose that d2 6≡ 0. We have

h2 =

∣

∣

∣

∣

α1,0 α0,0

α1,1 α0,1

∣

∣

∣

∣

= −d22A
2
0 − d0d2A

2
1 +

(

−d2d1 + d′1d2 + 2d0d2 − d21
)

A0

+(d′2d0 − d2d
′
0 + d0d1)A1 + d1d2A0A1 − d1d2A

′
0 + d0d2A

′
1

+d22A
′
0A1 − d22A0A

′
1 + d′0d1 − d0d

′
1 − d20.

By d2 6≡ 0, A0 6≡ 0 and Lemma 2.4, we have ρp (h) = ρp (A0). Hence h 6≡ 0. Now
suppose d2 ≡ 0, d1 6≡ 0 or d2 ≡ 0, d1 ≡ 0 and d0 6≡ 0, then by using a similar reasoning
as above we get h 6≡ 0, and we obtain

f =
α1,0g

′
f − α1,1gf

h2
. (3.21)

It is clear that ρp (g2) ≤ ρp (f) (ρp+1 (g2) ≤ ρp+1 (f)) and by (3.21) we have ρp (f) ≤
ρp (g2) (ρp+1 (f) ≤ ρp+1 (g2)). Hence ρp (g2) = ρp (f) (ρp+1 (g2) = ρp+1 (f)).

Proof of Corollary 1.4 Set w (z) = d2f
′′ + d1f

′ + d0f − ϕ. Then, by ρp (ϕ) < ∞,

we have ρp (w) = ρp (g2) = ρp (f) and ρp+1 (w) = ρp+1 (g2) = ρp+1 (f). In order to
prove λp+1 (g2 − ϕ) = λp+1 (g2 − ϕ) = ρp+1 (f), we need to prove only λp+1 (w) =
λp+1 (w) = ρp+1 (f) . Using g2 = w + ϕ, we get from (3.21)

f =
α1,0w

′ − α1,1w

h2
+ ψ2, (3.22)

where

ψ2 (z) =
α1,0ϕ

′ − α1,1ϕ

h2
. (3.23)

Substituting (3.22) into equation (1.8) , we obtain

α1,0

h2
w

′′′

+ φ2w
′′

+ φ1w
′

+ φ0w

= −
(

ψ
′′

2 +A1 (z)ψ
′

2 +A0 (z)ψ2

)

= A, (3.24)

where φj (j = 0, 1, 2) are meromorphic functions in ∆ with ρp (φj) <∞ (j = 0, 1, 2).
First, we prove that ψ2 6≡ 0. Suppose that ψ2 ≡ 0, then by (3.23) we obtain

α1,1 = α1,0
ϕ′

ϕ
. (3.25)
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It follows that by using Lemma 2.6

m(r, α1,1) ≤ m(r, α1,0) +O

(

expp−2

(

log
1

1− r

)β+ε
)

, ρp(ϕ) = β <∞. (3.26)

(i) If d2 6≡ 0, then by using Lemma 2.4 we obtain the contradiction
{

ρp (A0) ≤ ρp (A1) , if ρp (A0) > ρp (A1) ,
τp (A0) ≤ τp (A1) , if ρp (A0) = ρp (A1) .

(ii) If d2 ≡ 0 and d1 6≡ 0, we obtain the contradiction

ρp (A1) ≤ ρp (d1) .

(iii) If d2 = d1 ≡ 0 and d0 6≡ 0, we have by (3.25)

d0 = α1,1 = α1,0
ϕ′

ϕ
= 0×

ϕ′

ϕ
≡ 0,

which is a contradiction. Hence ψ2 6≡ 0. It is clear now that ψ2 6≡ 0 cannot be a
solution of (1.8) because ρp (ψ2) <∞. Then, by Lemma 2.1, we obtain λp+1 (g2 − ϕ) =
λp+1 (g2 − ϕ) = ρp+1 (f), i. e., λp+1 (w) = λp+1 (w) = ρp+1 (f).
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linear complex differential equations, Ann. Acad. Sci. Fenn. Math. 29 (2004), no.
1, 233–246.

[17] L. Kinnunen, Linear differential equations with solutions of finite iterated order,
Southeast Asian Bull. Math. 22 (1998), no. 4, 385-405.

[18] I. Laine, Nevanlinna theory and complex differential equations, de Gruyter Stud-
ies in Mathematics, 15. Walter de Gruyter & Co., Berlin-New York, 1993.

[19] I. Laine and J. Rieppo, Differential polynomials generated by linear differential

equations, Complex Var. Theory Appl. 49 (2004), no. 12, 897–911.

[20] I. Laine, Complex differential equations, Handbook of differential equa-
tions: ordinary differential equations. Vol. IV, 269–363, Handb. Differ. Equ.,
Elsevier/North-Holland, Amsterdam, 2008.
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1. Introduction

LetH (U) be the class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1}
and let H [a, k] be the subclass of H (U) consisting of functions of the form:

f(z) = a+ akz
k + ak+1z

k+1... (a ∈ C). (1.1)

For simplicity H [a] = H [a, 1]. Also, let A be the subclass of H (U) consisting of
functions of the form:

f(z) = z +

∞
∑

k=2

akz
k. (1.2)

If f , g ∈ H (U), we say that f is subordinate to g or f is superordinate to
g, written f(z) ≺ g(z) if there exists a Schwarz function ω, which (by definition)
is analytic in U with ω(0) = 0 and |ω(z)| < 1 for all z ∈ U, such that f(z) =
g(ω(z)), z ∈ U. Furthermore, if the function g is univalent in U, then we have the
following equivalence, (cf., e.g.,[6], [16] and [17]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).
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Let φ : C2 × U → C and h (z) be univalent in U. If p (z) is analytic in U and
satisfies the first order differential subordination:

φ
(

p (z) , zp
′

(z) ; z
)

≺ h (z) , (1.3)

then p (z) is a solution of the differential subordination (1.3). The univalent function
q (z) is called a dominant of the solutions of the differential subordination (1.3) if
p (z) ≺ q (z) for all p (z) satisfying (1.3). A univalent dominant q̃ that satisfies q̃ ≺ q

for all dominants of (1.3) is called the best dominant. If p (z) and φ
(

p (z) , zp
′

(z) ; z
)

are univalent in U and if p(z) satisfies first order differential superordination:

h (z) ≺ φ
(

p (z) , zp
′

(z) ; z
)

, (1.4)

then p (z) is a solution of the differential superordination (1.4). An analytic function
q (z) is called a subordinant of the solutions of the differential superordination (1.4) if
q (z) ≺ p (z) for all p (z) satisfying (1.4). A univalent subordinant q̃ that satisfies q ≺ q̃

for all subordinants of (1.4) is called the best subordinant. Using the results of Miller
and Mocanu [17], Bulboaca [5] considered certain classes of first order differential
superordinations as well as superordination-preserving integral operators [6]. Ali et al.
[1], have used the results of Bulboaca [5] to obtain sufficient conditions for normalized
analytic functions to satisfy:

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z),

where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1. Also,
Tuneski [25] obtained a sufficient condition for starlikeness of f in terms of the quantity
f ′′(z)f(z)

(f ′(z))2
. Recently, Shanmugam et al. [24] obtained sufficient conditions for the

normalized analytic function f to satisfy

q1(z) ≺
f(z)

zf ′(z)
≺ q2(z)

and

q1(z) ≺
z2f ′(z)

{f(z)}2
≺ q2(z).

They [24] also obtained results for functions defined by using Carlson-Shaffer op-
erator [7], Ruscheweyh derivative [20] and Sălăgean operator [22].

For functions f given by (1.1) and g ∈ A given by

g(z) = z +

∞
∑

k=2

bkz
k, (1.5)

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z +

∞
∑

k=2

akbkz
k = (g ∗ f)(z).
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For functions f, g ∈ A, we define the linear operator Dn
λ : A → A (λ ≥ 0, l ≥

0;n ∈ N0 = N ∪ {0},N = {1, 2, ...}) by:

D0
λ,l(f ∗ g)(z) = (f ∗ g)(z) ,

D1
λ,l(f ∗ g)(z) = Dλ,l(f ∗ g)(z) = (1− λ )( f ∗ g)(z) +

λ

(l + 1) zl−1
(zl ( f ∗ g)(z))′ ,

= z +

∞
∑

k=2

[

l + 1 + λ(k − 1)

l + 1

]

akbkz
k (λ ≥ 0; l ≥ 0) , (1.6)

and ( in general )

Dn
λ,l(f ∗ g)(z) = Dλ,l(D

n−1
λ,l (f ∗ g)(z))

= z +

∞
∑

k=2

[

l+ 1 + λ(k − 1)

l + 1

]n

akbkz
k (1.7)

(λ ≥ 0; l ≥ 0;n ∈ N0) .

From (1.7), we can easily deduce that

λz
(

Dn
λ,l(f ∗ g)(z)

)

′

= (l+ 1)Dn+1
λ (f ∗ g)(z)− (l + 1− λ)Dn

λ,l(f ∗ g)(z) (1.8)

(λ > 0; l ≥ 0;n ∈ N0).

We observe that the linear operator Dn
λ,l(f ∗ g)(z) reduces to several interesting

many other linear operators considered earlier for different choices of n, λ, l and the
function g :

(i) Dn
λ,0(f ∗ g)(z) = Dn

λ(f ∗ g)(z), where Dn
λ(f ∗ g)(z) is linear operator which was

defined by Aouf and Mostafa [3] ;
(ii) For g (z) = z

1−z
, we have Dn

λ,l(f ∗ g)(z) = I(n, λ, l)f(z), where I(n, λ, l) is the
generalized multiplier transformation which was introduced and studied by Cătaş et
al. [8] ;

(iii) For λ = 1 and g (z) = z
1−z

, we see that Dn
1,l(f ∗ g)(z) = I(n, l)f (z), where

I(n, l)f (z) is the multiplier transformation (see [9]);
(iv) For l = 0 and g (z) = z

1−z
, we see that Dn

λ,0(f ∗ g)(z) = Dn
λf(z) where Dn

λ is
the generalized Sălăgean operator ( or Al-Oboudi operator [2] ) which yield Sălăgean
operator Dn for λ = 1 introduced and studied by Sălăgean [22];

(v) For l = 0 and

g(z) = z +

∞
∑

k=2

Γk [a1; b1] z
k, (1.9)

Γk [a1; b1] =
(a1)k−1...(aq)k−1

(b1)k−1...(bs)k−1(1)k−1
(1.10)

(

ai ∈ C; i = 1, ..., q; bj ∈ C\Z−

0 = {0,−1,−2, ...} ; j = 1, ..., s; q ≤ s+ 1; q, s ∈ N0

)

,
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where

(x)k =

{

1 (k = 0;x ∈ C∗ = C\{0})
x(x + 1)...(x+ k − 1) (k ∈ N;x ∈ C),

we have Dn
λ,0(f ∗ g)(z) = Dn

λ(a1, b1)f(z), where Dn
λ(a1, b1) is the linear operator

which was introduced and studied by Selvaraj and Karthikeyan [23]. The operator
Dn

λ(a1, b1)f(z), contains in turn many interesting operators such as, Dziok-Srivastava
operator [10] ( see also [11]), Hohlov linear operator (see [13]), the Carlson-Shaffer
linear operator (see [7] and [21] ), the Ruscheweyh derivative operator (see [20]),
the Bernardi-Libera-Livingston operator ( see [4], [14] and [15]) and Owa-Srivastava
fractional derivative operator (see [19]);

(iv) For g(z) of the form (1.9), we obtain

Dn
λ,l(f ∗ g)(z) = I

n,l
q,s,λ(a1, b1)f(z) = z+

∞
∑

k=2

[

l + 1 + λ(k − 1)

l + 1

]n

Γk [a1; b1] z
k, (1.11)

where the operator I
n,l
q,s,λ(a1, b1)f(z) is introduced and studied by El-Ashwah and

Aouf [12].

In this paper, we will derive several subordination results, superordination results
and sandwich results involving the operatorDn

λ,l(f ∗g) and some of its special chooses
of n, l, λ and the function g(z).

2. Definitions and Preliminaries

In order to prove our subordinations and superordinations, we need the following
definition and lemmas.

Definition 1 [17]. Denote by Q, the set of all functions f that are analytic and
injective on U\E(f), where

E(f) =

{

ζ ∈ ∂U : lim
z→ζ

f (z) = ∞

}

,

and are such that f
′

(ζ) 6= 0 for ζ ∈ ∂U\E (f).

Lemma 1 [24]. Let q (z) be univalent in U with q(0) = 1. Let α ∈ C; γ ∈ C
∗,

further assume that

ℜ

{

1 +
zq

′′

(z)

q
′ (z)

}

> max

{

0,−ℜ

(

α

γ

)}

. (2.1)

If p (z) is analytic in U , and

αp (z) + γzp
′

(z) ≺ αq (z) + γzq
′

(z) ,

then p (z) ≺ q (z) and q (z) is the best dominant.
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Lemma 2 [24]. Let q (z) be convex univalent in U, q(0) = 1. Let α ∈ C; γ ∈ C∗

and ℜ
(

α
γ

)

> 0. If p(z) ∈ H [q(0), 1] ∩Q, αp (z) + γzp
′

(z) is univalent in U and

αq (z) + γzq
′

(z) ≺ αp (z) + γzp
′

(z) ,

then q (z) ≺ p (z) and q (z) is the best subordinant.

3. Sandwich Results

Unless otherwise mentioned, we assume throughout this paper that l ≥ 0, λ > 0, n ∈
N0 and g (z) is given by (1.5) .

Theorem 1. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further,
assume that

ℜ

{

1 +
zq

′′

(z)

q
′ (z)

}

> max

{

0,−ℜ

(

1

γ

)}

. (3.1)

If f, g ∈ A satisfy the following subordination condition:

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











≺ q (z) + γzq
′

(z) , (3.2)

then
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

≺ q (z)

and q (z) is the best dominant.
Proof. Define a function p (z) by

p (z) =
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

(z ∈ U) . (3.3)

Then the function p (z) is analytic in U and p(0) = 1. Therefore, differentiating (3.3)
logarithmically with respect to z and using the identity (1.8) in the resulting equation,
we have

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











= p (z) + γzp
′

(z) ,

that is,
p (z) + γzp

′

(z) ≺ q (z) + γzq
′

(z) .
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Therefore, Theorem 1 now follows by applying Lemma 1.
Putting q(z) = 1+Az

1+Bz
(−1 ≤ B < A ≤ 1) in Theorem 1, we obtain the following

corollary.
Corollary 1. Let γ ∈ C∗ and

ℜ

{

1−Bz

1 +Bz

}

> max

{

0,−ℜ

(

1

γ

)}

.

If f, g ∈ A satisfy the following subordination condition:

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











≺
1 +Az

1 +Bz
+ γ

(A−B) z

(1 +Bz)2
,

then
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

≺
1 +Az

1 +Bz

and the function 1+Az
1+Bz

is the best dominant.
Taking g (z) = z

1−z
in Theorem 1,we obtain the following subordination result for

the generalized multiplier transformation I(n, λ, l).
Corollary 2. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further

assume that (3.1) holds. If f ∈ A satisfies the following subordination condition:

I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)
+

γ (l + 1)

λ

{

1−
I(n, λ, l)f(z)I(n+ 2, λ, l)f(z)

[I(n+ 1, λ, l)f(z)]
2

}

≺ q (z) + γzq
′

(z) ,

then
I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)
≺ q (z)

and q (z) is the best dominant.
Taking g (z) of the form (1.9) in Theorem 1, we obtain the following subordination

result for the operator In,lq,s,λ(a1; b1).
Corollary 3. Let q (z) be univalent in U with q(0) = 1, and γ ∈ C∗. Further

assume that (3.1) holds. If f ∈ A satisfies the following subordination condition:

I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

+
γ (l + 1)

λ











1−
I
n,l
q,s,λ(a1, b1)f(z)I

n+2,l
q,s,λ (a1, b1)f(z)

[

I
n+1,l
q,s,λ (a1, b1)f(z)

]2











≺ q (z) + γzq
′

(z) ,
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then
I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

≺ q (z)

and q (z) is the best dominant.

Taking l = 0, λ = 1 and g(z) =
z

1− z
in Theorem 1, we obtain the following

subordination result for Sălăgean operator which improves the result of Shanmugam
et al. [24, Theorem 5.1] and obtained by Nechita [18].

Corollary 4 [18, Corollary 7]. Let q (z) be univalent in U with q(0) = 1, and
γ ∈ C

∗. Further assume that (3.1) holds. If f ∈ A satisfies the following subordination
condition:

Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z)Dn+2f(z)

[Dn+1f(z)]2

}

≺ q (z) + γzq
′

(z) ,

then
Dnf(z)

Dn+1f(z)
≺ q (z)

and q (z) is the best dominant.
Now, by appealing to Lemma 2 it can be easily prove the following theorem.
Theorem 2. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C with

ℜ (γ̄) > 0. If f, g ∈ A such that
Dn

λ,l(f∗g)(z)

D
n+1

λ,l
(f∗g)(z)

∈ H [q (0) , 1] ∩Q,

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











is univalent in U , and the following superordination condition

q (z) + γzq
′

(z) ≺
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











holds, then

q (z) ≺
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

and q (z) is the best subordinant.
Taking q(z) = 1+Az

1+Bz
(−1 ≤ B < A ≤ 1) in Theorem 2, we obtain the following

corollary.

Corollary 5. Let γ ∈ C with ℜ (γ̄) > 0. If f, g ∈ A such that
Dn

λ,l(f∗g)(z)

D
n+1

λ,l
(f∗g)(z)

∈

H [q (0) , 1] ∩Q,

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2
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is univalent in U , and the following superordination condition

1 +Az

1 +Bz
+ γ

(A−B) z

(1 +Bz)
2 ≺

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z)Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











holds, then

1 +Az

1 +Bz
≺

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

and q (z) is the best subordinant.

Taking g (z) = z
1−z

in Theorem 2, we obtain the following superordination result
for the generalized multiplier transformation I(n, λ, l).

Corollary 6. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C with

ℜ (γ̄) > 0. If f, g ∈ A such that I(n,λ,l)f(z)
I(n+1,λ,l)f(z) ∈ H [q (0) , 1] ∩Q,

I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)
+

γ (l + 1)

λ

{

1−
I(n, λ, l)f(z).I(n+ 2, λ, l)f(z)

[I(n+ 1, λ, l)f(z)]2

}

is univalent in U , and the following superordination condition

q (z)+ γzq
′

(z) ≺
I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)
+

γ (l + 1)

λ

{

1−
I(n, λ, l)f(z).I(n+ 2, λ, l)f(z)

[I(n+ 1, λ, l)f(z)]
2

}

holds, then

q (z) ≺
I(n, λ, l)f(z)

I(n+ 1, λ, l)f(z)

and q (z) is the best subordinant.

Taking g (z) of the form (1.9) in Theorem 2, we obtain the following superordina-

tion result for the operator In,lq,s,λ(a1; b1).

Corollary 7. Let q (z) be convex univalent in U with q (0) = 1. Let γ ∈ C with

ℜ (γ̄) > 0. If f, g ∈ A such that
I
n,l

q,s,λ
(a1,b1)f(z)

I
n+1,l

q,s,λ
(a1,b1)f(z)

∈ H [q (0) , 1] ∩Q,

I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

+
γ (l + 1)

λ











1−
I
n,l
q,s,λ(a1, b1)f(z)I

n+2,l
q,s,λ (a1, b1)f(z)

[

I
n+1,l
q,s,λ (a1, b1)f(z)

]2
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is univalent in U , and the following superordination condition

q (z) + γzq
′

(z) ≺
I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

+
γ (l + 1)

λ











1−
I
n,l
q,s,λ(a1, b1)f(z)I

n+2,l
q,s,λ (a1, b1)f(z)

[

I
n+1,l
q,s,λ (a1, b1)f(z)

]2











holds, then

q (z) ≺
I
n,l
q,s,λ(a1, b1)f(z)

I
n+1,l
q,s,λ (a1, b1)f(z)

and q (z) is the best subordinant.

Taking l = 0, λ = 1 and g(z) =
z

1− z
in Theorem 2, we obtain the following

superordination result for Sălăgean operator which improves the result of Shanmugam
et al. [24, Theorem 5.2] and obtained by Nechita [18]..

Corollary 8 [18, Corollary 12]. Let q (z) be convex univalent in U with q (0) = 1.

Let γ ∈ C with ℜ (γ̄) > 0. If f ∈ A such that Dnf(z)
Dn+1f(z) ∈ H [q (0) , 1] ∩Q,

Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z).Dn+2f(z)

[Dn+1f(z)]2

}

is univalent in U , and the following superordination condition

q (z) + γzq
′

(z) ≺
Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z).Dn+2f(z)

[Dn+1f(z)]
2

}

holds, then

q (z) ≺
Dnf(z)

Dn+1f(z)

and q (z) is the best subordinant.

Combining Theorem 1 and Theorem 2, we get the following sandwich theorem for
the linear operator Dn

λ,l(f ∗ g) .

Theorem 3. Let q1 (z) be convex univalent in U with q1 (0) = 1, γ ∈ C with
ℜ (γ̄) > 0, q2 (z) be univalent in U with q2 (0) = 1, and satisfies (3.1) . If f, g ∈ A such

that
Dn

λ,l(f∗g)(z)

D
n+1

λ,l
(f∗g)(z)

∈ H [q2 (0) , 1] ∩Q,

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2
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is univalent in U , and

q1 (z) + γzq
′

1 (z) ≺
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











≺ q2 (z) + γzq
′

2 (z)

holds, then

q1 (z) ≺
Dn

λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

≺ q2 (z)

and q1 (z) and q2 (z) are, respectively, the best subordinant and the best dominant.

Taking qi(z) =
1+Aiz
1+Biz

(i = 1, 2;−1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1) in Theorem 3, we
obtain the following corollary.

Corollary 9. Let γ ∈ C with ℜ (γ̄) > 0. If f, g ∈ A such that
Dn

λ,l(f∗g)(z)

D
n+1

λ,l
(f∗g)(z)

∈

H [q (0) , 1] ∩Q,

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











is univalent in U , and

1 +A1z

1 +B1z
+ γ

(A1 −B1) z

(1 +B1z)
2 ≺

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

+
γ (l + 1)

λ











1−
Dn

λ,l(f ∗ g)(z).Dn+2
λ,l (f ∗ g)(z)

[

Dn+1
λ,l (f ∗ g)(z)

]2











≺
1 +A2z

1 + B2z
+ γ

(A2 −B2) z

(1 +B2z)
2

holds, then

1 +A1z

1 +B1z
≺

Dn
λ,l(f ∗ g)(z)

Dn+1
λ,l (f ∗ g)(z)

≺
1 +A2z

1 +B2z

and 1+A1z
1+B1z

and 1+A2z
1+B2z

are, respectively, the best subordinant and the best dominant.

Taking l = 0, λ = 1 and g(z) =
z

1− z
in Theorem 3, we obtain the following

sandwich result for Sălăgean operator which improves the result of Shanmugam et al.
[24, Theorem 5.3].

Corollary 10. Let q1 (z) be convex univalent in U with q1 (0) = 1, γ ∈ C with
ℜ (γ̄) > 0, q2 (z) be univalent in U with q2 (0) = 1, and satisfies (3.1) . If f ∈ A such
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that Dnf(z)
Dn+1f(z) ∈ H [q2 (0) , 1] ∩Q,

Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z).Dn+2f(z)

[Dn+1f(z)]2

}

is univalent in U , and

q1 (z) + γzq
′

1 (z) ≺
Dnf(z)

Dn+1f(z)
+ γ

{

1−
Dnf(z).Dn+2f(z)

[Dn+1f(z)]2

}

≺ q2 (z) + γzq
′

2 (z)

holds, then

q1 (z) ≺
Dnf(z)

Dn+1f(z)
≺ q2 (z)

and q1 (z) and q2 (z) are, respectively, the best subordinant and the best dominant.
Remarks (i) Combining Corollary 2 and Corollary 6, we obtain similar sandwich

theorem for the generalized multiplier transformation I(n, λ, l);
(ii) Combining Corollary 3 and Corollary 7, we obtain similar sandwich theorems

for the operator In,lq,s,λ(a1, b1);

(iii) Taking l = 0 and g(z) =
z

1− z
in Theorems 1, 2 and 3, respectively, we obtain

the results obtained by Nechita [18, Theorems 5, 10 and Corollary 13, respectively];

(iv) Taking n = l = 0, λ = 1 and g(z) =
z

1− z
in Theorems 1, 2 and 3, respectively,

we obtain the results obtained by Shanmugam et al. [24, Theorems 3.1, 3.2 and
Corollary 3.3, respectively].
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1 Introduction

Let H(U) denote a class of all analytic functions defined in the open unit disk U =
{z ∈ C : |z| < 1} . For a ∈ C, j ∈ N, let

H [a, j] =
{
f ∈ H(U) : f(z) = a+ ajz

j + aj+1z
j+1 + ...

}
.

We denote the special class of H [0, 1] by A whose members are of the form:

f(z) = z +

∞∑

k=2

ak z
k, z ∈ U. (1.1)

Let K denote a subclass of A whose members are convex (univalent) in U and satisfying

ℜ

(

1 +
zf

′′

(z)

f
′(z)

)

> 0, z ∈ U.

For two functions p, q ∈ H(U), we say p is subordinate to q, or q is superordinate
to p in U and write p(z) ≺ q(z), z ∈ U, if there exists a Schwarz function ω, analytic in
U with ω(0) = 0, and |ω(z)| < 1, z ∈ U such that p(z) = q(ω(z)), z ∈ U. Furthermore,
if the function q is univalent in U, then we have following equivalence:

p(z) ≺ q(z) ⇔ p(0) = q(0) and p(U) ⊂ q(U). (1.2)
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Let Pα denote a class of functions p ∈ H(U) satisfying p(0) = 1 and

p(z) ≺ qα(z) :=
1 + (1 − 2α) z

1 − z
, α ≤ 1, z ∈ U. (1.3)

Convolution (or Hadamard product) ∗ of the functions g1(z) and g2(z) of the form:

g1 (z) =

∞∑

k=0

akz
k and g2 (z) =

∞∑

k=0

bkz
k, (1.4)

is defined by

g1 (z) ∗ g2 (z) = (g1 ∗ g2) (z) =

∞∑

k=0

akbkz
k = (g2 ∗ g1) (z) . (1.5)

In 1973, Rusheweyh and Sheil-Small [3] proved the Pòlya-Schoenberg conjecture which
shows that the convolution of two convex functions is again a convex function. Due
to this convexity preserving property, attempts are made to involve and study convo-
lutions in the Geometric Function Theory.

In this paper, we derive certain subordination results on the convolution of any
finite number of analytic functions. Mainly, by applying the subordination prin-
ciple, a sufficiency condition for convexity of φ(z) := (f1 ∗ f2 ∗ ... ∗ fn) (z) which
is a convolution of analytic functions fi ∈ A (i = 1, 2, ..., n) such that f ′

i ∈ P(αi)
(αi ≤ 1, i = 1, 2, ..., n) is derived.

In order to obtain our results, we use following theorem of Rusheweyh and
Stankiewicz [4]:

Theorem 1 Let F,G ∈ H(U) be any convex univalent functions in U. If f ≺ F and
g ≺ G, then

f ∗ g ≺ F ∗G in U.

Also, we use a result of Stankiewicz and Stankiewicz [6] which is as follows:

Theorem 2 If α ≤ 1 and β ≤ 1, then

Pα ∗ Pβ = Pδ

where δ = 1 − 2 (1 − α) (1 − β) .

2 Main Results

We may easily generalize Theorem 2 for the classes P(αi) (i = 1, 2, ..., n) and get the
following lemma:

Lemma 1 If αi ≤ 1 (i = 1, 2, ..., n) , then

Pα1
∗ Pα2

∗ ... ∗ Pαn
= Pδ

where
δ = 1 − 2n−1 (1 − α1) (1 − α2) ... (1 − αn) . (2.1)
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Theorem 3 Let for each i = 1, 2, ..., n, fi ∈ A and αi ≤ 1. If f ′

i ∈ P(αi) for each
i = 1, 2, ..., n, and

φ(z) = (f1 ∗ f2 ∗ ... ∗ fn) (z)

then
φ′(z) ≺ h(z), z ∈ U

where

h(z) = 1 + 2n (1 − α1) (1 − α2) ... (1 − αn)

[
z

2n−1
+

z2

3n−1
+ ...

]

(2.2)

is convex univalent in U.

Proof. Let f ′

i ∈ P(αi) for each i = 1, 2, ..., n. Then, in view of (1.3), we have for
αi ≤ 1, i = 1, 2, ..., n, z ∈ U,

f ′

i(z) ≺ qαi
(z) :=

1 + (1 − 2αi) z

1 − z
= 1 + 2 (1 − αi)

∞∑

k=1

zk (2.3)

where the superordinate functions qαi
(z) for each i = 1, 2, ..., n map the disk U onto

convex univalent regions in the positive half plane. By Theorem 1, we get that

f ′

1(z) ∗ f ′

2(z) ∗ ... ∗ f ′

n(z) ≺ qα1
(z) ∗ qα2

(z) ∗ ... ∗ qαn
(z), z ∈ U (2.4)

where

qα1
(z) ∗ qα2

(z) ∗ ... ∗ qαn
(z) = 1 + 2n (1 − α1) (1 − α2) ... (1 − αn)

∞∑

k=1

zk

= :
1 + (1 − 2δ) z

1 − z
, z ∈ U

is convex univalent in U and in view of Lemma 1, δ is given by (2.1).
We know that the function

h1(z) = −
2

z
[z + ln(1 − z)] =

∞∑

k=1

2

k + 1
zk, z ∈ U

belongs to the class K and for f ∈ A

(f ∗ h1) (z) =
2

z

z∫

0

f(t)dt.

Therefore, the function
h2(z) = 1 + h1(z), z ∈ U

being a translation of h1(z), is convex univalent in U and for p ∈ H [1, 1]

(p ∗ h2) (z) = −1 +
2

z

z∫

0

p(t)dt. (2.5)
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On applying, Theorem 1, to the subordination (2.4) sequentially, n−1 times with the
usual subordination: h2(z) ≺ h2(z), z ∈ U, we get

f ′

1 ∗ f
′

2 ∗ ... ∗ f
′

n ∗ h2 ∗ h2 ∗ ... ∗ h2
︸ ︷︷ ︸

n−1 times

≺ qα1
∗ qα2

∗ ... ∗ qαn
∗ h2 ∗ h2 ∗ ... ∗ h2
︸ ︷︷ ︸

n−1 times

in U, which can also be written as

(f ′

1 ∗ h2)∗(f ′

2 ∗ h2)∗ ...∗
(
f ′

n−1 ∗ h2
)
∗f ′

n ≺ (qα1
∗ h2)∗(qα2

∗ h2)∗ ...∗
(
qαn−1

∗ h2
)
∗qαn

.

(2.6)
On suitably choosing series expansions of f ′

i ’s and qαi
’s, in view of (2.5), we

observe that the subordination (2.6) reduces to

f1(z)

z
∗
f2(z)

z
∗ ... ∗

fn−1(z)

z
∗ f ′

n(z) (2.7)

≺
1

z

z∫

0

qα1
(t)dt ∗

1

z

z∫

0

qα2
(t)dt ∗ ... ∗

1

z

z∫

0

qαn−1
(t)dt ∗ qαn

(z)

= h(z), z ∈ U

where h(z) is convex univalent in U and is of the form (2.2). The left hand side (2.7)
of above subordination is

(f1 ∗ f2 ∗ ... ∗ fn)
′
(z) = φ′(z).

This proves Theorem 3.

As the function h(z) given by (2.2) is convex univalent with real coefficients, we
may easily get following result from Theorem 3:

Corollary 1 Let for each i = 1, 2, ..., n, fi ∈ A and αi ≤ 1. If f ′

i ∈ P(αi) for each
i = 1, 2, ..., n, and

φ(z) = (f1 ∗ f2 ∗ ... ∗ fn) (z)

then
h(−1) ≤ Re

{
φ′(z)

}
≤ h(1), z ∈ U

where h(z) is given by (2.2).

In terms of Zeta function [[7], Ex.5, p.201], we may also find following result from
Theorem 3:

Corollary 2 Let for each i = 1, 2, ..., n, fi ∈ A and αi ≤ 1. If f ′

i ∈ P(αi) for each
i = 1, 2, ..., n, and

φ(z) = (f1 ∗ f2 ∗ ... ∗ fn) (z)

then for n > 2,

Re
{
φ′(z)

}
≥ 1 + 2n (1 − α1) (1 − α2) ... (1 − αn)

[(
1 − 22−n

)
ζ (n− 1) − 1

]
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and

Re
{
φ′(z)

}
≤ 1 + 2n (1 − α1) (1 − α2) ... (1 − αn) [ζ (n− 1) − 1] , z ∈ U

where ζ is well known Zeta Function.

Taking n = 3 and writing ζ (2) = π2

6 , Corollary 2 provides following result of Sokó l
[5]:

Corollary 3 Let for each i = 1, 2, 3, fi ∈ A and αi ≤ 1. If f ′

i ∈ P(αi) for each
i = 1, 2, 3, and

φ(z) = (f1 ∗ f2 ∗ f3) (z)

then

Re
{
φ′(z)

}
≥ 1 + 8 (1 − α1) (1 − α2) (1 − α3)

[
π2

12
− 1

]

, z ∈ U

and

Re
{
φ′(z)

}
≤ 1 + 8 (1 − α1) (1 − α2) (1 − α3)

[
π2

6
− 1

]

, z ∈ U

To prove our next result, we prove first a lemma which is as follows:

Lemma 2 Let for each i = 1, 2, ..., n, fi ∈ A and αi ≤ 1. If f ′

i ∈ P(αi) for each
i = 1, 2, ..., n, and

φ(z) = (f1 ∗ f2 ∗ ... ∗ fn) (z)

then there exist some positive integers λ1, λ2, ..., λn−2 depending upon n such that

φ′(z) + λ1zφ
′′(z) + λ2z

2φ′′′(z) + ...+ λn−2z
n−2φ(n−1)(z) + zn−1φ(n)(z)

= (f ′

1 ∗ f
′

2 ∗ ... ∗ f
′

n) (z).

Proof. Let fi ∈ A be of the form

fi(z) = z +

∞∑

k=2

aik z
k, z ∈ U. (2.8)

Then

(f ′

1 ∗ f
′

2 ∗ ... ∗ f
′

n) (z) = 1 +

∞∑

k=2

kndk z
k−1 (2.9)

where
dk := a1ka

2
k...a

n
k , k ≥ 2. (2.10)

We note that for the functions fi(z), i = 1, 2, ..., n, of the form (2.8), the r-th (r ∈ N)
derivative of φ(z) is given by

φ(r)(z) =

∞∑

k=1

k(k − 1)...(k − r + 1)dk z
k−r,
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where d1 = 1 and for k ≥ 2, dk is given by (2.10).

For some positive integers λ1, λ2, ..., λn−2 depending only upon n, we have for
k, n ∈ N, an identity :

kn ≡ k + λ1k(k − 1) + λ2k(k − 1)(k − 2) + ...

+λn−2k(k − 1)...(k − n+ 2) + k(k − 1)...(k − n+ 1). (2.11)

For the positive integers λ1, λ2, ..., λn−2, appear in the identity (2.11) and with the
use of this identity, we get

φ′(z) + λ1zφ
′′(z) + λ2z

2φ′′′(z) + ...+ λn−2z
n−2φ(n−1)(z) + zn−1φ(n)(z)

=

∞∑

k=1

kndk z
k−1, where d1 = 1.

This is the right hand side of (2.9). This proves Lemma 2.

Theorem 4 Let for each i = 1, 2, ..., n, fi ∈ A and αi ≤ 1. If f ′

i ∈ P(αi) for each
i = 1, 2, ..., n, and

φ(z) = (f1 ∗ f2 ∗ ... ∗ fn) (z)

then φ ∈ K whenever for n > 2,

(1 − α1) (1 − α2) ... (1 − αn) ≤
3

2n+2 [1 − (1 − 22−n) ζ (n− 1)]
(2.12)

where ζ is well known Zeta Function.

Proof. Let p(z) = φ′(z), then by Lemma 2 and by (2.4), we get

ψ
(

p(z), zp′(z), ..., zn−1p(n−1)(z)
)

(2.13)

= p(z) + λ1zp
′(z) + λ2z

2p′′(z) + ...+ λn−2z
n−2p(n−2)(z) + zn−1p(n−1)(z)

= (f ′

1 ∗ f
′

2 ∗ ... ∗ f
′

n) (z) ≺
1 + (1 − 2δ) z

1 − z
, z ∈ U

where δ is given by (2.1). From Theorem 3, we have a possible solution of the above
n-th order Euler-type differential subordination (2.13), as follows

φ′(z) = p(z) ≺ h(z), z ∈ U (2.14)

where h(z) is given by (2.2).

The r-th (r ∈ N) derivative of h(z) is given by

h(r)(z) = 2 (1 − δ)

∞∑

k=1

k(k − 1)...(k − r + 1)

(k + 1)
n−1 zk−r.
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For the positive integers λ1, λ2, ..., λn−2, appearing in the identity (2.11), we observe
that

ψ
(

h(z), zh′(z), ..., zn−1h(n−1)(z)
)

= h(z) + λ1zh
′(z) + λ2z

2h′′(z) + ...+ λn−2z
n−2h(n−2)(z) + zn−1h(n−1)(z)

= 1 + 2(1 − δ)

∞∑

k=1

zk =
1 + (1 − 2δ) z

1 − z
, z ∈ U

where δ is given by (2.1). This verifies the admissiblity condition for p(z) in (2.14) to
be a solution of the subordination (2.13).

Now, the function φ ∈ K if

1 +
zφ

′′

(z)

φ
′

(z)
≺

1 + z

1 − z
, z ∈ U

or

1 +
zp′(z)

p(z)
≺

1 + z

1 − z
, z ∈ U. (2.15)

By [[1], Theorem 2.6b, p.60] the condition (2.15) implies

p(z) ≺
1

(1 − z)
2 , z ∈ U. (2.16)

Thus, in view of (2.14), the function φ ∈ K if

h(z) ≺
1

(1 − z)
2 , z ∈ U

that is if

min
z∈U

ℜ{h(z)} = h(−1) ≥
1

4

which is the given condition (2.12) if we write the expression of h(−1) (as it is written
in Corollary 2) in terms of Zeta Function [[7], Ex.5, p.201]. This proves the result of
Theorem 4.

Taking n = 3 in Theorem 4 and on writing ζ (2) = π2

6 , we get following result.

Corollary 4 Let for each i = 1, 2, 3, fi ∈ A and αi ≤ 1. If f ′

i ∈ P(αi) for each
i = 1, 2, 3, then (f1 ∗ f2 ∗ f3) (z) ∈ K whenever

(1 − α1) (1 − α2) (1 − α3) ≤
9

8 (12 − π2)
≈ 0.53. (2.17)

Remark 1 We remark that Corollary 4 improves the result of Sokó l obtained in [[5],
Theorem 2, 124].
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1 Introduction and statement of results

Let p(z) be a polynomial of degree n, then according to Bernstein’s inequality on the
derivative of a polynomial, we have

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|, (1.1)

equality holds in (1.1) if p(z) has all its zeros at the origin.
The inequality (1.1) can be sharpened, if we restrict ourselves to the class of polyno-
mials having no zeros in |z| < 1, in fact, P. Erdös conjectured and later Lax [9] proved
that if p(z) 6= 0 in |z| < 1, then (1.1) can be replaced by

max
|z|=1

|p′(z)| ≤
n

2
max
|z|=1

|p(z)|. (1.2)

The result is best possible and equality holds in (1.2) for a polynomial which has all
its zeros on |z| = 1.
If the polynomial p(z) has all its zeros in |z| ≤ 1, then it was proved by Turan [12]
that

max
|z|=1

|p′(z)| ≥
n

2
max
|z|=1

|p(z)|, (1.3)
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with equality for those polynomials, which have all their zeros on |z| = 1.
For a polynomial p(z) of degree at most n which having no zeros in |z| < k, k ≥ 1,
inequality (1.2) was generalized by Malik [10] who proved that

max
|z|=1

|p′(z)| ≤
n

1 + k
max
|z|=1

|p(z)|. (1.4)

The inequality (1.4) is sharp and equality holds for p(z) = (z + k)n.
If the polynomial p(z) has all its zeros in |z| ≤ k, k ≥ 1, then it was proved by Govil[7]
that

max
|z|=1

|p′(z)| ≥
n

1 + kn
max
|z|=1

|p(z)|. (1.5)

The result is best possible and equality holds in (1.5) for p(z) = zn + kn.
Let α be a complex number. For a polynomial p(z) of degree n, Dαp(z), the polar
derivative of p(z) is defined as

Dαp(z) = np(z) + (α− z)p′(z).

It is easy to see that Dαp(z) is a polynomial of degree at most n − 1, also Dαp(z)
generalizes the ordinary derivative in the sense that

lim
α→∞

[
Dαp(z)

α
] = p′(z). (1.6)

In order to extend inequality (1.5) for the polar derivative, Aziz and Rather[1] proved
that if p(z) is a polynomial of degree n having all its zeros in |z| ≤ k where k ≥ 1,
then for every real or complex number α with |α| ≥ k,

max
|z|=1

|Dαp(z)| ≥ n
|α| − k

1 + kn
max
|z|=1

|p(z)|. (1.7)

The bounds are obtained depends only on the zero of largest modulus and not on
the other zeros even if some of them are close to the origin. Therefore, it would be
interesting to obtain a bound, which depends on the location of all the zeros of a
polynomial. In this connection we use some known ideas in the literature and obtain
the following interesting results.

Theorem 1.1 Let

p(z) =
n∑

ν=0

aνz
ν = an

n∏

ν=1

(z − zν), an 6= 0,

be a polynomial of degree n, |zν | ≤ kν , 1 ≤ ν ≤ n, and k = max(k1, k2, ..., kn) ≥ 1.
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Then for every real or complex number α with |α| ≥ k, we have

max
|z|=1

|Dαp(z)| ≥
|α| − k

1 + kn

n∑

ν=1

k

k + kν
[2 max

|z|=1
|p(z)|+

kn − 1

kn
min
|z|=k

|p(z)|

+
4|an−1|

k(n+ 1)
(
kn − 1− n(k − 1)

n
)

+
4|an−2|

k2
((
(kn − 1)− n(k − 1)

n(n− 1)
)− (

(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)
))]

+
2(kn−1 − 1)

(n+ 1)kn−1
|na0 + αa1|+

1

kn−1
[
kn−1 − 1

n− 1
−

kn−3 − 1

n− 3
]|(n− 1)a1 + 2αa2|,

(1.8)

for n > 3
and

max
|z|=1

|Dαp(z)| ≥
|α| − k

1 + kn

n∑

ν=1

k

k + kν
[2max

|z|=1
|p(z)|+

kn − 1

kn
min
|z|=k

|p(z)|

+
4|an−1|

k(n+ 1)
(
(kn − 1)− n(k − 1)

n
) +

4|an−2|(k − 1)n

k2n(n− 1)
]

+
(k2 − 1)

2kn−1
|na0 + αa1|+

(k − 1)2

2kn−1
|(n− 1)a1 + 2αa2|,

(1.9)

for n = 3.

Since
k

k + kν
≥

1

2
for 1 ≤ ν ≤ n, the above theorem gives the following result

which is an improvement of the inequality (1.7).

Corollary 1.2 If p(z) =

n∑

ν=0

aνz
ν is a polynomial of degree n having all its zeros in

|z| ≤ k, k ≥ 1, then for every real or complex number α with |α| ≥ k, we have

max
|z|=1

|Dαp(z)| ≥
n(|α| − k)

1 + kn
[max
|z|=1

|p(z)|+
kn − 1

2kn
min
|z|=k

|p(z)|

+
2|an−1|

(n+ 1)k
(
kn − 1− n(k − 1)

n
)

+
2|an−2|

k2
((
(kn − 1)− n(k − 1)

n(n− 1)
)− (

(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)
))]

+
2(kn−1 − 1)

(n+ 1)kn−1
|na0 + αa1|+

1

kn−1
[
kn−1 − 1

n− 1
−

kn−3 − 1

n− 3
]|(n− 1)a1 + 2αa2|,

(1.10)

for n > 3
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and

max
|z|=1

|Dαp(z)| ≥
n(|α| − k)

1 + kn
[max
|z|=1

|p(z)|+
kn − 1

2kn
min
|z|=k

|p(z)|

+
2|an−1|

(n+ 1)k
(
(kn − 1)− n(k − 1)

n
) +

2|an−2|(k − 1)n

k2n(n− 1)
]

+
(k2 − 1)

2kn−1
|na0 + αa1|+

(k − 1)2

2kn−1
|(n− 1)a1 + 2αa2|,

(1.11)

for n = 3.

Dividing both sides of the inequalities (1.10) and (1.11) by |α| and letting |α| → ∞,
we have the following refinement of the inequality (1.5).

Corollary 1.3 If p(z) =

n∑

ν=0

aνz
ν is a polynomial of degree n, having all its zeros in

|z| ≤ k, k ≥ 1, then for every real or complex number α with |α| ≥ k, we have

max
|z|=1

|p′(z)| ≥
n

1 + kn
[max
|z|=1

|p(z)|+
kn − 1

2kn
min
|z|=k

|p(z)|

+
2|an−1|

(n+ 1)k
(
kn − 1− n(k − 1)

n
)

+
2|an−2|

k2
((
(kn − 1)− n(k − 1)

n(n− 1)
)− (

(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)
))]

+
2(kn−1 − 1)

(n+ 1)kn−1
|a1|+

1

kn−1
[
kn−1 − 1

n− 1
−

kn−3 − 1

n− 3
]|2a2|,

(1.12)

for n > 3
and

max
|z|=1

|p′(z)| ≥
n

1 + kn
[max
|z|=1

|p(z)|+
kn − 1

2kn
min
|z|=k

|p(z)|

+
2|an−1|

(n+ 1)k
(
(kn − 1)− n(k − 1)

n
) +

2|an−2|(k − 1)n

k2n(n− 1)
]

+
(k2 − 1)

2kn−1
|a1|+

(k − 1)2

2kn−1
|2a2|,

(1.13)

for n = 3.

As an application of Theorem 1.1 we prove the following result.

Theorem 1.4 Let

p(z) =

n∑

ν=0

aνz
ν = an

n∏

ν=1

(z − zν), an 6= 0,
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be a polynomial of degree n, |zν | ≥ kν , 1 ≤ ν ≤ n, and k = min(k1, k2, ..., kn) ≤ 1.
Then for every real or complex number δ with |δ| ≤ k, we have

max
|z|=1

|Dδp(z)| ≥
(k − |δ|)kn−1

1 + kn

n∑

ν=1

kν
k + kν

[2 max
|z|=1

|p(z)|+
1− kn

kn
min
|z|=k

|p(z)|

+
4|a1|k

(n+ 1)
(
(1 − kn)− n(kn−1 − kn)

nkn
) + 4|a2|k

2((
(1 − kn)− n(kn−1 − kn)

n(n− 1)kn
)−

(
(1 − kn−2)− (n− 2)(kn−3 − kn−2)

(n− 2)(n− 3)kn−2
))]

+
2(1− kn−1)

(n+ 1)
|nan + αan−1|+

kn−1[
(1 − kn−1)

(n− 1)kn−1
−

(1− kn−3)

(n− 3)kn−3
]|(n− 1)an−1 + 2αan−2|,

(1.14)

for n > 3
and

max
|z|=1

|Dδp(z)| ≥
(k − |δ|)kn−1

1 + kn

n∑

ν=1

kν
k + kν

[2 max
|z|=1

|p(z)|+
1− kn

kn
min
|z|=k

|p(z)|

+
4|a1|k

(n+ 1)
(
(1 − kn)− n(kn−1 − kn)

nkn
) + 4|a2|k

2(1− k)n]

+
1− k2

2
|nan + αan−1|+

(1− k)2

2
|(n− 1)an−1 + 2αan−2|,

(1.15)

for n = 3.

Since
kν

k + kν
≥

1

2
for 1 ≤ ν ≤ n, then Theorem 1.4 gives the following result.

Corollary 1.5 Let p(z) =

n∑

ν=0

aνz
ν be a polynomial of degree n does not vanish in

|z < k where k ≤ 1. Then for every real or complex number δ with |δ| ≤ k, we have

max
|z|=1

|Dδp(z)| ≥
n(k − |δ|)kn−1

1 + kn
[max
|z|=1

|p(z)|+
1− kn

2kn
min
|z|=k

|p(z)|

+
2|a1|k

(n+ 1)
(
(1 − kn)− n(kn−1 − kn)

nkn
) + 2|a2|k

2((
(1 − kn)− n(kn−1 − kn)

n(n− 1)kn
)−

(
(1 − kn−2)− (n− 2)(kn−3 − kn−2)

(n− 2)(n− 3)kn−2
))]

+
2(1− kn−1)

(n+ 1)
|nan + αan−1|+

kn−1[
(1 − kn−1)

(n− 1)kn−1
−

(1− kn−3)

(n− 3)kn−3
]|(n− 1)an−1 + 2αan−2|,

(1.16)
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for n > 3
and

max
|z|=1

|Dδp(z)| ≥
n(k − |δ|)kn−1

1 + kn
[max
|z|=1

|p(z)|+
1− kn

2kn
min
|z|=k

|p(z)|

+
2|a1|k

(n+ 1)
(
(1 − kn)− n(kn−1 − kn)

nkn
) + 2|a2|k

2(1− k)n]

+
1− k2

2
|nan + αan−1|+

(1 − k)2

2
|(n− 1)an−1 + 2αan−2|,

(1.17)

for n = 3.

2 Lemmas

For proof of the theorems, we need the following lemmas. The first lemma is due to
Dewan, Kaur and Mir [4].

Lemma 2.1 If p(z) is a polynomial of degree n, then for R ≥ 1,

max
|z|=R

|p(z)| ≤ Rn max
|z|=1

|p(z)| −
2(Rn − 1)

n+ 2
|p(0)|

−[
Rn − 1

n
−

Rn−2 − 1

n− 2
]|p′(0)|

(2.1)

if n > 2, and

max
|z|=R

|p(z)| ≤ Rn max
|z|=1

|p(z)| −
R− 1

2
[(R+ 1)|p(0)|+ (R− 1)|p′(0)|] (2.2)

if n = 2.

Lemma 2.2 If p(z) is a polynomial of degree n, having no zeros in |z| < 1, then for

R ≥ 1 ,

max
|z|=R

|p(z)| ≤
Rn + 1

2
max
|z|=1

|p(z)| −
Rn − 1

2
min
|z|=1

|p(z)|−

2

n+ 1
[
(Rn − 1)

n
− (R − 1)]|p′(0)|−

[
(Rn − 1)− n(R− 1)

n(n− 1)
−

(Rn−2 − 1)− (n− 2)(R− 1)

(n− 2)(n− 3)
]|p′′(0)|

(2.3)

if n > 3, and

max
|z|=R

|p(z)| ≤
Rn + 1

2
max
|z|=1

|p(z)| −
Rn − 1

2
min
|z|=1

|p(z)|

−
2

n+ 1
[
Rn − 1

n
− (R− 1)]|p′(0)|

−
(R− 1)n

n(n− 1)
|p′′(0)|]

(2.4)
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if n = 3.

This lemma is due to Dewan, Singh and Mir [5].

Lemma 2.3 If p(z) = an

n∏

ν=1

(z − zν), an 6= 0, is a polynomial of degree n, such that

|zν | ≤ 1, 1 ≤ ν ≤ n, then

max
|z|=1

|p′(z)| ≥

n∑

ν=1

1

1 + |zν |
max
|z|=1

|p(z)|. (2.5)

This lemma is due to Giroux, Rahman and Schmeisser [8].

Lemma 2.4 If p(z) is a polynomial of degree n and α is any real or complex number

with |α| 6= 0, then for |z| = 1

|Dαq(z)| = |nαp(z) + (1− αz)p′(z)|, (2.6)

where q(z) = znp(1z ).

This lemma is due to Aziz [2].

3 Proofs of the theorems

Proof of the Theorem 1.1. Let G(z) = p(kz). Since all the zeros of p(z) lie in
|z| ≤ k, then all the zeros of G(z) lie in |z| ≤ 1. Now on applying Lemma 2.3 to the
polynomial G(z), we get

max
|z|=1

|G′(z)| ≥

n∑

ν=1

1

1 + |zν |
k

max
|z|=1

|G(z)|. (3.1)

Let H(z) = znG(1/z). Then it can be easily verified that for |z| = 1

|H ′(z)| = |nG(z)− zG′(z)|. (3.2)

The polynomial G(z) has all its zeros in |z| ≤ 1 and |H(z)| = |G(z)| for |z| = 1,
therefore, by Gauss-Lucas theorem for |z| = 1, we have

|H ′(z)| ≤ |G′(z)|. (3.3)

Now for every real or complex number α with |α| ≥ k, we have

|Dα

k
G(z)| = |nG(z)− zG′(z) +

α

k
G′(z)| ≥ |

α

k
||G′(z)| − |nG(z)− zG′(z)|. (3.4)

This gives with the help of (3.2) and (3.3) that

max
|z|=1

|Dα

k
G(z)| ≥

|α| − k

k
max
|z|=1

|G′(z)|. (3.5)
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Using (3.1) in (3.4), we get

max
|z|=1

|Dα

k
G(z)| ≥

|α| − k

k

n∑

ν=1

k

k + |zν |
max
|z|=1

|G(z)|. (3.6)

Replacing G(z) by p(kz), we get

max
|z|=1

|Dα

k
p(kz)| ≥ (|α| − k)

n∑

ν=1

1

k + |zν|
max
|z|=1

|p(kz)|. (3.7)

which implies

max
|z|=1

|np(kz) + (
α

k
− z)kp′(kz)| ≥ (|α| − k)

n∑

ν=1

1

k + |zν |
max
|z|=1

|p(kz)|.

which gives

max
|z|=k

|Dαp(z)| ≥ (|α| − k)

n∑

ν=1

1

k + |zν |
max
|z|=k

|p(z)|. (3.8)

The polynomial p(z) is of degree n > 3 and so Dαp(z) is the polynomial of degree
n− 1, where n− 1 > 2, hence applying Lemma 2.1 to the polynomial Dαp(z), we get

max
|z|=k

|Dαp(z)| ≤ kn−1 max
|z|=1

|Dαp(z)| −
2(kn−1 − 1)

n+ 1
|na0 + αa1|

−[
kn−1 − 1

n− 1
−

kn−3 − 1

n− 3
]|(n− 1)a1 + 2αa2|.

(3.9)

Combining (3.9) and (3.8), we get

max
|z|=1

|Dαp(z)| ≥
|α| − k

kn−1
[

n∑

ν=1

1

k + |zν |
max
|z|=k

|p(z)|]+

2(kn−1 − 1)

(n+ 1)kn−1
|na0 + αa1|+

1

kn−1
[
kn−1 − 1

n− 1
−

kn−3 − 1

n− 3
]|(n− 1)a1 + 2αa2|.

(3.10)

Since the polynomial p(z) has all zeros in |z| ≤ k, k ≥ 1, then q(z) = znp(1/z) has no
zero in |z| < 1/k, hence the polynomial q(z/k) having no zeros in |z| < 1, therefore
on applying Lemma 2.2 to the polynomial q(z/k), we get

max
|z|=k

|q(z/k)| ≤

[
kn + 1

2
]max
|z|=1

|q(z/k)− (
kn − 1

2
) min
|z|=1

|q(z/k)| −
2|an−1|

(n+ 1)k
[
kn − 1

n
− (k − 1)]

−
2|an−2|

k2
[(
(kn − 1)− n(k − 1)

n(n− 1)
)− (

(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)
)].

(3.11)
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Since max
|z|=1

|q(z/k)| = (1/kn) max
|z|=k

|p(z)|, and min
|z|=1

|q(z/k)| = (1/kn) min
|z|=k

|p(z)|, then

(3.11) is equivalent to

max
|z|=k

|p(z)| ≥ (
2kn

kn + 1
)max
|z|=1

|p(z) + (
kn − 1

kn + 1
) min
|z|=k

|p(z)|

+
4kn−1|an−1|

(n+ 1)(kn + 1)
[
kn − 1

n
− (k − 1)]

+
4kn−2|an−2|

kn + 1
[(
(kn − 1)− n(k − 1)

n(n− 1)
)− (

(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)
)].

(3.12)

Combining (3.10) and (3.12), we get

max
|z|=1

|Dαp(z)| ≥
|α| − k

kn−1

n∑

ν=1

1

k + kν
[(

2kn

kn + 1
)max
|z|=1

|p(z)|

+ (
kn − 1

kn + 1
) min
|z|=k

|p(z)|+
4kn−1|an−1|

(n+ 1)(kn + 1)
(
kn − 1

n
− (k − 1))

+
4kn−2|an−2|

kn + 1
((
(kn − 1)− n(k − 1)

n(n− 1)
)− (

(kn−2 − 1)− (n− 2)(k − 1)

(n− 2)(n− 3)
))]

+
2(kn−1 − 1)

(n+ 1)kn−1
|na0 + αa1|+

1

kn−1
[
kn−1 − 1

n− 1
−

kn−3 − 1

n− 3
]

× |(n− 1)a1 + 2αa2|.

(3.13)

which completes the proof of (1.10). The proof of the Theorem 1.1 in the case n = 3
follows along the same lines as the proof of (1.10) but instead of inequalities (2.1) and
(2.3), we use inequalities (2.2) and (2.4), respectively. �

Proof of the Theorem 1.4. Let q(z) = znp(1/z) then 1/|zν| ≤ 1/kν for 1 ≤
ν ≤ n such that 1/k = max(1/k1, 1/k2, · · · , 1/kn) ≥ 1. On applying Theorem 1.1 to
the polynomial q(z), we get

max
|z|=1

|Dαq(z)| ≥ (|α| − 1/k)kn−1
n∑

ν=1

1

1/k + 1/kν
[(

2/kn

1/kn + 1
)max
|z|=1

|q(z)|

+ (
1/kn − 1

1/kn + 1
) min
|z|=1/k

|q(z)|+
4|a1|

(1 + 1/kn)kn−1(n+ 1)
(
(1/kn − 1)− n(1/k − 1)

n
)

+
4|a2|

kn−2(1 + 1/kn)
((
(1/kn − 1)− n(1/k − 1)

n(n− 1)
)− (

(1/kn−2 − 1)− (n− 2)(1/k − 1)

(n− 2)(n− 3)
))]

+
2kn−1(1/kn−1 − 1)

(n+ 1)
|nan + αan−1|+ kn−1[

(1/kn−1 − 1)

n− 1
−

(1/kn−3 − 1)

n− 3
]

× |(n− 1)an−1 + 2αan−2|

(3.14)
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Now from lemma 2.4 it follows that for |z| = 1, |Dαq(z)| = |α||D 1

α

p(z)| Using the

above equality in (3.14), we get for |α| ≥ 1/k,

|α|max
|z|=1

|D 1

α

p(z)| ≥ (|α| − 1/k)kn−1
n∑

ν=1

kkν
k + kν

[(
2

1 + kn
) max
|z|=1

|p(z)|

+
1

kn
(
1− kn

1 + kn
) min
|z|=k

|p(z)|+
4|a1|k

(n+ 1)(kn + 1)
(
(1 − kn)− n(kn−1 − kn)

nkn
)

+
4|a2|k

2

(1 + kn)
((
(1 − kn)− n(kn−1 − kn)

n(n− 1)kn
)− (

(1− kn−2)− (n− 2)(kn−3 − kn−2)

(n− 2)(n− 3)kn−2
))]

+
2(1− kn−1)

(n+ 1)
|nan + αan−1|+ kn−1[

(1 − kn−1)

(n− 1)kn−1
−

(1− kn−3)

(n− 3)kn−3
]

× |(n− 1)an−1 + 2αan−2|,

(3.15)

Replacing 1
α by δ, so that |δ| ≤ k, we get from (3.15)

|
1

δ
|max
|z|=1

|Dδp(z)| ≥ (|
1

δ
| − 1/k)kn−1

n∑

ν=1

kkν
k + kν

[(
2

1 + kn
)max
|z|=1

|p(z)|

+
1

kn
(
1− kn

1 + kn
) min
|z|=k

|p(z)|+
4|a1|k

(n+ 1)(kn + 1)
(
(1 − kn)− n(kn−1 − kn)

nkn
)

+
4|a2|k

2

(1 + kn)
((
(1 − kn)− n(kn−1 − kn)

n(n− 1)kn
)− (

(1− kn−2)− (n− 2)(kn−3 − kn−2)

(n− 2)(n− 3)kn−2
))]

+
2(1− kn−1)

(n+ 1)
|nan + αan−1|+ kn−1[

(1 − kn−1)

(n− 1)kn−1
−

(1− kn−3)

(n− 3)kn−3
]

× |(n− 1)an−1 + 2αan−2|.

(3.16)

Or

max
|z|=1

|Dδp(z)| ≥ (k − |δ|)kn−1
n∑

ν=1

kν
k + kν

[(
2

1 + kn
)max
|z|=1

|p(z)|

+
1

kn
(
1− kn

1 + kn
) min
|z|=k

|p(z)|+
4|a1|k

(n+ 1)(kn + 1)
(
(1− kn)− n(kn−1 − kn)

nkn
)

+
4|a2|k

2

(1 + kn)
((
(1− kn)− n(kn−1 − kn)

n(n− 1)kn
)− (

(1− kn−2)− (n− 2)(kn−3 − kn−2)

(n− 2)(n− 3)kn−2
))]

+
2(1− kn−1)

(n+ 1)
|nan + αan−1|+ kn−1[

(1− kn−1)

(n− 1)kn−1
−

(1 − kn−3)

(n− 3)kn−3
]

× |(n− 1)an−1 + 2αan−2|.

(3.17)

Which is (1.14). The proof of the Theorem 1.4 in the case n = 3 follows along the
same lines as the proof of Theorem 1.1. Hence the proof of Theorem 1.4 is complete.
�
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1 Introduction

The purpose of the paper is to suggest an efficient general method for evaluation of
the influence coefficients of the 3D boundary element method accounting for both
smooth behaviour of the densities at internal parts of the boundary and power-type
asymptotic behaviour near edges of the boundary.

Inspection of the boundary integrals equations of static 3D potential and elasticity
theory [4] shows that it is sufficient to consider the function

∫

Sq

f (y)

R
dSy, (1.1)

and its spatial derivatives ∂/∂xi, ∂
2/∂xi∂xj , ∂

3/∂xi∂xj∂xk.
Herein, Sq is the surface of a boundary element; f(y) is a function to be properly

approximated on the element; R =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2, where x1,

x2, x3 and y1, y2, y3 are global coordinates of the field and integration point, respec-
tively.
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2 Approximation of the boundary and density

We shall assume that, as usual (e.g. [1]), a curvilinear, in general, surface element
is transformed into a plane element. The global coordinates are transformed to the
local Cartesian coordinates of the plane element with the local axes y′2, y′3 in the
element plane; the origin O′ is in the plane of the transformed element. Besides, we
assume that the entries of Jacobian matrix, its determinant and the expression for R
are expanded into power series in x′

i − y′i and truncated. From now on, to simplify
notation, we shall drop the prime in the transformed coordinates and refer (1.1) to
a plane element in its local coordinates. Then y1 = 0 and the function f (y) is the
product of the density depending on the local coordinates y2, y3 and powers of y2 and
y3, which result from the truncated expressions mentioned.

Furthermore, we assume the plane element to be a trapezoid. This type of bound-
ary elements includes as particular cases commonly used triangular, parallelogram,
rectangular and square elements. Without loss of generality, we direct the y2-axis
along the trapezoid base, the y3-axis orthogonal to it and we locate the origin in the
lower left apex of the trapezoid (Fig. 1). For an edge element, we choose its edge as
the base of the trapezoid. Then if the density near the edge has the power-type be-
haviour, it is described by the factor yα3 with 0 6 α < 1. The general approximation
of the function f (y) in (1.1) is of the form:

y3

y2

y2 = aby3 + bb y2 = afy3 + bf

h

0

Figure 1: Trapezoidal element in local coordinates, bb = 0

f(y) = yα3

mp∑

k+l=0

ckly
k+s
2 yl+q

3 , 0 6 α < 1, (2.1)

where mp is the degree of a polynomial approximating the density, ckl are coefficients
of approximation, s and q are degrees arising from the coordinate transformation (for
initially plane parts of the boundary s = q = 0).

The two most important cases are: (i) α = 0 what corresponds to smooth be-
haviour of the density, and (ii) α = 1/2 what corresponds to square-root asymptotics
typical for problem of linear fracture mechanics. Still, other exponents α may arise
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in approximations. For instance, α = 2/3 for fracturing impermeable rock by a New-
tonian fluid. Therefore, it is reasonable to specify a particular value of α at the end
of the discussion.

Using (2.1) in (1.1) with Sq being the plane trapezoid of the height h (Fig. 1)
implies that it is sufficient to consider the main integrals of the form:

Akl
α (x1, x2, x3) =

h∫

0


yl+α

3

y2=afy3+bf∫

y2=aby3+bb

(x2 − y2)
k

R
dy2


 dy3. (2.2)

and their partial derivatives ∂/∂xi, ∂
2/∂xi∂xj , ∂

3/∂xi∂xj∂xk.

3 Evaluation of the main integrals

The integrals (2.2) are evaluated recurrently by using starting integrals for k = 0 and
k = 1:

A0j
α (x1, x2, x3) = −

h∫

0

[
yj+α
3 ln[(x2 − bξ − aξy3) +Rξ]

]ξ=f

ξ=b

dy3, (3.1)

A1j
α (x1, x2, x3) = −

h∫

0

[
yj+α
3 Rξ

]ξ=f

ξ=b

dy3, (3.2)

where where Rξ =
√
x2
1 + (x2 − bξ − aξy3)2 + (x3 − y3)2; the symbol

[ ]x=b

x=a
means

the double substitution:
[
f(x)

]x=b

x=a
= f(b)− f(a).

For k > 2, the recurrent equations are:

Akl
α = − 1

k

( h∫

0

yα+l
3

[
(x2 − bξ − aξy3)

k−1Rξ

]ξ=f

ξ=b

dy3+

+(k − 1)
(
x2
1 + x2

3

)
A(k−2)l

α − 2x3(k − 1)A(k−2)(l+1)
α + (k − 1)A(k−2)(l+2)

α

)
. (3.3)

Note that the integral A1j
α in (3.2) is a particular case of the integrals on the r.h.s.

of (3.3) when k = 1. Therefore, it remains to consider the integral on the r.h.s. of
the (3.3) and the integral A0j

α defined by (3.1). For both of them, an analysis shows
that they are promptly expressed as linear combinations of three standard terms:

[[
yl+1+α
3 ln[(x2 − bξ − aξy3) +Rξ]

]ξ=f

ξ=b

]y3=h

y3=0

, (3.4)


uξ

s

h∫

0

yα3 y
s
3

Rξ

dy3



ξ=f

ξ=b

, (3.5)
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h∫

0

yα3

(
Ãy3 + B̃

)

R2
0Rξ

dy3




ξ=f

ξ=b

, (3.6)

where uξ
s, Ã and B̃ are known coefficients depending on ξ, R2

0 = x2
1 + (x3 − y3)

2.
From (3.4)–(3.6) it follows that the problem is reduced to calculation of the in-

tegrals (3.5), (3.6) and their partial derivatives of the first, second and third order.
Differentiation of (3.4), being trivial, we focus on the derivatives of the integrals (3.5)
and (3.6).

4 Main integrals defining the first, second and third

derivatives of standard terms

Evaluation of the first, second and third derivatives of the standard term (3.5) shows
that it results in two new standard terms:



vξi

h∫

0

yα3

(y3 + zξ)
iRξ

dy3




ξ=f

ξ=b

,



v̄ξi

h∫

0

yα3

(y3 + z̄ξ)
i Rξ

dy3




ξ=f

ξ=b

, (4.1)

where vξi are known, in general complex, coefficients (i = 1, 2, 3); zξ is the complex

root of the polynomial R2
ξ , so that

(
1 + a2ξ

)
(y3 + zξ) (y3 + z̄ξ) = R2

ξ ; the overbar

denotes complex conjugation.
Similar analysis of the partial derivatives of the standard term (3.6) also yields

two new standard terms:


wξ

j

h∫

0

yα3 dy3

(y3 + z0)
j
Rξ



ξ=f

ξ=b

,


w̄ξ

j

h∫

0

yα3 dy3

(y3 + z̄0)
j
Rξ



ξ=f

ξ=b

, (4.2)

where wξ
j are known, in general complex, coefficients; z0 = −x3 + ix1 is the root of

R2
0, j = 1, 2, 3, 4, when x1 6= 0; in the case x1 = 0 we have z0 = z̄0 = −x3 and then

j = 1, 2, . . . , 8. Actually (4.2) are particular cases of (4.1) when the root zξ of R2
ξ is

changed to the root z0 of R2
0.

Noting that the second expression in (4.1) and (4.2) are the conjugated first ones,
we come to the conclusion that the problem is reduced to evaluation of three types
of integrals, at most:



uξ

h∫

0

yα3 y
s
3

Rξ

dy3




ξ=f

ξ=b

,



viξ

h∫

0

yα3

(y3 + zξ)
i
Rξ

dy3




ξ=f

ξ=b

,



wj
ξ

h∫

0

yα3 dy3

(y3 + z0)
j
Rξ




ξ=f

ξ=b

,

(4.3)
where i = 1, 2, 3, j = 1, 2, 3, 4 for x1 6= 0 and j = 1, 2, . . . , 8 for x1 = 0. Emphasise that
when representing the exponent α as a proper rational fracture α = n/m, (n < m),
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the integrals (4.3) may be evaluated recurrently. Below we give the explicit formulae
for the cases most important for application: α = 0 and α = 1/2. Before presenting
them, we distinguish three cases which suggest simplifications.

(i) Differentiation with respect to x2. In this case, we may avoid using the
recursive equation (3.3) by the method suggested in the paper [5]. Specifically, by the
relation ∂Akl/∂x2 = −∂Akl/∂y2 we obtain

∂Akl

∂x2
= −

h∫

0

[
yl+α
3

(x2 − bξ − aξy3)
k

Rξ

]ξ=f

ξ=b

dy3. (4.4)

This shows that differentiation with respect to x2 immediately leads to arithmetic
operations with the expressions (4.1).

(ii) Differentiation with respect to x1. By differentiating equation (3.3) with
respect to x1, we obtain:

∂Akl
α

∂x1
= − 1

k

[ h∫

0

x1y
α+l
3 (x2 − bξ − aξy3)

k−1

Rξ

dy3

]ξ=f

ξ=b

+

−k − 1

k

(
2x1A

(k−2)l
α + (x2

1 + x2
3)
∂A

(k−2)l
α

∂x1
− 2x3

∂A
(k−2)(l+1)
α

∂x1
+

∂A
(k−2)(l+2)
α

∂x1

)
.

(4.5)

The derivative of the starting integral
∂A1l

α

∂x1
has the form of the first integral on the

right hand side of the formula (4.5). Thus it is enough to consider the derivative of
the starting integral A0l

α .

∂A0l
α

∂x1
= x1

h∫

0

[
yl+α
3 (x2 − bξ − aξy3)

R2
0Rξ

]ξ=f

ξ=b

dy3 − x1

h∫

0

[
yl+α
3

R2
0

]ξ=f

ξ=b

dy3. (4.6)

The first integral after decomposition into a sum of real partial fractions is evaluted
by arithmetic operations with the integrals (3.5) and (3.6). The second integral does
not depend on ξ, therefore it is zero. We see that evaluation of partial derivatives,
containing differentiation with respect to x1, is reduced to evaluation of expressions
of the forms (4.1) for i = 1, 2 and (4.2) for j = 1, 2, 3.

(iii) Double differentiation with respect to x3. Since the function 1/R
satisfies the Laplace equation when R 6= 0, we may avoid repeated differentiation
with respect to x3 by using the equation

∂2Akl
α

∂x2
3

= −
(
∂2Akl

α

∂x2
1

+
∂2Akl

α

∂x2
2

)
. (4.7)

Then simplifications of points (i) and (ii) become available.
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5 Case of smooth density (α = 0)

In this case, all the integrals are evaluated analytically. Specifically, the integrals
(3.5), (4.1) and (4.2) become respectively:

Is =

h∫

0

ys3√
(y3 + zξ)(y3 + z̄ξ)

dy3, Js =

h∫

0

1

(y3 + zξ)
s
√
(y3 + zξ)(y3 + z̄ξ)

dy3,

and Ks =

h∫

0

dy3

(y3 + z0)
s
√
(y3 + zξ)(y3 + z̄ξ)

. (5.1)

Each of them is evaluated recurrently, with starting expressions:

I0 = J0 = K0 = 2

[
ln
(√

y3 + zξ +
√
y3 + z̄ξ

)]y3=h

y3=0

,

I1 =

[√
(y3 + zξ)(y3 + z̄ξ)

]y3=h

y3=0

− Re (zξ) I0,

K1 =
2

[
arctan

(√
y3+zξ

√
z̄ξ−z0√

y3+z̄ξ
√

z0−zξ

)

]y3=h

y3=0√
z0−zξ

√
z̄ξ−z0

.

(5.2)

The recursive formulas are:

Is =
1

s

([
ys−1
3

√
(y3 + zξ)(y3 + z̄ξ)

]y3=h

y3=0
− (2s− 1)Re (zξ) Is−1 − (s− 1) |zξ|2 Is−2

)
,

(5.3)

Js =
1(

s− 1
2

)
(zξ − z̄ξ)




[ √

y3 + z̄ξ

(y3 + zξ)
s− 1

2

]y3=h

y3=0

+ (s− 1)Js−1



 , (5.4)

Ks =
1

(s− 1) (zξ − z0) (z̄ξ − z0)

(
−
[√

(y3 + zξ) (y3 + z̄ξ)

(y3 + z0)
s−1

]y3=h

y3=0

+

+

(
s− 3

2

)
(2z0 − zξ − z̄ξ)Ks−1 − (s− 2)Ks−2

)
. (5.5)

Note that in the considered case, the representation of the trapezoid as a sum of
right triangles and a rectangle, allows us to use also the efficient method suggested in
[5].
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6 The case of the density with square-root asymp-

totics near the element edge (α = 1/2)

In this case, the starting integrals for evaluation of the integrals

Is =

h∫

0

ys3qdy3√
y3 (y3 + zξ) (y3 + z̄ξ)

, Js =

h∫

0

dy3

(y3 + zξ)
s
√
y3 (y3 + zξ) (y3 + z̄ξ)

,

Ks =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ) (y3 + z0)

s ,

are:

I0 = J0 = K0 =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ)

, (6.1)

I1 =

h∫

0

y3√
y3 (y3 + zξ) (y3 + z̄ξ)

dy3, (6.2)

J1 =

h∫

0

dy3

(y3 + zξ)
√

y3 (y3 + zξ) (y3 + z̄ξ)
, (6.3)

K1 =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ) (y3 + z0)

, (6.4)

K2 =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ) (y3 + z0)

2 . (6.5)

The recursive formulae are:

Is =
1

(2s− 1)

(
2

[
ys−2
3

√
y3 (y3 + zξ) (y3 + z̄ξ)

]y3=h

y3=0

+

− 4Re (zξ) (s− 1) Is−1 − |zξ|2 (2s− 3) Is−2

)
, (6.6)

Js =
1(

s− 1
2

)
(z̄ξ − zξ) zξ

[[√
(y3 + z̄ξ)y3

(y3 + zξ)s−
1
2

]y3=h

y3=0

+

+(s− 1)(z̄ξ − 2zξ)Js−1 +

(
s− 3

2

)
Js−2

]
, (6.7)
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Ks =
1

2 (s− 1) (z0 − zξ) (z0 − z̄ξ) z0

([
2
√
y3 (y3 + zξ) (y3 + z̄ξ)

(y3 + z0)
s−1

]y3=h

y3=0

+

+(2s− 5)Ks−3 − 2 (s− 2) (3z0 − z̄ξ − zξ)Ks−2

)
+

+
(2s− 3)

2 (s− 1)

(
1

z0
+

1

z0 − zξ
+

1

z0 − z̄ξ

)
Ks−1. (6.8)

Remark 6.1 For z0 = 0 (i.e. x1 = 0, x3 = 0),

Ks =

h∫

0

dy3√
y3 (y3 + zξ) (y3 + z̄ξ) (y3)

s ,

and the recursive formula becomes:

Ks = − 1(
s− 1

2

)
|zξ|2

([
y
−(s− 1

2 )
3

√
(y3 + zξ) (y3 + z̄ξ)

]y3=h

y3=0

+

+

(
s− 3

2

)
Ks−2 + 2Re (zξ) (s− 1)Ks−1

)
, (6.9)

with starting integrals:

K−1 = I1, K0 = I0. (6.10)

Evaluation of the starting elliptic integrals I0, I1, J1, K1 and K2 is efficiently
performed by proper adjusting the Carlson algorithms as explained in the next section.

7 Efficient evaluation of standard elliptic integrals
for problems involving cracks (α = 1/2)

The conventional methods of evaluation the elliptic integrals employ Gauss and Lan-
den transformations [6]. They converge quadratically and work well for elliptic inte-
grals of the first and second kind. However, as emphasised in [6] and confirmed by
our experience, they suffer from lost of significant digits for the integrals of the third
kind needed for our purpose. In contrast, the Carlson algorithm provides a unified
method for all the three kinds of integrals with extremely high efficiency. To use this
algorithm, we introduce the new variable t defined by equation:

y3 =
1

t+ 1
h

. (7.1)
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Then the starting integrals become:

I0 =
1

|zξ|

∞∫

0

dt√(
t+ 1

h

) (
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

) , (7.2)

I1 =
1

|zξ|

∞∫

0

dt

(
t+ 1

h

) 3
2

√(
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

) , (7.3)

J1 =
1

zξ |zξ|

∞∫

0

(
t+ 1

h

)
dt√(

t+ 1
h

) (
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

)(
t+ 1

h
+ 1

zξ

) , (7.4)

K1 =
1

|zξ| z0

∞∫

0

(
t+ 1

h

)
dt√(

t+ 1
h

) (
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

)(
t+ 1

h
+ 1

z0

) , (7.5)

K2 =
1

|zξ| z20

∞∫

0

(
t+ 1

h

)2
dt√(

t+ 1
h

) (
t+ 1

h
+ 1

zξ

)(
t+ 1

h
+ 1

z̄ξ

)(
t+ 1

h
+ 1

z0

)2 . (7.6)

They are promptly expressed in terms of Carlson integrals RF , RD and RJ of the
first, second and third kind, respectively, defined as:

RF (x, y, z) = 1
2

∞∫
0

[(t+ x) (t+ y) (t+ z)]
− 1

2 dt,

RD(z, y, z) = RJ (x, y, z, z) = 3
2

∞∫
0

[(t+ x) (t+ y)]−
1
2 (t+ z)−

3
2 dt,

RJ(x, y, z, p) = 3
2

∞∫
0

[(t+ x) (t+ y) (t+ z)]
− 1

2 (t+ p)
−1

dt.

(7.7)

In terms of the Carlson integrals, the starting integrals are:

I0 =
2

|zξ|
RF

(
1

h
,
1

h
+

1

zξ
,
1

h
+

1

z̄ξ

)
, (7.8)

I1 =
2

3 |zξ|
RD

(
1

h
+

1

zξ
,
1

h
+

1

z̄ξ
,
1

h

)
, (7.9)

J1 =
I0
zξ

− 2

3z2ξ |zξ|
RD

(
1

h
,
1

h
+

1

z̄ξ
,
1

h
+

1

zξ

)
, (7.10)

K1 =
I0
z0

− 2

3 |zξ| z20
RJ

(
1

h
,
1

h
+

1

zξ
,
1

h
+

1

z̄ξ
,
1

h
+

1

z0

)
, (7.11)
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K2 = − I0
2z20

(
1 +

zξ
z0 − zξ

+
z̄ξ

z0 − z̄ξ

)
− I1

2z30
+

+
K1

2z0

(
3 +

zξ
z0 − zξ

+
z̄ξ

z0 − z̄ξ

)
+

1

|zξ| z40

√
h(

1
h
+ 1

z0

) ∣∣∣ 1h + 1
zξ

∣∣∣
+

− 1

3 |zξ| z30

(
zξ

zξ − z0
RD

(
1

h
,
1

h
+

1

z̄ξ
,
1

h
+

1

zξ

)
+

z̄ξ
z̄ξ − z0

RD

(
1

h
,
1

h
+

1

zξ
,
1

h
+

1

z̄ξ

))
.

(7.12)
Finally, we need to evaluate five Carlson integrals only:

RD

(
1
h
+ 1

zξ
, 1
h
+ 1

z̄ξ
, 1
h

)
, RD

(
1
h
, 1
h
+ 1

z̄ξ
, 1
h
+ 1

zξ

)
,

RD

(
1
h
, 1
h
+ 1

zξ
, 1
h
+ 1

z̄ξ

)
, RF

(
1
h
, 1
h
+ 1

zξ
, 1
h
+ 1

z̄ξ
,
)
,

RJ

(
1
h
, 1
h
+ 1

zξ
, 1
h
+ 1

z̄ξ
, 1
h
+ 1

z0

)
.

(7.13)

The integrals RD and RF are evaluated very fast and accurately by algorithms pre-
sented by Carlson in the paper [3]. The same also refers to the integrals RJ when
its last argument in not a negative real number. The case, when the last argument(

1
h
+ 1

z0

)
of the integral RJ is a real negative number, is special. It occurs when the

field point is within the strip x1 = 0, 0 < x3 < h. Then the integral RJ is a singular
real Cauchy integral:

RJ

(
1

h
,
1

h
+

1

zξ
,
1

h
+

1

z̄ξ
,
1

h
+

1

z0

)
=

∞∫

0

dt√
t+ 1

h

√
f + gt+ t2

(
t+ 1

h
+ 1

z0

) , (7.14)

where f = |zξ|2, g = 2Re zξ. In the paper [2] Carlson provides equations serving for
efficient of this integral:

RJ =
2c11
3c44

[
− 4x3

(
c214 +

√
c211c

2
44

)
RJ(M

2, L2
−, L

2
+,W

2
+)+

−6RF (M
2, L2

−, L
2
+) + 3RC(U

2,W 2)− 2RC(P
2, Q2)

]
, (7.15)

where

c211 = 2
(
f − g

h
+ 1

h2

)
,

c214 = 2
(
f − g

(
1
h
+ 1

2z0

)
+ 1

h

(
1
h
+ 1

z0

))
,

c244 = 2

(
f − g

(
1
h
+ 1

z0

)
+
(

1
h
+ 1

z0

)2)
,

(7.16)
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and
M2 = 2

√
f + g,

U2 = 1
h
,

W 2 = U2 + 1
2z0c

2
11,

W 2
+ = M2 + z0

(
c214 + c11c44

)
,

L2
± = M2 +

(
2
h
− g
)
± c11

√
2,

Q2 = W 2
(
1 + h

z0

)
,

P 2 = Q2 − 1
2z0c

2
44,

RC (a, b) = RF (a, b, b) .

(7.17)

With using these equations, evaluation of the elliptic integrals, needed for problems
involving cracks, becomes extremely efficient. Our experience shows that calculations
of influence coefficients for square-root edge elements (α = 1/2) are performed as
accurate and fast as those for ordinary elements (α = 0).

We believe that similar, highly efficient algorithms may be developed for any
proper fraction α = m/n (m < n).
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