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1. Introduction and Preliminaries

Banach contraction theorem is one of the fundamental theorems in metric fixed point
theory. Banach proved existence of unique fixed point for a self contraction in com-
plete metric space. Since the contractions are always continuous, Kannan introduced
a new type of contractive map known as Kannan mapping [8] and proved analogues
results of Banach contraction theorem. The importance of Kannan mapping is that
it can be discontinuous and it characterizes completeness of the space [14, 15]. In [11]
Reich introduced a new type of contraction which is a generalization of Banach con-
traction and Kannan mapping and proved existence of unique fixed point in complete
metric spaces. Later Chatterjea defined a contraction similar to Kannan mapping
known as Chatterjea mapping [4] and proved various fixed point results. Inspired by
these contractions, several authors did research in this area using different spaces and
by weakening the contraction conditions [2, 7, 9, 12].

The concept of coupled fixed point was introduced by Guo and Lakshmikantham
[6]. They proved fixed point theorems using mixed monotone property in cone spaces.
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In [3] Gnana Bhaskar and Lakshmikantham proved coupled fixed point theorems for
contractions in partially ordered complete metric spaces using mixed monotone prop-
erty. Kannan, Chatterjea and Reich type contractions are further explored in coupled
fixed point theory and the results are reported in [1, 5, 13]. Recently the concept of
FG-coupled fixed point was introduced in [10] and they proved FG-coupled fixed point
theorems for various contractive type mappings.

In this paper we prove existence of FG-coupled fixed point theorems using Kannan,
Chatterjea and Reich type contraction on partially ordered complete metric spaces.

Now we recall some basic concepts of coupled and FG-coupled fixed points.

Definition 1.1 ([3]). An element (z,y) € X x X is said to be a coupled fixed point
of themap F': X x X - X if F(z,y) =2 and F(y,z) = y.

Definition 1.2 ([10]). Let (X,dx,<p,) and (Y,dy, <p,) be two partially ordered
metric spaces and F : X XY — X and G: Y x X — Y. We say that F' and G have
mixed monotone property if for any z,y € X

1,22 € X, 11 <p, 22 = F(x1,y) <p, F(z2,y) and G(y,z1) >p, G(y,z2)

y1.92 €Y, y1 <p, y2 = Flx,p1) 2p, F(x,y2) and G(y1,2) <p, G(y2,2).

Definition 1.3 ([10]). An element (z,y) € X x Y is said to be FG-coupled fixed
point if F(x,y) =« and G(y,x) = y.

If (x,y) € X xY is an FG-coupled fixed point then (y,z) € Y x X is a GF-
coupled fixed point. Partial order < on X x Y is defined as (u,v) < (z,y) <
z >p u, y <p, v V(zr,y),(u,v) € X x Y. Also the iteration is given by
Fril(z,y) = F(F"(2,y),G"(y,z)) and G""(y,2) = G(G"(y,2), F"(z,y)) for ev-
eryn € Nand (z,y) € X xY.

2. Main Results

Theorem 2.1. Let (X,dx,<p,),(Y,dy,<p,) be two partially ordered complete metric
spaces. Let FF: X XY — X and G:Y x X =Y be two continuous functions having

1
the mixed monotone property. Assume that there exist p,q,r,s € [O, 5) satisfying

dx (F(z,y), F(u,v)) < p dx(z, F(z,y)) + q dx (u, F(u,v)); Ve Zp, u, y <p, v (1)

dy (G(y,x),G(v,u)) <r dy(y,G(y,z)) + s dy (v,G(v,u));Ve <p, u,y >p, v. (2)

If there exist xg € X,yo € Y satisfying xo <p, F(xo,y0) and yo >p, G(yo,xo) then
there exist x € X,y € Y such that x = F(z,y) and y = G(y, z).
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Proof. Given zy <p, F(zo,y0) = z1 and yo >p, G(yo,z0) = y1.

Define z,, 11 = F(2n, yn) and yp41 = G(Yn, 2n) for n =1,2,3..

Then we can easily show that {z,} is increasing in X and {y,} is decreasing in Y.
Using inequalities (1) and (2) we get

dx (Tn+1,2n) = dx (F(n, Yn), F(Tn-1,Yn-1))
<p dx(@n, F(Tn,yn)) + ¢ dx(Tn—1, F(Tn—1,Yn-1))
=p dx(Tn, Tny1) + ¢ dx(Tn_1,2n)
ie, (1 —p) dx(xni1,2n) < qdx(Tp—1,2n)

. q
ie, dx (2n, Tny1) < ﬂdX(wn—hxn)

=01 dx(Tn-1,%n) where 6 = i <1
< 5% dx(Tp—o,Tn_1)
<67 dx (2o, 1)

Similarly we get dy (Yn+1,yn) < 62" dy (y1,y0) where o = 1 i S <L

Consider m > n

dX(xmvxn) S dX(%m,$m71> + dX(ajmfl>-'L‘mf2) + ...+ dX(anrhxn)
< 51m71 dx(l‘l,l‘o) + (51m72 dx(xl,l‘o) 4+ 6" dx(xl,xo)
= 61n(1 +61+ ...+ 61min71) dx(xhl'o)
<N
1—-6;

dx (z1,20).

Since 0 < §; < 1, 6™ converges to 0(as n — 00). Therefore {F™(x0,y0)} is a Cauchy
sequence in X. Similarly we can prove that {G"(yo,xo)} is a Cauchy sequence in Y.
Since by the completeness of X and Y, there exist x € X and y € Y such that
limy, 00 F™ (20, y0) = x and lim, 00 G™ (Yo, To) = y.

Now we have to prove the existence of FG-coupled fixed point.

Consider,

dx(F(z,y),r) = Jim dx (F'(F"(z0,Y0), G" (y0,0)), " (w0, Yo))
= lim dx (F" " (z0,0), F™ (20, %0))
=0
ie, F(z,y) = x. Similarly we get G(y,z) = y. O

By replacing the continuity of F' and G by other conditions we obtain the following
existence theorems of FG-coupled fixed point.
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Theorem 2.2. Let (X,dx,<p,) and (Y,dy,<p,) be two partially ordered complete
metric spaces and F : X XY — X, G : Y x X — Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {x,} — x then x, <p, x Vn.

(ii) If a non-increasing sequence {y,} — y then y <p, yn Vn.
1
Also assume that there exist p,q,r,s € [O, 5) satisfying
dx (F(z,y), F(u,v)) < p dx(z, F(z,y)) + q dx (u, F(u,v)); Vo Zp u, y <p, v (3)

dy(G(y,iL’),G(th)) <r dY(va(yvm)) +s dy('U,G(’U,’LL)); Va <p, U, Y >p, V. (4)

If there exist xg € X, yo € Y satisfying xo <p, F(xo,y0) and yo >p, G(yo,xo) then
there exist x € X, y € Y such that x = F(z,y) and y = G(y, ).

Proof. Following as in the proof of Theorem 2.1 we get lim,,—, o F™ (20, y0) = = and
lim,, 00 G"(y(), $0) =Y.
Now we have
dx (F(z,y),x) < dx (F(z,y), F" (0, 40)) + dx (F"*! (20, 0), 7)
= dx(F(l‘,y), F(Fn(x()vyo)a G"(yo,mo)) =+ dx(Fn+1(fE07yo),I)
S p dx(l', F(l‘, y)) + q dX(Fn(J:Ov y0)7 F(Fn(l"m y0)7 Gn(y07 330)))
+ dX(Fn+l(x07y())7x) (uSing (3))

ie, dx (F(z,y),2) < p dx(z, F(z,y)) as n - .

This holds only when dx (F(z,y),z) = 0. Therefore we get F'(z,y) = x.
Similarly using (4) and lim,, oo G™(y0, o) = y we can prove y = G(y, x). O

Remark 2.1. If we put £ = m and [ = n in Theorems 2.1 and 2.2, we get Theorems
2.7 and 2.8 respectively of [10].

Theorem 2.3. Let (X,dx,<p,),(Y,dy,<p,) be two partially ordered complete metric
spaces. Let F: X XY = X and G:Y x X =Y be two continuous functions having

1
the mixed monotone property. Assume that there exist p,q,r, s € [0, 5) satisfying
dX(F(x,y),F(u,v)) <p dX(va(ua 'U)) +q dX(uaF(xay)); Vo ZP1 u, Yy §P2 v (5)

dy(G(y,Jf), G(Uv u)) <r dY(yv G(’U,U)) +s dY(U7 G(y,x)), vV <p U, Yy2p, . (6)

If there exist xg € X,yo € Y satisfying xo <p, F(xo,y0) and yo >p, G(yo,xo) then
there exist x € X,y € Y such that x = F(z,y) andy = G(y, z).
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Proof. Asin Theorem 2.1 we have {x,} increasing in X and {y,} decreasing in Y.
We have

dx (Tnt1,2n) = dx (F (T, Yn), F(Tn-1,Yn-1))
<pdx(n, F(2n—1,Yn-1)) + q dx(Tn_1, F(Tn,yn)) (Using (5))
=p dx(Tn, Tn) + ¢ dx(Tn—1,Tn+1)
< q [dx(zn-1,25) + dx (Tn, Tnt1)]

. q
1e, dX(QJn,In+1) S 17_q dX(xn—hxn)

q

— <1
1—g¢

=6, dx(xp_1,z,) where 0; =

<67 dx(Tp—2,Tn_1)

S (S? dx(.’lﬁo,l‘l).

Similarly we get dy (Yn+1,Yn) < 02" dy (y1,%0) where 5y = % <1
-7

Now, we prove that {F"(xo,y0)} and {G™(yo,zo)} are Cauchy sequences in X and
Y respectively.
For m > n,

dX(xm,l'n) S dX(l'm»xmfl) + dX(xm71,$m72) + ...+ dX(anrlal'n)
< 51m71 dx(xl,xo) + 51m72 dx(xhl'o) + .+ 5" dx(.%'l,xo)
<0
—1-6

dX (-Th .1?0)-

Since 0 < §; < 1, 61" converges to 0 (as n — 00). Therefore {F"(x¢, yo)} is a Cauchy
sequence in X.

Similarly we can prove that {G™(yo, zo)} is a Cauchy sequence in Y.

By the completeness of X and Y, there exist x € X and y € Y such that
lim,, o0 F™(x0,y0) =  and lim,, oo G™(yo, o) = .

As in the proof of Theorem 2.1 we can show that z = F(z,y) and y = G(y, z). O

Theorem 2.4. Let (X,dx,<p,) and (Y,dy,<p,) be two partially ordered complete
metric spaces and F: X XY — X, G:Y x X — Y be two mappings having the
mixed monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {x,} — = then x, <p, x© Vn.

(ii) If a non-increasing sequence {y,} — y then y <p, yn Vn.
1
Also assume that there exist p,q,7,s € [O, 5) satisfying

dX(F('T7y)7F(u7’U)) <p dX(x,F(u,v)) +4q dx(U,F(l‘,y)); Va 2p U, Y<p, v (7)
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dy(G(y,x),G(uu)) <r dy(y,G(v,u)) +s dy(’l},G(y,(E)); Vo §P1 u, Yy ZPQ v. (8)

If there exist xg € X, yo € Y satisfying xo <p, F(xo,y0) and yo >p, G(yo, o) then
there exist x € X, y € Y such that x = F(x,y) and y = G(y, x).

Proof. Following as in the proof of Theorem 2.3 we get lim,,—, o F™ (20, y0) = = and
limy, 00 G" (Y0, T0) = ¥-

Consider
dx (F(x,y),2) < dx(F(z,y), F"" (20,10)) + dx (F"*! (z0, o), )
= dx (F(x,y), F(F™(x0,90), G" (0, %0))) + dx (F" (0, %0), ¥)
< p dx(z, F((F"(z0,90), G" (40, 0))) + ¢ dx (F" (z0,y0), F(2,y))
+dx Fn+1($07y0) )
=p dx(z, F""(z0,90)) + ¢ dx (F"(z0,90), F(z,y))
+dx (F" ! (z0,10), )

/\/\/\/\

ie, dx (F(z,y),2) < qdx(z, F(z,y)) asn — oo, which implies that dx (F(z,y),z) = 0.
Therefore we get F(z,y) = x.
Similarly using (8) and lim,, o G™(yo, o) = y, we get y = G(y, x). O

Remark 2.2. If we put p =r and ¢ = s in Theorems 2.3 and 2.4, we get Theorems
2.9 and 2.10 respectively of [10].

The following example illustrates the above results.

Example 2.1. Let X =[0,1] and Y = [—1, 1] with usual metric. Partial order on X
is defined as x <p, u if and only if z = v and partial order on Y is defined as y <p, v
if and only if either y = v or (y,v) = (0,1). The mapping F': X x Y — X is defined

1 -1
by F(z,y) = and G: Y x X — Y is defined as G(y,x) = IT Then F and

G satisfies (1), (2), (5), (6) with p,q,7,s € [0,1). Also (1,0) is the FG-coupled fixed
point.

Theorem 2.5. Let (X,dx,<p,),(Y,dy,<p,) be two partially ordered complete metric
spaces. Let F: X XY — X and G:Y x X =Y be two continuous functions having
the mized monotone property. Assume that there exist a,b,c with a + b+ ¢ < 1
satisfying

dx (F(z,y), F(u,v)) <adx(z,F(x,y)) + b dx(u, F(u,v)) + ¢ dx (z,u);
Ve >p u, y<p, v

(9)

dy (G(y,2),G(v,u)) < a dy(y, Gy, z)) + b dy (v,G(v,u)) + ¢ dy (y,v); (10)
Vo <p, u, Yy >p, v

If there exist xg € X,yo € Y satisfying xo <p, F(xo,y0) and yo >p, G(yo,zo) then
there exist x € X,y € Y such that x = F(x,y) and y = G(y,x).
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Proof. Following as in Theorem 2.1 we have {x,} is increasing in X and {y,} is
decreasing in Y.
Now we claim that

A (F™ 20, o), F" (w0, 0)) < (22)" dx (o, m1) (1)
dy (G (4o, 20), G (0, 20)) < (1) v (w0, (12)

The proof is by mathematical induction with the help of (9) and (10).
For n = 1, consider

dX(FQ(xO,yO),F(:co,yO)) = dx (F(F(z0,Y0), G(Y0,%0)), F'(0,Y0))
< a dx(F(zo,y0), F*(20,90)) + b dx (w0, F(20,y0))
+ ¢ dx (F(xo,y0), o)

b+c

ie, dx (F*(z0,y0), F(z0,y0)) < 1= dx (o, 21).

Thus the inequality (11) is true for n = 1.
Now assume that (11) is true for n < m, and check for n =m + 1.
Consider,

dx (F™(x0,90), F" (20, y0))
= dX(F(FmH(l‘o, Y0), Gm“(’yo, 0)), F'(F™ (%0, Y0), G" (Y0, Z0)))
<adx(F™ Y (xo,90), F™*(20,90)) + b dx (F™ (w0, 90), F™ (20, 40))
+ ¢ dx (F™* (0, y0), F™ (0, y0))

b+ec m m
1_adX(F (0, 90), F™ ! (20, y0))

< (ii;)mﬂ dx (o, 1)

iea dx(Fm+2($0,y0),Fm+1(£L’0,yo)) §

ie, the inequality (11) is true for all n € N.
Similarly we can prove the inequality (12).
For m > n, consider

dx (F"(z0,%0), F"(0,Y0))

< dx(F™(x0,90), F" (0, 10)) + dx (F" (20, y0), F"*(20,%0)) + ...
+dx (F™ Yo, y0), F™ (20, Y0))

(b+c>"+ <b+0)n+1 - (b+c>m_1] dx (xg,x1)

1—a 1—a 1—a

0" b
! dx(xg,x1) where 01 = te

< < 1.
71—61 1—a
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Since 0 < &1 < 1, §;" converges to 0 (as n — o) ie, { F™(x0,yo)} is a Cauchy sequence
in X. Similarly by using inequality (12) we can prove that {G™(yo,z0)} is a Cauchy
sequence in Y.

By the completeness of X and Y, there exist + € X and y € Y such that
lim,, oo F™(x0,y0) =  and lim,, oo G™(yo, xo) = .

As in the proof of Theorem 2.1, using continuity of F' and G we can prove that
F(z,y) =z and G(y,z) = y. O

If we take X =Y and F = G in the above theorem we get the following corollary.

Corollary 2.1. Let (X,d,<) be a partially ordered complete metric space. Let
F: X xX — X be a continuous function having the mixed monotone property. As-
sume that there exist non-negative a,b,c such that a +b+ ¢ < 1 satisfying

d(F (), F(u,v)) < a d(z, F(z,y)) + b d(u, F(u,0)) + ¢ d(z,u); Yo > u, y < v.

If there exist xo,yo € X satisfying xo < F(xo,y0) and yo > F(yo,xo) then there exist
(z,y) € X x X such that x = F(z,y) and y = F(y, z).

Theorem 2.6. Let (X,dx,<p,) and (Y,dy,<p,) be two partially ordered complete
metric spaces and F : X xY — X, G:Y x X — Y be two mappings having the
mized monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {x,} — x then x, <p, x Vn.

(ii) If a non-increasing sequence {y,} — y then y <p, yn Vn.

Also asuume that there exist a,b,c with a + b+ ¢ < 1 satisfying
dx(F(z,y), F(u,v)) <adx(z,F(z,y)) + b dx (u, F(u,v)) + ¢ dx(z,u);

VSC Zpl ’lL, y SPQ v

dY(G(y7$)7 G(’Uvu)) <a dY(y7 G(y,fl))) +b dy(’l), G(”?“’)) +c dy(y,’l));
Ve <p, u, y >p, v.

(13)

(14)

If there exist xg € X,yo € Y satisfying xo <p, F(xo,y0) and yo >p, G(yo, o) then
there exist x € X,y € Y such that x = F(z,y) and y = G(y, ).

Proof. Following as in the proof of Theorem 2.5 we obtain lim, ., F™ (2o, y0) =
and limy, . G" (Y0, Z0) = Y-
We have
dx (F(z,y),x) < dx(F(z,y), F""(x0,y0)) + dx (F" " (20, y0), 7)
= dx(F(z,y), F(F"(20,%0), G" (30, %0))) + dx (F"*!(x0, yo), )
<adx(z, F(z,y)) +b dx(F"(zo,y0), F(F" (0, %0), G" (0, %0)))
+ ¢ dx (x, F™ (20, 40)) + dx (F"* (0, y0), 7)
= a dx(z,F(z,y)) + b dx (F"(z0,40), F" " (20, %0))
+ ¢ dx (x, F™ (20, 40)) + dx (F"* (20, y0), 7)
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ie, dx (F'(z,y),z) < adx(z, F(x,y)) asn — oo, which implies that dx (F(z,y),z) = 0.
Therefore F(x,y) = x.
Similarly using (14) and lim, ., G™(yo,20) = y we get y = G(y, x). O

By assuming X = Y and F' = G in the above theorem we will get the following
corollary.

Corollary 2.2. Let (X,d,<) be a partially ordered complete metric space and
F: X xX — X be a mapping having the mized monotone property. Assume that
X satisfy the following property

(i) If a non-decreasing sequence {x,} — = then x,, <z Vn.
(i) If a non-increasing sequence {y,} — y then y <y, Vn.

Also assume that there exist non-negative a,b, c such that a + b+ ¢ < 1 satisfying
d(F(z,y), F(u,v)) <ad(z,F(z,y)) + b d(u, F(u,v)) + ¢ d(z,u); Vo >u, y <.

If there exist (zo,yo) € X x X satisfying vo < F(xo,yo) and yo > F(yo, zo) then there
exist ©,y € X such that x = F(x,y) and y = F(y, x).

Remark 2.3. If we take ¢ = 0 in Theorems 2.5 and 2.6, we get Theorems 2.7 and
2.8 respectively of [10].

Theorem 2.7. Let (X,dx,<p,), (Y,dy,<p,) be two partially ordered complete metric
spaces. Let F: X XY = X and G:Y x X =Y be two continuous functions having
the mized monotone property. Assume that there exist non-negative a,b,c satisfying

dx (F(z,y), F(u,v)) < a dx(z, F(u,v))+ b dx(u, F(z,y)) + ¢ dx(z,u); (15)
Ve >p u, y<p,v; 2b+c<1
dy (G(y,z),G(v,u)) < a dy(y,G(v,u))+ b dy (v,G(y,x)) + ¢ dy (y,v);

(16)
Vo <p, u, y >pav; 2a+c <l

If there exist xg € X,yo € Y satisfying vo <p, F(xo,y0) and yo >p, G(yo, o) then
there exist x € X,y € Y such that x = F(x,y) and y = G(y, x).

Proof. As in the proof of Theorem 2.1, it can be proved that {z,} is increasing in
X and {y,} is decreasing in Y.
Now we claim that

ax (™ (. u0). " (x0,90)) < (250)" o, ) ()
dy (6™ (o, 20). G (0. 0)) < (2 )" d (o, ). (18)
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We prove the claim by mathematical induction, using (15) and (16).
For n = 1, consider

dX(FQ(»TO» Y0), (w0, Y0))
= dx (F(F(zo,90), G(yo, o)), F (w0, y0))
< a dx(F(z0,90), F (20, 40)) + b dx (20, F*(20,0)) + ¢ dx (F(x0,%0), %o)
< b [dx (2o, F(20,90)) + dx (F(zo,y0), F*(z0,90))] + ¢ dx (F(zo,Y0), o)

. b+
e, dx (F?(xo,y0), F(xo,y0)) < 17_2 dx(xo,x1).

Thus the inequality (17) is true for n = 1.
Now assume that (17) is true for n < m, then check for n = m + 1.
Consider,

dx (F™2(x0,90), F™ " (20,0))
= dX(F(Fm+1(CU07y0)7 Gmﬂ(l/Oa$0))»F(Fm(3507y0)7 G (yo,%0)))
<adx(F™(x0,90), F™ (w0, 90)) + b dx (F™ (20, y0), F™ (20, 0))
+cdx (F™ ! (zo,0), F™ (0, %0))
< b [dx (F™ (0, y0), F™ (20, 90)) + dx (F™ (20, 90), ™2 (20, %0))]
+ ¢ dx (F™ " (z0,0), F™ (20, 0))

ie,
b+c

1-b

< (itg)mﬂ dx (o, 1)

N

dx (F™ (0, y0), F™ (20, 10)) < dx (F™(z0,0), ™ (20, 10))

ie, the inequality (17) is true for all n € N.

Similarly we can prove the inequality (18).

For m > n, consider

dx (F™ (w0, yo), F"™(70,%0))

< dx (F™(@o, y0), F" (20, y0)) + dx (F" " (20, 40), F"* (w0, 40)) + -
+dx (F™ (z0,0), F™ (20, %0))

b+c\n b+ c\ntl b+c\m-1

R A

< l dx(zo,x1); where §; = btec
1-6;

1.
1-p°

Since 0 < &1 < 1, §;" converges to 0 (as n — o) ie, { F"™(x,yo)} is a Cauchy sequence
in X. Similarly we can prove that {G™(yo, o)} is a Cauchy sequence in Y.
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Since X and Y are complete, there exist x € X and y € Y such that lim,,_,~ F™(z0, yo)
=z and lim, o0 G™ (Y0, Z0) = ¥.
By continuity of F' and G, as in the Theorem 2.1 we can show that F(z,y) = = and

Gly,z) = . O
If X =Y and F' = G in the above theorem we get the following corollary.

Corollary 2.3. Let (X,d,<) be a partially ordered complete metric space. Let
F: X xX — X be a continuous function having the mized monotone property. As-
sume that there exist non-negative a,b, ¢ such that 2a+c < 1 and 2b+c < 1 satisfying

d(F(z,y), F(u,v)) <a d(z, F(u,v)) + b d(u, F(z,y)) + ¢ d(z,u); Vx> u, y <.

If there exist (xg,y0) € X XY satisfying xo < F(x0,y0) and yo > F(yo, zo) then there
exist x,y € X such that x = F(x,y) and y = F(y,x).

In the following theorem we replace the continuity by other conditions to obtain
FG-coupled fixed point.

Theorem 2.8. Let (X,dx,<p,) and (Y,dy,<p,) be two partially ordered complete
metric spaces and F : X XY — X, G : Y x X — Y be two mappings having the
mized monotone property. Assume that X and Y satisfy the following property

(i) If a non-decreasing sequence {x,} — = then x, <p, x Vn.
(ii) If a non-increasing sequence {yn,} — y then y <p, yn Yn.
Also assume that there exist non-negative a,b,c satisfying

dx (F(x,y), F(u,v)) < a dx(z, F(u,v))+b dx (u, F(z,y)) + ¢ dx (x,u);

(19)
Ve >p u, y<p, v; 2b+c<1

dy (G(y,2),G(v,u)) < a dy(y, G(v,u)+b dy (v,G(y,z)) + ¢ dy (y,v);
Ve <p u, y>p,v; 2a+c <1

(20)

If there exist xg € X,yo € Y satisfying xo <p, F(xo,y0) and yo >p, G(yo, o) then
there exist x € X,y € Y such that x = F(z,y) and y = G(y, ).

Proof. Following as in the proof of Theorem 2.7 we get lim, o F™(x0,y0) = = and
limy, 00 G™ (Y0, %0) = ¥.
We have
dx (F(z,y),x) < dx(F(z,y), F*"(x0,y0)) + dx (F" " (20, y0), 7)
= dx (F(z,y), F(F"(0,0), G" (Y0, %0)) + dx (F"* (20, y0), x)
< a dx (z, F(F"(20,90), G" (40, %0))) + b dx (F" (0, %0), F(z,y))
+ ¢ dx (x, F™ (20, 40)) + dx (F"* (0, y0), 7)
= a dx(z, F" (20, 40)) + b dx (F" (x0,0), F(z,y))
+ ¢ dx (x, F™ (20, 40)) + dx (F"* (20, y0), ¥)



168 D. Karichery and S. Pulickakunnel

ie, dx (F(z,y),z) < bdx(z, F(x,y)) asn — oo, which implies that dx (F(x,y),z) = 0.
Therefore F(z,y) = x.
Also by using (20) and lim,, o G™ (Y0, Zo) = y we can show that y = G(y, x). O

Taking X =Y and F' = G in the above corollary we get the corresponding coupled
fixed point result.

Corollary 2.4. Let (X,d,<) be a partially ordered complete metric spaces and
F: X xY — X be a mapping having the mixed monotone property. Assume that
X satisfy the following property

(i) If a non-decreasing sequence {x,} — = then x, < x Vn.
(i) If a non-increasing sequence {y,} — y then y <y, Vn.

Also assume that there exist non-negative a,b,c such that 2a+c¢ <1 and 20 +c¢ < 1
satisfying

d(F(z,y), F(u,v)) <a d(z, F(u,v)) + b d(u, F(z,y)) + ¢ d(x,u); Ve > u, y <.

If there exist (xo,y0) € X XY satisfying xo < F(x0,y0) and yo > F(yo, zo) then there
exist (x,y) € X XY such that x = F(z,y) and y = F(y,x).

Remark 2.4. If we take ¢ = 0 in Theorems 2.7 and 2.8, we get Theorems 2.9 and
2.10 respectively of [10].
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