
J o u r n a l of
Mathematics
and Applications

JMA No 41, pp 109-122 (2018)

COPYRIGHT c© by Publishing House of Rzeszów University of Technology
P.O. Box 85, 35-959 Rzeszów, Poland

Existence and Convergence Results

for Caputo Fractional Volterra

Integro-Differential Equations

Ahmed A. Hamoud*, M.Sh. Bani Issa, Kirtiwant P. Ghadle
and Mohammed Abdulghani

Abstract: In this article, homotopy analysis method is successfully
applied to find the approximate solution of Caputo fractional Volterra
integro-differential equation. The reliability of the method and reduction
in the size of the computational work give this method a wider applica-
bility. Also, the behavior of the solution can be formally determined by
analytical approximate. Moreover, we proved the existence and conver-
gence of the solution. Finally, an example is included to demonstrate the
validity and applicability of the proposed technique.
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1. Introduction

In this paper, we consider Caputo fractional Volterra integro-differential equation of
the form:

cDαu(x) = g(x) +

∫ x

0

K(x, t)F (u(t))dt, (1.1)

with the initial condition

u(i)(0) = δi, i = 0, 1, 2, · · · , n− 1, (1.2)
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where cDα is the Caputo’s fractional derivative, n−1 < α ≤ n, n ∈ N and u : J −→ R,
where J = [0, 1] is the continuous function which has to be determined, g : J −→ R
and K : J × J −→ R, are continuous functions. F : R −→ R, is Lipschitz continuous
function.

The fractional integro-differential equations have attracted much more interest
of mathematicians and physicists which provides an efficiency for the description of
many practical dynamical arising in engineering and scientific disciplines such as,
physics, biology, electrochemistry, chemistry, economy, electromagnetic, control the-
ory and viscoelasticity [2, 5, 8, 7, 9, 10, 17, 18, 20]. In recent years, many authors
focus on the development of numerical and analytical techniques for fractional integro-
differential equations. For instance, we can remember the following works. An ap-
plication of fractional derivatives was first given in 1823 by Abel [1] who applied the
fractional calculus in the solution of an integral equation that arises in the formula-
tion of the Tautochrone problem, Al-Samadi and Gumah [3] applied the homotopy
analysis method for fractional SEIR epidemic model, Zurigat et al. [23] applied HAM
for system of fractional integro-differential equations, Yang and Hou [20] applied the
Laplace decomposition method to solve the fractional integro-differential equations,
Mittal and Nigam [18] applied the Adomian decomposition method to approximate
solutions for fractional integro-differential equations, and Ma and Huang [17] applied
hybrid collocation method to study integro-differential equations of fractional order.
Moreover, properties of the fractional integro-differential equations have been studied
by several authors [11, 12, 21, 23]. The homotopy analysis method (HAM) that was
first proposed by Liao [14, 15, 16], is implemented to derive analytic approximate so-
lutions of fractional integro-differential equations (FIDEs) and convergence of HAM
for this kind of equations is considered. Unlike all other analytical methods, HAM
adjusts and controls the convergence region of the series solution via an auxiliary
parameter ~.

The main objective of the present paper is to study the behavior of the solution
that can be formally determined by analytical approximated method as the homotopy
analysis method. Moreover, we proved the existence and convergence of the solution
of the Caputo fractional Volterra integro-differential equation.

The rest of the paper is organized as follows: In Section 2, some preliminaries
and basic definitions related to fractional calculus are recalled. In Section 3, homo-
topy analysis method is constructed for solving Caputo fractional Volterra integro-
differential equations. In Section 4, the existence and convergence of the solution
have been proved. In Section 5, the analytical example is presented to illustrate the
accuracy of this method. Finally, we will give a report on our paper and a brief
conclusion is given in Section 6.

2. Preliminaries

The mathematical definitions of fractional derivative and fractional integration are
the subject of several different approaches. The most frequently used definitions of
the fractional calculus involves the Riemann-Liouville fractional derivative, Caputo
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derivative [13, 19, 22].

Definition 2.1. (Riemann-Liouville fractional integral). The Riemann-Liouville frac-
tional integral of order α > 0 of a function f is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x), (2.1)

where R+ is the set of positive real numbers.

Definition 2.2. (Caputo fractional derivative). The fractional derivative of f(x) in
the Caputo sense is defined by

cDα
xf(x) = Jm−αDmf(x)

=


1

Γ(m−α)

∫ x
0

(x− t)m−α−1 d
mf(t)
dtm dt, m− 1 < α < m,

dmf(x)
dxm , α = m, m ∈ N,

(2.2)

where the parameter α is the order of the derivative and is allowed to be real or even
complex. In this paper, only real and positive α will be considered.

Hence, we have the following properties:

1. JαJvf = Jα+vf, α, v > 0,

2. Jαxβ = Γ(β+1)
Γ(β+α+1)x

β+α,

3. JαDαf(x) = f(x)−
∑m−1
k=0 f (k)(0+)x

k

k! , x > 0, m− 1 < α ≤ m.

Definition 2.3. (Riemann-Liouville fractional derivative). The Riemann Liouville
fractional derivative of order α > 0 is normally defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m, m ∈ N. (2.3)

Theorem 2.4. [22] (Banach contraction principle). Let (X, d) be a complete metric
space, then each contraction mapping T : X −→ X has a unique fixed point x of T in
X i.e. Tx = x.

3. Homotopy Analysis Method (HAM)

Consider,
N [u] = 0,

where N is a nonlinear operator, u(x) is unknown function and x is an independent
variable. Let u0(x) denote an initial guess of the exact solution u(x), ~ 6= 0 an
auxiliary parameter, H1(x) 6= 0 an auxiliary function, and L an auxiliary linear
operator with the property L[s(x)] = 0 when s(x) = 0. Then using q ∈ [0, 1] as an
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embedding parameter, we can construct a homotopy when consider, N [u] = 0, as
follows [4, 6, 14, 15, 21]:

(1− q)L[φ(x; q)− u0(x)]− q~H1(x)N [φ(x; q)] = Ĥ[φ(x; q);u0(x), H1(x), ~, q]. (3.1)

It should be emphasized that we have great freedom to choose the initial guess
u0(x), the auxiliary linear operator L, the non-zero auxiliary parameter ~, and the
auxiliary function H1(x). Enforcing the homotopy Eq.(3.1) to be zero, i.e.,

Ĥ1[φ(x; q);u0(x), H1(x), ~, q] = 0, (3.2)

we have the so-called zero-order deformation equation

(1− q)L[φ(x; q)− u0(x)] = q~H1(x)N [φ(x; q)], (3.3)

when q = 0, the zero-order deformation Eq.(3.3) becomes

φ(x; 0) = u0(x), (3.4)

and when q = 1, since ~ 6= 0 and H1(x) 6= 0, the zero-order deformation Eq.(3.3) is
equivalent to

φ(x; 1) = u(x). (3.5)

Thus, according to Eqs.(3.4) and (3.5), as the embedding parameter q increases
from 0 to 1, φ(x; q) varies continuously from the initial approximation u0(x) to the
exact solution u(x). Such a kind of continuous variation is called deformation in
homotopy [14, 23]. Due to Taylor’s theorem, φ(x; q) can be expanded in a power
series of q as follows

φ(x; q) = u0(x) +

∞∑
m=1

um(x)qm, (3.6)

where

um(x) =
1

m!

∂mφ(x; q)

∂qm
|q=0. (3.7)

Let the initial guess u0(x), the auxiliary linear parameter L, the nonzero auxiliary
parameter ~ and the auxiliary function H1(x) be properly chosen so that the power
series (3.6) of φ(x; q) converges at q = 1, then, we have under these assumptions the
solution series

u(x) = φ(x; 1) = u0(x) +

∞∑
m=1

um(x). (3.8)

From Eq.(3.6), we can write Eq.(3.3) as follows:

(1− q)L[φ(x; q)− u0(x)] = (1− q)L[

∞∑
m=1

um(x)qm] (3.9)

= q~H1(x)N [φ(x; q)],
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then

L[

∞∑
m=1

um(x)qm]− qL[

∞∑
m=1

um(x)qm] = q~H1(x)N [φ(x; q)]. (3.10)

By differentiating Eq.(3.10) m times with respect to q, we obtain

{L[

∞∑
m=1

um(x)qm]− qL[

∞∑
m=1

um(x)qm]}(m) = q~H1(x)N [φ(x; q)]
(m)

= m!L[um(x)− um−1(x)]

= ~H1(x)m
∂m−1N [φ(x; q)]

∂qm−1
|q=0.

Therefore,

L[um(x)− χmum−1(x)] = ~H1(x)<m(−−−→um−1(x)), (3.11)

where

<m(−−−→um−1(x)) =
1

(m− 1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0, (3.12)

and

χm =

{
0, m ≤ 1,

1, m > 1.

Note that the high-order deformation Eq.(3.11) is governing the linear operator L,
and the term <m(−−−→um−1(x)) can be expressed simply by Eq.(3.12) for any nonlinear
operator N.

HAM applied to fractional Volterra integro-differential
equation

We consider Caputo fractional Volterra integro-differential equation given by (1.1),
with the initial condition (1.2). We can define

N [φ(x; q)] = cDαφ(x; q)− g(x)−
∫ x

0

K(x, t)F (φ(t; q))dt.

Now we construct the zero-order deformation equation

(1− q)cDα[φ(x; q)− u0(x)] = q~N [φ(x; q)], (3.13)

subject to the following initial conditions

u0(x) = φ(0; q) = u0 =

n−1∑
k=0

δk
xk

k!
, (3.14)
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where q ∈ [0, 1] is the embedding parameter, ~ 6= 0 is an auxiliary parameter, u0(x)
is an initial guess of the solution u(x) and φ(x; q) is an unknown function on the
independent variables x and q. Also we suppose that

cDα(C) = 0, (3.15)

where C is an integral constant. When the parameter q increases from 0 to 1, then the
homotopy solution φ(x; q) varies from u0(x) to solution u(x) of the original equation
(1.1). Using the parameter q, φ(x; q) can be expanded in Taylor series as follows:

φ(x; q) = u0(x) +

∞∑
m=1

um(x)qm, (3.16)

where um(x) define as (3.7).

Assuming that the auxiliary parameter ~ is properly selected so that the above
series is convergent when q = 1, then the solution u(x) can be given by

u(x) = u0(x) +

∞∑
m=1

um(x). (3.17)

Differentiating (3.13) and the initial condition (3.14) m times with respect to q,
then setting q = 0, and finally dividing them by m!, we get the mth-order deformation
equation

cDα[um(x)− χmum−1(x)] = ~<m(−−−→um−1(x)), (3.18)

subject to the following initial conditions,

um(0) = 0, (3.19)

where

<m(−−−→um−1(x)) =
1

(m− 1)!

∂m−1N [φ(x; q)]

∂qm−1
|q=0

= cDαum−1(x)−
∫ x

0

K(x, t)F (um−1(t))dt− (1− χm)g(x),

and
−→um = u0, u1, · · · , um.

Applying the operator Jα to both sides of the linear m-order deformation (3.18)

um(x) = (χm + ~)um−1(x)− ~Jα
[ ∫ x

0

K(x, t)F (um−1(t))dt+ (1− χm)g(x)
]
.



Caputo Fractional Volterra Integro-Differential Equations 115

4. Main Results

In this section, we shall give an existence and uniqueness results of Eq. (1.1), with
the initial condition (1.2) and prove it. Before starting and proving the main results,
we introduce the following hypotheses:

(H1) There exists a constant LF > 0 such that, for any u1, u2 ∈ C(J,R)

|F (u1(x))− F (u2(x))| ≤ LF |u1 − u2| .

(H2) There exists a function K∗ ∈ C(D,R+), the set of all positive function contin-
uous on D = {(x, t) ∈ R× R : 0 ≤ t ≤ x ≤ 1} such that

K∗ = sup
x∈[0,1]

∫ x
0
|K(x, t)| dt <∞.

(H3) The function g : J → R is continuous.

Lemma 4.1. If u0(x) ∈ C(J,R), then u(x) ∈ C(J,R+) is a solution of the problem
(1.1)− (1.2) iff u satisfies

u(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1

(∫ s

0

K(s, τ)F (u(τ))dτ

)
ds,

for x ∈ J, and u0 =
∑n−1
k=0 δk

xk

k! .

Now, we will study the existence and uniqueness result of the solution based on
the Banach contraction principle.

Theorem 4.2. Assume that (H1)–(H3) hold. If(
K∗LF

Γ(α+ 1)

)
< 1, (4.1)

then there exists a unique solution u(x) ∈ C(J) to (1.1)− (1.2).

Proof. By Lemma 4.1. we know that a function u is a solution to (1.1)− (1.2) iff u
satisfies

u(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds+
1

Γ(α)

∫ x

0

(x− s)α−1

×
(∫ s

0

K(s, τ)F (u(τ))dτ

)
ds.
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Let the operator T : C(J,R)→ C(J,R) be defined by

(Tu)(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ s

0

K(s, τ)F (u(τ))dτ
)
ds.

Firstly, we prove that the operator T is completely continuous. We can see that, if
u ∈ C(J,R) is a fixed point of T , then u is a solution of (1.1)− (1.2).

Now we prove T has a fixed point u in C(J,R). For that, let u1, u2 ∈ C(J,R) and
for any x ∈ [0, 1] such that

u1(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ s

0

K(s, τ)F (u1(τ))dτ
)
ds,

and

u2(x) = u0 +
1

Γ(α)

∫ x

0

(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0

(x− s)α−1
(∫ s

0

K(s, τ)F (u2(τ))dτ
)
ds.

Consequently, we get

|(Tu1)(x)− (Tu2)(x)|

≤ 1

Γ(α)

∫ x

0

(x− s)α−1
(∫ s

0

|K(s, τ)| |F (u1(τ))− F (u2(τ))| dτ
)
ds

≤ K∗LF
Γ(α+ 1)

|u1(x)− u2(x)|

=

(
K∗LF

Γ(α+ 1)

)
|u1(x)− u2(x)| .

From the inequality (4.1) we have

‖Tu1 − Tu2‖∞ ≤
(

K∗LF
Γ(α+ 1)

)
‖u1 − u2‖∞ .

This means that T is contraction map. By the Banach contraction principle, we
can conclude that T has a unique fixed point u in C(J,R).

Now, we will study the convergence theorem of the solutions based on the HAM.

Theorem 4.3. If the series solution u(x) =
∑∞
m=0 um(x) obtained by the m-order

deformation is convergent, then it converges to the exact solution of the fractional
Volterra integro-differential equation (1.1)− (1.2).
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Proof. We assume
∑∞
m=0 um(x) converge to u(x) then

lim
m→∞

um(x) = 0.

We can write
n∑

m=1

cDα[um(x)− χmum−1(x)] = cDαu1(x) + (cDαu2(x)−c Dαu1(x))

+(cDαu3(x)−c Dαu2(x)) + . . .

+(cDαun(x)−c Dαun−1(x))

= cDαun(x). (4.2)

Hence, from Eq.(4.2)
lim
n→∞

un(x) = 0. (4.3)

So, using Eq.(4.3), we have

∞∑
m=1

cDα[um(x)− χmum−1(x)] =

∞∑
m=1

[cDαum(x)− χmcDαum−1(x)] = 0.

Therefore from Eq.(4.3), we can obtain that

∞∑
m=1

cDα[um(x)− χmum−1(x)] = ~
∞∑
m=1

<m−1(−−−→um−1(x)) = 0.

Since ~ 6= 0 and we have
∞∑
m=1

<m−1(−−−→um−1(x)) = 0. (4.4)

By substituting <m−1(−−−→um−1(x)) into the relation (4.4) and simplifying it, we have

<m−1(−−−→um−1(x)) =

∞∑
m=1

[cDαum−1(x)−
∫ x

0

K(x, t)F (um−1(t))dt− (1− χm)g(x)]

= cDα(

∞∑
m=1

um−1(x))−
∫ x

0

K(x, t)[

∞∑
m=1

F (um−1(t))]dt

−
∞∑
m=1

(1− χm)g(x)

= cDαu(x))−
∫ x

0

K(x, t)F (u(t))dt− g(x).

From Eq.(4.4) and Eq.(4.5), we have

cDαu(x) = g(x) +

∫ x

0

K(x, t)F (u(t))dt,

therefore, u(x) must be the exact solution of Eq.(1.1) and the proof is complete.
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5. Illustrative Example

In this section, we present the analytical technique based on HAM to solve Caputo
fractional Volterra integro-differential equations.

Example 1. Let us consider Caputo fractional Volterra integro-differential equation:

cD0.5[u(x)] =
32− 3

√
π

12
√
π

x1.5 +

∫ x

0

t

x2.5
u(t)dt, (5.1)

with the initial condition

u(0) = 0.

From (3.13), (5.1) can be written as

N [φ(x; q)] = cD0.5φ(x; q)− 32− 3
√
π

12
√
π

x1.5 −
∫ x

0

t

x2.5
φ(t; q)dt.

Now, using themth-order deformation equation (3.18) and initial conditions (3.19),
and recursive equation (3.20) we can write

um(x) = (χm + ~)um−1(x)− ~J0.5[(1− χm)
32− 3

√
π

12
√
π

x1.5 +

∫ x

0

t

x2.5
um−1(t)dt].

Then,

u0(x) = 0,

u1(x) = ~(
3
√
π

32
− 1)x2,

u2(x) = ~(1− ~(
3
√
π

32
− 1))(

3
√
π

32
− 1)x2,

u3(x) = ~(1− ~(
3
√
π

32
− 1))2(

3
√
π

32
− 1)x2,

.

.

.

un(x) = ~(1− ~(
3
√
π

32
− 1))n−1(

3
√
π

32
− 1)x2,

.

.

.

thus the HAM series solution can be written as

um(x) =

m∑
n=0

un(x) = ~(
3
√
π

32
−1)[1 + (1−~(

3
√
π

32
−1)) + · · ·+ (1−~(

3
√
π

32
−1))m−1]x2.
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The exact solution of (5.1) when 64
3
√
π−32

< ~ < 0 is

u(x) =

∞∑
n=0

un(x)

= ~(
3
√
π

32
− 1)

[
1 + (1− ~(

3
√
π

32
− 1)) + (1− ~(

3
√
π

32
− 1))2 + · · ·

]
x2

= ~(
3
√
π

32
− 1)

(
1

1− (1− ~( 3
√
π

32 − 1))

)
x2 = x2.

6. Conclusions

Homotopy analysis method is successfully applied to derive approximate analytical
solutions for fractional Volterra integro-differential equations. Also, we proved the
existence and convergence of the solution. Moreover, the obtained results show that
we can control of the convergence district of homotopy analysis technique by control
the auxiliary parameter ~. The convergence theorem and the illustrative example
establish the precision and efficiency of the proposed technique.
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